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Executive Summary  
This document reports the activities done by Textarossa partners CINI (UNIPISA), INFN and BSC with 
reference to consolidated specifications of accelerator IPs in WP2 and preliminary design and 
synthesis results, manly in FPGA technology. 
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1. Introduction 
This document reports the activities done by Textarossa partners CINI (UNIPISA), INFN and BSC with 
reference to consolidated specifications of accelerator IPs in WP2 and preliminary design and 
synthesis results, manly in FPGA technology. 

Particularly, Section 2 deals with specification and preliminary design results of accelerators with 
mixed-precision for data compression and for efficient computation of DNN (Deep Neural Network).  

To this am, posits are used. Growing constraints on memory utilization, power consumption, and I/O 
throughput have increasingly become limiting factors to the advancement of high performance 
computing (HPC) and edge computing applications. IEEE-754 floating-point types have been the de 
facto standard for floating-point number systems for decades, but the drawbacks of this numerical 
representation leave much to be desired. Alternative representations are gaining traction, both in HPC 
and machine learning environments. Posits have recently been proposed as a drop-in replacement for 
the IEEE-754 floating-point representation. The current literature supports posits as a promising 
alternative to traditional floating-point systems, both as a stand-alone replacement and in a mixed-
precision environment. Development and standardization of the posit type is ongoing, and much 
research remains to explore the application of posits in different domains, how to best implement 
them in hardware, and where they fit with other numerical representations. 
 

Section 3 shows the design of accelerators for innovative security services based on Post Quantum 
Cryptographic (PQC) techniques, useful also for homomorphic encryption. 

Sections 2 and 3 show how the proposed accelerators can be integrated with RISC-V computing core 
like the RSC-V 64B Ariane IP and the RISC-V with support of the Vector extension. 

Section 4 refers to IP cores for low-latency inter-core and intra-core communications. 

Section 5  refers to an IP for hardware-assistance task scheduling in high performance computing 
systems. 

Conclusions are drawn in Section 6. 
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2. Accelerators with mixed-precision for AI computing 
and data compression  

The goal of this work is twofold 

 the design of an IP core for PPU (Posit Processing Unit) to be connected to a 64b RISC-V 
processor.  

 to build a Posit Processing Unit in the form of a co-processor to be attached to a RISC-V 
processor by extending its Instruction Set Architecture. 

We initially focus on the compression abilities of posits by providing a co-processor with only 
conversions in mind, called light PPU, see Figure 2.1 below: 

•  IEEE 32-bit float (a.k.a binary32) to posit16/8 and viceversa 
• Fixed point (various sizes according to posit) to posit16/8 and viceversa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Light PPU co-processor with only conversions FP32 to Posit8/16 and viceversa 
 
As reported in Figure 2.2, this co-processor can be paired with a RISCV-V core that already has a 
floating-point unit (e.g. Ariane 64b RISC-V), without disrupting the already present pipeline. On the 
other hand, we can equip a RISCV-V core that does not have any floating-point support with this unit 
to enable ALU computation of posit numbers with the posit-to-fixed conversion modules. We analyzed 
the first use-case by equipping a CVA6 core with our PPU co-processor and synthesizing it targeting a 
Xilinx Genesys 2 FPGA obtaining a functional RISC-V core that could run a general-purpose Linux 
distribution. 
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Figure 2.2: PPU possible integration modes within the RISC-V instruction set (with/without the FPU) 
 
We therefore tested compression times of the overall system with the weights of a small LeNet-5 
neural network, obtaining the result shown in the table 2.1. 
 
 
 
 
 
 

Table 2.1: Compression performance of Posit vs FP32 for a DNN  
 
Another activity has been then performed to use posit also to optimize computing efficiency. A typical 
workflow when computing linear algebra kernels in a vectorized environment (such that of RISC-V 
with vector extension such that developed in the European Processor Initiative by BSC): 
1. Load operands inside Vector Processor Unit (VPU) registers from the memory hierarchy 
2. Perform as much computations as needed exploiting vector instructions 
3. Store the results back into the memory 
Steps 1. and 3.  typically involve the transfer of big chunks of data (e.g. a 512x512 binary32 matrix that 
need to be processed). These steps may take a significant amount of time in the overall process. The 
load and store operations are heavily influenced by the numerical format we adopt for the 
representation of the information. The core idea is to exploit one of the several numerical 
compression formats (e.g. Bfloat16, Posit16) instead of FP32 to reduce the amount of data transferred 
to the VPU registers and then decompress it directly inside the vector registers. 
The process is the following: 
We keep data stored in a compressed format. Data is loaded into the VPU registers without 
decompressing it beforehand. When needed, the data is decompressed on-demand exploiting VPU 
registers, see Figures 2.3 and 2.4. 
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Figure 2.3: Data (un)packing and processing in a RISC-V with vector unit 
 
 
This approach can greatly help with the overlapping of instructions in an out-of-order VPU by 
interleaving data-access with processing and de/compression phases. 
However, in order to guarantee that the unpack and pack operations do not introduce a high latency 
in the overall computation, we need to make sure that the equations on the right hold. 
We were able to satisfy such conditions using the Bfloat16 format thanks to this property: a right shift 
of 16 bits on binary32 number, gives us the correspondent Bfloat16 number (and vice versa). Being a 
single shift handled with very low latency by the VPU ALUs we were able to exploit this approach when 
using very large vector registers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: 16-bit compressed format 
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3. eXtreme Secure Crypto IP 
 

This chapter focuses on the following cutting-edge cryptography functions and services: 

 Homomorphic Encryption (HE) in the Internet of Things (IoT) context; 
 eXtendable Output Functions (XOF) SHAKE 128/256 in Post-Quantum Cryptography (PQC). 

These two topics will be discussed respectively in Sections Errore. L'origine riferimento non è stata 
trovata. and Errore. L'origine riferimento non è stata trovata.. This chapter presents the benchmark 
campaign carried out, and the achieved results on different CPU architectures of the aforementioned 
cryptographic functions.  This analysis aims to define the main limits and bottlenecks of such 
algorithms and to start defining possible HW/SW strategies and specifications to improve 
performance in terms of computation time and energy efficiency. 

3.1. Homomorphic Encryption: SEAL-Embedded Library for IoT 
devices 

 
Homomorphic Encryption (HE) is a specialized type of encryption that allows specific computations on 
the encrypted data and generates a cyphertext that, once decrypted, matches the result of operations 
performed on the plaintext data. HE is nowadays considered a strong privacy-preserving solution that 
allows users to share data with clouds or any non-secure server. However, HE requires high 
computational resources and memory consumption, which limits its use in resource-constrained IoT 
devices. Different HE libraries exist, and the main ones are: Microsoft SEAL [1], PALISADE [2], and 
HELib [3]. Nevertheless, all of them are not specifically designed for resources-constrained devices. 
The SEAL-Embedded library [4] is the first HE library targeted for embedded devices that employ 
several optimizations to perform the encoding and encryption of data, featuring the CKKS HE scheme. 
An assessment of the SEAL-Embedded library has been carried out to evaluate its performance on 
different CPUs, and the results will be presented in the next section. 
 
Benchmark on RISC-V CPUs 
The source code of the SEAL-Embedded library can be found in [5]. Two different RISC-V processors 
have been selected for the benchmark campaign, and two different environments have been 
implemented on the FPGA Board Zynq UltraScale+ MPSoC ZCU106 equipped with the System-on-Chip 
(SoC) XCZU7EV-2FFVC1156. Figure 3-1 shows the proposed hardware systems running the benchmark. 
The selected RISC-V processors are: 
 The 32-bit RISC-V RISCY, whose HDL code can be downloaded in [6]. The left side of Figure 3-1 

shows the complete system implemented in the target FPGA which encompasses the RISCY CPU, 
256KB of on-chip memory, and AXI4 peripherals (i.e. JTAG and serial UART interface). 

 The 64-bit RISC-V CVA6, whose HDL code can be downloaded in [7]. The right side of Figure 3-1 
shows the complete system implemented in the target FPGA which includes the CVA6 CPU, 
512MB of memory (i.e. onboard DDR4), and AXI4 peripherals (i.e. JTAG and serial UART interface). 

Both systems run at 100 MHz of frequency on the target FPGA. 
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Figure 3-1: RISCV-based systems for benchmarking the SEAL-Embedded library. 

 
The proposed systems allowed to find out the main bottleneck of the SEAL-Embedded library, which 
relies on the encryption function based on Ring Learning With Errors (RLWE) computation. Table 3-1 
shows the benchmark results. The first column indicates the selected polynomial degree for the 
RLWE encryption. This parameter impacts both the message size (i.e. the size of the message blocks 
that must be provided to the encryption function, reported in the Msg size column) and the security 
strength of the RLWE encryption. Further details about the SEAL-Embedded library can be found in 
[4]. Despite the SEAL-Embedded being targeted for resource-constrained devices, it cannot be 
successfully executed on the RISCY CPU for Poly-Degree higher than 4096 (256KB of memory are not 
enough). In addition, the latency for the encryption process is extremely high: around 3 seconds are 
required to encrypt 8 KB with 4096 Poly-Degree.  
 

Poly-Degree Msg size CVA6 (64-bit) RISCY (32-bit) 

1024 2048 B 17.19 ms 207.10 ms 

2048 4096 B 37.09 ms 444.22 ms 

4096 8192 B 273.80 ms 2806.43 ms 

8192 16384 B 1184.19 ms -- 

16384 32768 B 5861.02 ms -- 

 
Table 3-1: Benchmark results for the encryption function of the SEAL-Embedded Library. Column 1 
indicates the selected polynomial degree for the RLWE encryption, column 2 indicates the message 
size in Bytes, column 3 shows the results for the CVA6 processor and column 4 the results for the RISCY 
processor. Both CPUs run at 100 MHz. 
 
Hardware accelerator specifications definition 
 
Table 3-2 summarizes desired specifications of the hardware accelerator for the SEAL-
Embedded library. 
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Target Specification Condition Comments 

Communication 
Interface 

AXI4 - Memory Mapped (MM) Must Have 
Standard AXI4 Slave MM interface for the communication with 
CPU. 

AXI4 – Direct Memory Access 
(DMA) Nice to Have 

DMA for High-Throughput data exchange from/to memory. 
Depending on the needs could be implemented.  

Supported parameters 

Poly-degree for the RLWE 
symmetric encryption. Hardware 
support for all the parameters (i.e. 
from 1024 to 16384). 

Must Have  

Latency for encryption 

Desired latency for encryption of 
8KB (with the polynomial degree 
of 4096) could be hundreds of 
milliseconds. 
 

Must Have 
Depending on the needs the performance can be improved 
respect to the defined specification. 

Table 3-2: Specification definition of the hardware accelerator for the SEAL-Embedded library. 
 

3.2. eXtendable Output Functions (XOF) SHAKE-128/256 
 
An eXtendable Output Function (XOF) is a variable-length HASH function in which the length of the 
output can be chosen to meet the requirements of individual applications. The XOFs can be 
specialized to hash functions or used in a variety of other applications. The reference standard for 
the XOF is the NIST FIPS 202 [8], where two XOFs are specified: SHAKE-128 and SHAKE-256. Several 
NIST Post-Quantum finalists for both Key Encapsulation Mechanism (KEM) and Digital Signature (DS) 
adopt the XOF functions SHAKE 128/256: CRYSTALS-Kyber (KEM) and Dilithium (DS), Classic McEliece 
(KEM), NTRU (KEM), Saber (KEM) and Falcon (DS). In particular, in DS algorithms the hardware 
acceleration of XOFs becomes crucial since they are employed to HASH messages of any size. Some 
IoT applications, for instance Over-The-Air update, requires verifying the DS of large messages (e.g. 
up to Gigabytes) with low latency. Next section will show the benchmark results of the DS algorithms 
CRYSTALS-Dilithium and Falcon running on both RISC-V CVA6 and ARM-A53 CPUs, aiming to identify 
how the message size affects the computation time.   
 
Performance evaluation in Post-Quantum Digital Signature Algorithms 
The source code of the Crystals-Dilithium and Falcon algorithms can be downloaded at the NIST official 
page for the PQC competition:https://pq-crystals.org/, https://falcon-sign.info/. In this case, we 
selected the CPUs RISC-V CVA6 and ARM-A53 because they can be reasonably used for IoT 
applications. Two different environments have been implemented on the FPGA Board UltraScale+ 
MPSoC ZCU106 equipped with the System-on-Chip (SoC) XCZU7EV-2FFVC1156: 

 A RISC-V CVA6-based system, the one reported on the right side of Figure 3-1. In this case, the 
entire system is implemented on the target FPGA at 100 MHz of frequency. 

 An ARM-A53-based hard-core system running at 1.2 GHz of frequency. The processor is 
connected to 2 GB of DDR4 memory. 

Table 3-3 reports the results for the DS verification function of CRYSTALS-Dilithium and Falcon 
algorithms with different message lengths (i.e. from 10KB to 100 MB) on the RISC-V CVA6 CPU, while 
Table 3-4 reports similar results on the ARM-A53 CPU (in this case the message length varies from 
10KB to 1 GB).  
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Message 
length[byte] 

VERIFICATION FUNCTION – RISC-V CVA6 processor 

Dilithium-2 Dilithium-5 Falcon - 512 Falcon - 1024 

10K 30,27 ms 69,21 ms 14,11 ms 16,91 ms 
100K 104,85 ms 143,60 ms 83,99 ms 86,88 ms 
1M 865,77 ms 904,37 ms 799,24 ms 802,12 ms 

10M 8455,38 ms 8492,71 ms 7.933,16 ms 7.936,13 ms 

100M 84351,33 ms 84375,76 ms 79.273,83 ms 79.275,83 ms 

Table 3-3: Computation time for the DS verification function of CRYSTALS-Dilithium and Falcon 
algorithms on the RISC-V CVA6 CPU. 

 

Message 
length [byte] 

VERIFICATION FUNCTION – ARM-A53 processor 

Dilithium-2 Dilithium-5 Falcon - 512 Falcon - 1024 

10K 4,65 ms 10,37 ms 4,6 ms 6,26 ms 
100K 13,80 ms 19,52 ms 33,08 ms 34,71 ms 
1M 107,77 ms 113,49 ms 325,00 ms 326,63 ms 

10M 1.045,22 ms 1.050,89 ms 3.236,75 ms 3.238,38 ms 

100M 10.419,43 ms 10.424,82 ms 32.354,11 ms 32.355,73 ms 
1G 104.161,53 ms 104.167,26 ms 323.527,44 ms 323.529,06 ms 

Table 3-4: Computation time for the DS verification function of CRYSTALS-Dilithium and Falcon 
algorithms on the ARM-A53 CPU. 

 
Hardware accelerator specifications definition 
 
Table 3-5 summarizes desired specifications of the hardware accelerator for the SHAKE-
128/256 functions. 

Target Specification Condition Comments 

Communication 
Interface 

AXI4 - Memory Mapped (MM) Must Have 
Standard AXI4 Slave MM interface for the communication with 
CPU. 

AXI4 – Direct Memory Access 
(DMA) 

Nice to Have DMA for High-Throughput data exchange from/to memory. 
Depending on the needs could be implemented.  

Supported parameters 
Support both SHAKE-128 and 
SHAKE-256 functions Must Have  

Latency/throughput To be further investigated TBD 
Depending on the needs, desired latency and throughput shall 
be identified. Data exchange via DMA can significantly improve 
performance. 

Table 3-5: Specification definition of the hardware accelerator for the SHAKE-128/256 functions. 
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4. IPs for low-latency intra-node and inter-node 
communication links 

 
The INFN Communication IPs implement a n-D Torus direct network for FPGA accelerators, allowing 
low-latency data transfer between processing tasks deployed on the same FPGA (IntraNode 
communication) and on different FPGAs (InterNode communication). 
 

 
Figure 4.1 : Example of IntraNode ( red) and InterNode ( green and blue) data transfers between 

tasks 
 

The hardware block structure, depicted in Figure 4.2, can be split into a Network_IP  and a Routing_IP, 
described in more detail in the next sections. 

 
Figure 4.2: Architectural partition of Communication IPs 

 

The INFN Communication IPs, developed in VHDL, will be implement as RTL-kernel in Vitis, a 
framework which allows to develop, debug, and optimize accelerated applications using standard 
programming languages for both software and hardware components. 
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In TEXTAROSSA project, target platforms are both Xilinx Alveo U200 and U280 cards, featuring the 
Xilinx UltraScale+ technology 
 
Table 4.1 collects Alveo Boards features. 

 
Table 4.1 – Features of the Alveo family boards 

 
These cards provide a PCI Express interface to allow communication between the host processor and 
the network and are equipped with two 4-lane QSFP28 ports capable of 100 Gbps each. 
QSFP+ ports available allow the connection, using point-to-point, bi-directional, full-duplex 
communication channels, of each board with its two neighbors in a 1-D torus network topology (a 
ring). 

4.1. Routing IP 
The  Routing_IP defines the switching technique and routing algorithm, dynamically interconnecting 
all IP’s ports and solving contentions for shared resources. 
The transmission is packet-based, in the sense that Communication IP sends, receives, and routes 
packets with header (shown in figure 4.3), a variable size payload and a footer. 
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Figure 4.3: Packet’s header format 

 
The two sets of interfaces exposed, i.e. IntraNode and InterNode, are composed by a number of ports 
(M and N) that can be customized at design time. 
The IntraNode IF manages data flow to (RX) and from (TX) local tasks; each port consists of two FIFOs 
for each direction, so that header/footer and data use a specific FIFO. 
For interNode communications the routing policy applied is the dimension-order one (DOR): it consists 
in reducing the coordinates offset between current and destination node to zero while routing the 
packet, considering one dimension at time in an inverse lexicographic order (e.g. ZYX).   
The deadlock-avoidance of DOR routing is guaranteed by the implementation in the InterNode IF of 
two virtual channels for each physical channel [9]. 
The employed switching technique — i.e., when and how messages are transferred — is Virtual Cut-
Through (VCT) [10]: the router starts forwarding the packet as soon as the routing algorithm has 
picked a direction and the receiving buffer has enough space to store the full packet. 
 
4.1.1 HLS Communication Adaptor  
 
Task-side, input/output channels’ interface is decoupled from the Routing IP one, so that the user 
doesn’t have to care about the network protocol. A task should only implement a generic stream 
interface for each communication channel, based on the AXI4-Stream protocol, as follows: 
void example_task(  
               message_stream_t message_data_in[N_INPUT_CHANNELS], 
               message_stream_t message_data_out[N_OUTPUT_CHANNELS]  
               ) 
  
 
The Communication Library leverages AXI4-Stream Side-Channels to encode all the information 
needed to forge the packet header. 
Adaptation toward/from IntraNode ports of the Routing IP is done by two IPs: Aggregator and 
Dispatcher. The Dispatcher receives incoming packets from the Routing IP and forwards them to the 
right input channel, according to the relevant fields of the header. The Aggregator receives outgoing 
packets from the task and forges the packet header, filling then the header/data FIFOs of the Routing 
IP. 
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Figure 4.4: Schematic view of incoming and outgoing communication flow 

4.2. Network IP 
 
The Network_IP block, is in charge of managing data flow over the serial links between FPGAs. 
In the first Communication IPs release, to transfer data between each node with its neighbors we will 
use Xilinx Aurora 64B/66B cores for the serialization of the messages over the cable, and INFN APElink 
IP [11] to guarantee reliable communication, performing error detection and correction. 
In the final version we will implement also 10/25 Gbps and 100 Gbps Ethernet. 
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5. IP for fast task scheduling 
The objective of task 2.5 is the development of a HW IP, compatible with a RISC-V core available in 
BSC, for fast task management compliant at tool chain-level with OmpSs approach that in TEXTAROSSA 
is then linked to the Vitis HLS tool to ensure that reconfigurable units are integrated in the tool chain. 
The use of tasks to interface with the accelerators will allow the runtime to integrate both tasks 
exploiting the "Kahn channel" abstraction and standard OmpSs (OpenMP) tasks which will improve 
the scope of applications targeted by the project. Preliminary results show that using a HW manager 
to schedule tasks significantly improves the performance of the application. This IP will be a service IP 
since it interfaces with the cores and other IPs in the project. 

5.1 Basic design and functionality 
 
This document describes the basic design and functionality of the IP for fast task scheduling (from now 
on FTS or Fast Task Scheduler). A first diagram is shown in Figure 5.1.1. 

 

 
Figure 5.1.1 IP for fast task scheduling diagram (FTS). 

 

As it can be seen in Figure 5.1.1 the system is composed of two command queues, one for input 
coming from the CPU/exterior of the FPGA (“cmd in queue”) and another going to the CPU/exterior 
of the FPGA (“cmd out queue”), two control modules (“Cmd in” and “Cmd out”) and two 
interconnection multiplexers/demultiplexers. Tasks are sent from the host CPU to the fast task 
scheduler by using commands that are temporarily stored in the “cmd in queue”.  These commands 
are processed in order by the “Cmd in” module and, depending on the accelerators availability, are 
sent to the appropriate accelerator. Commands are sent through the “cmd to accelerators” 
demultiplexer through an AXI stream interface, and only when accelerators are available (ready) in 
order to avoid interface contention and starvation. 
Once the task has been processed by the corresponding accelerator, it informs the FTS through an 
output AXI stream interface that is multiplexed to reach the “Cmd out” module with a “Finished Task” 
command. “Finished Task” command is expected to be processed in very few cycles (tens of cycles at 
most). Therefore, although some contention can be expected when several accelerators finish at the 
same time submitting this command, no significant performance drop is expected in this case.  
The “Cmd out” module is in charge of processing the “Finished Task” packet by forwarding it with the 
adequate format to the “cmd out queue” and to notify the “Cmd in” module about the new ready 
state of the accelerator in order for the FTS to forward a new task to it. 
 

Tasks and Periodic Tasks 
In order to accomplish fast task scheduling, the prototype IP is going to be able to schedule both tasks 
and periodic tasks [12].  
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Periodic systems (i.e., recurrent workloads) are a common workload in industrial environments and 
real-time applications. Those workloads use the task concept to define the different activities that 
must be executed periodically (after some amount of time). Thereby, task-based parallel programming 
models are great candidates to support recurrent workloads. We propose extending the current 
syntax of task-based parallel programming models to define the main recurrent task parameters. 
Therefore, modeling recurrent workloads can be accomplished efficiently in terms of code lines, and 
with all parallel capabilities of baseline programming models. Also, we propose using the 
reconfigurable heterogeneous platforms to efficiently manage these recurrent workloads. These 
platforms will provide an efficient management of recurrent tasks, keeping the great programmability 
provided by the parallel programming models. 
Periodic tasks are defined as tasks that repeat themselves a number of times. This repetition can be 
set a number of times (as soon as possible) or at a certain time interval defined by the user (provided 
that the task is executed in less time than the defined trigger interval). These kinds of tasks have 
demonstrated to be very powerful to address the problems of industrial environments [5.1]. The 
support for periodic tasks would also be incorporated in the programming model support in task 4.2. 
The periodic tasks syntax include two clauses: period(N) and num_repetitions(K). An example for a 
periodic and a regular task definition is shown in Figure 5.1.2. 

# pragma omp task inout ([10] array ) 
num_repetitions(reps) period (1000000) 
void periodic_task ( int * array , const int reps ); 
# pragma omp task inout ([10] array ) 
void regular_task ( int * array ); 
int main (...) { 

int array [10]; 
regular_task ( array ); 
periodic _task ( array , 100); 
regular_task ( array ); 
# pragma omp taskwait 

} 

Figure 5.1.2 Periodic and regular task definition example. 
 
The main function calls the regular task, then the periodic task, and finally the regular, creating a chain 
of three task instances due to its data dependence. The periodic task has the num_repetitions clause, 
which defines that the task body will be executed reps times (in this case, the argument value is 100), 
and the period clause, which defines that the task will begin the execution every 1 second (1000000 
microseconds). The first regular task becomes ready when created as its data dependences are 
satisfied. In contrast, the other two are postponed. The recurrent task is postponed until the first 
regular task finishes, and the second regular task is postponed until the 100 repetitions of the 
recurrent task have been executed. 

5.2 Queues and Commands information 
The following section describes the structure of memories used to communicate the Host (usually 
using libxtasks) with the FTS. 
 

Command in and Command out queues 
Each queue has 1024 elements (uint64_t type) and it is divided into 16 subqueues of 64 elements. 
Each subqueue corresponds to one accelerator, starting from accelerator 0 (positions [0,63]) to 
accelerator 15 (positions [960,1023]) as shown in Figure 5.2.1. 
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1023             64 63               0 
+--------------------------------------+ 
| | | | |    ...    | | |    ...   | | | 
+--------------------------------------+ 
<--- 1 subqueue ---> 
<----------- 1024 positions -----------> 

Figure 5.2.1 Command in and Command out queues. 
 

Each command uses a dynamic number of slots in the queue. The number of slots depends on the 
command. The odd command codes make the accelerator become busy (no further commands will 
be sent to the accelerator until it returns the command out response) and the even command codes 
do not. The information is structured as shown in Figure 5.2.2. 

 63                                                             0 
+----------------------------------------------------------------+ 
| Valid |               Command Arguments                | Code  | 
+----------------------------------------------------------------+ 
|                        Command payload                         | 
|                              ...                               | 
+----------------------------------------------------------------+ 
<---------------------- 64 bits - 8 bytes -----------------------> 
 
 - [7  :0  ] Command code 
   *  0x01 - Execute task cmd 
   *  0x03 - Finished task cmd 
   *  0x05 - Execute period task cmd 
 - [55 :8  ] Command arguments 
 - [63 :56 ] Valid Entry 
   *  0x00 - Invalid 
   *  0x80 - Valid 
 - [   :   ] Command payload 

Figure 5.2.2 Commands format. 
 

As it can be seen the commands use the first position to indicate the command and the next positions 
as a payload (actual command information).  
 

Commands format 
We have defined three initial commands in the FTS, a Execute task command, a Finished task 
command notification and a Execute periodic task command. The Execute task and Execute periodic 
task commands follow the structure shown in Figure 5.2.3. 
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 63                                                             0 
+----------------------------------------------------------------+ 
| Valid |       | DesID | CompF |                | #Args | Code  | 
+----------------------------------------------------------------+ 
| 0x00  |                Task Identifier                         | 
+----------------------------------------------------------------+ 
|                     Parent Task Identifier                     | 
+----------------------------------------------------------------+ 
|             Period            |        Num. repetitions        | 
+----------------------------------------------------------------+ Λ 
|           ArgumentID          |                        | Flags | | 
+----------------------------------------------------------------+ | 1 arg 
|                            Argument                            | |  
+----------------------------------------------------------------+ v 
|                         Other arguments                        | 
|                              ...                               | 
+----------------------------------------------------------------+ 
<---------------------- 64 bits - 8 bytes -----------------------> 
 
 - [7  :0  ] Command code 
    *  0x01 - Execute task cmd 
    *  0x05 - Execute periodic task cmd 
 - [15 :8  ] Number of arguments 
 - [31 :16 ] 
 - [39 :32 ] Compute flag 
    *  0x00 - Compute disabled 
    *  0x01 - Compute enabled 
 - [47 :40 ] Destination ID where the accelerator will send the 'complete' signal 
    *  0x1F - Processing System (PS) 
 - [55 :48 ] 
 - [63 :56 ] Valid Entry 
   *  0x00 - Invalid 
   *  0x80 - Valid 
 - [119:64 ] Task identifier 
 - [127:120] 0x00 constant. This field is used to identify task commands created externally 
 - [191:128] Parent Task identifier. This field is ignored by the FTS and the accelerators, it is maintained to 
match the format of the internal command queue and the format expected by the accelerators. 
 - [223:192] Number of times that task body will be executed (Execute periodic task cmd only) 
 - [255:224] Time (us) between task body launches (Execute periodic task cmd only) 
 
Each argument is: 
 - [7  :0  ] Flags 
    *  0x00 - BRAM 
    *  0x01 - Private 
    *  0x02 - Global 
    *  0x10 - Enable input copy to wrapper BRAM 
    *  0x20 - Enable output copy from wrapper BRAM 
    * bit7 is internally used by cmd In module to store whether the input copy has been optimized or not. 
 - [31 :8  ] 
 - [63 :32 ] Argument ID 
 - [127:64 ] Argument value 

Figure 5.2.3 Execute task and Execute periodic task commands format. 
 
Finally, Figure 5.2.4 shows the Finished task command format. As it can be seen this command is 
simpler as it only sends the task identifier information. This information is used by the task creator 



  

 

26 

(runtime running in the host) to keep track of possible dependencies and could also be used by the 
FTS to identify the accelerator that has finished. 

 63                                                             0 
+----------------------------------------------------------------+ 
| Valid |                                                | Code  | 
+----------------------------------------------------------------+ 
|                     Task Identifier                          | 
+----------------------------------------------------------------+ 
<---------------------- 64 bits - 8 bytes -----------------------> 
 
 - [7  :0  ] Command code (value fixed to `0x03`) 
 - [55 :8  ] 
 - [63 :56 ] Valid Entry 
   *  0x00 - Invalid 
   *  0x80 - Valid 
 - [127:64 ] Task identifier sent to the accelerator in the execute task command 

Figure 5.2.4 Finished task command format. 

5.3 Data reuse optimizations 
In order to reduce the amount of data to be accessed by the accelerators, FTS includes an 
automatic detection of data reuse among tasks that are waiting in the command in queue. 
FTS can detect if two consecutive tasks in the command in queue are re-using the same input 
data. In that case, it can deactivate the copy flag of the argument to be reused of the second 
task before this task is issued to the accelerator. Therefore, the accelerator will only need to 
copy data that is not already in its local memory.   
Figure 5.3.1 shows two execution traces of an application when data reuse is deactivated or 
activated. This application has been annotated with FPGA tasks using OmpSs@FPGA and has 
been cross-compiled for and executed  on a Zynq 7000 family board (two Cortex-a9 at 
666MHz + FPGA running at 100Mhz) as a proof of concept. This is using two different versions 
of the FTS mentioned above to coordinate the two accelerators (IPs) and the software running 
on the two cores in the SMP, showing that FTS IP will be able to interface with cores and other 
IPs in the project.  Horizontal lines in the trace show the states (different colors) on the SMP 
threads (two lines on the top of each execution trace) and two accelerators (two lines on the 
bottom of each execution trace), along the time.  
Task execution in an accelerator has, with no optimizations, three states (colors): copy in data 
(first starting with a flag - olive green), kernel execution (second - dark olive green) and the 
last one copy out data (brown). 
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Figure 5.3.1 Execution traces of an application using two accelerators. Execution traces show the 
same time duration. Top: FTS has data reuse deactivated. Bottom: FTS has data reuse activated for 
tasks in the Command in queue. 
 
On the execution trace on the top of the figure we can see that there are always three states 
(different states start and end with flags), which is not ideal. Those tasks are always re-using 
the same input vector but the accelerator is not conscious about this fact and is copying the 
input vector all the time. On the other hand, the execution trace on the bottom shows the 
performance achieved once FTS includes the data reuse feature. In this case FTS can 
automatically detect data to be reused in an accelerator and help to almost remove all input 
copies modifying the argument copy flags of the task descriptions. 
Note however that there are still tasks in the execution trace on the bottom of Figure 5.3.1 
that have three states and no data reuse is detected. This happens because originally data 
reuse detection among the tasks is only performed among tasks waiting in the Command In 
queue and no detection is done between a task being executed and tasks that arrive later to 
the Command In queue.  This situation may happen in several applications: a task is submitted 
(first one) by the runtime, it immediately starts execution in the accelerator, and then, 
another task is submitted by the runtime. Since the first one has already started, no detection 
can be done between Command In queues commands. This can be solved by taking care of 
the task being executed in the accelerator at that moment. FTS has been improved to detect 
and be able to catch this situation.  This can be seen in Figure 5.3.2. The execution trace on 
the bottom incorporates that feature. Only the first task of all tasks being executed has to 
copy the data, significantly improving the first FTS version (no data reuse) and allowing first 
task executing-second task in Command In queue data reuse. The extra-copy seen in the 
execution trace of the Figure 5.3.2 (bottom) is because the accelerator was completely empty 
when a new task was submitted.  The overall performance improvement with data reuse can 
be significant as it can be seen in Figure 5.3.2. 
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Figure 5.3.2 Execution traces of an application using two accelerators. Execution traces show the 
same time duration. Top: FTS has data reuse deactivated. Middle: FTS has data reuse activated for 
tasks in the Command in queue. Bottom: FTS has data reuse activated for tasks in the Command In 
queue and tasks being executed. 
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6. Conclusions 
This document reports the activities done by Textarossa [13] partners CINI (UNIPISA), INFN and BSC 
with reference to the consolidated specifications of accelerator IPs in WP2 and preliminary design and 
synthesis results, manly in FPGA technology. 

CINI UNIPI in Section 2 has presented the specification and preliminary design results of accelerators 
with mixed-precision (using fixed, float and posit formats), for data compression and for efficient 
computation of DNN (Deep Neural Network). 

CINI UNIPI in Section 3 has presented the specification and preliminary design results of accelerators 
for innovative security services based on Post Quantum Cryptographic (PQC) techniques taking into 
account the NIST standardization effort. The proposed accelerator will be useful also for homomorphic 
encryption where SW libraries from Microsoft have been proposed already in the market. 

The specifications and preliminary design results for IP cores used in low-latency inter-node and intra-
node communications and for fast task scheduling are also presented in Sections 4 and 5. 

The proposed IPs are interesting, also in view of synergies between Textarossa and the other initiatives 
like EPI and the European Pilot, since all the proposed accelerators can be integrated with RISC-V 
computing cores like the RISC-V 64b Ariane IP and the RISC-V with support of the Vector extension in 
the EPAC (European Processor Accelerator). 
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