
This project has received funding from the European Union’s Horizon 2020
research and innovation programme, EuroHPC JU, grant agreement No 956831

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw
Supercomputing Applications for exascale

WP2 New accelerator designs exploiting mixed precision

D2.1 Consolidated specs of accelerators IPs

http://textarossa.eu

Ref. Ares(2022)4247610 - 08/06/2022

This project has received funding from the European Union’s Horizon 2020
research and innovation programme, EuroHPC JU, grant agreement No 956831

TEXTAROSSA
Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

Project Start Date: 01/04/2021 Duration: 36 months
Coordinator: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO
SVILUPPO ECONOMICO SOSTENIBILE - ENEA , Italy.

Deliverable
No D2.1

WP No: WP2

WP Leader: CINI-UNIPI

Due date: M12 (March 31, 2022)

Delivery
date:

31/05/2022

Disseminati
on Level:

PU Public X

PP Restricted to other programme participants (including the Commission
Services)

RE Restricted to a group specified by the consortium (including the
Commission Services)

CO Confidential, only for members of the consortium (including the
Commission Services)

Grant Agreement No.: 956831

Deliverable: D2.1 Consolidated specs of accelerators IPs

textarossa.eu D2.1 | 3

DOCUMENT SUMMARY INFORMATION

Project title: Towards EXtreme scale Technologies and Accelerators for
euROhpc hw/Sw Supercomputing Applications for exascale

Short project name: TEXTAROSSA

Project No: 956831

Call Identifier: H2020-JTI-EuroHPC-2019-1

Unit: EuroHPC

Type of Action: EuroHPC - Research and Innovation Action (RIA)

Start date of the
project: 01/04/2021

Duration of the
project: 36 months

Project website: textarossa.eu

WP2 New accelerator designs exploiting mixed precision
Deliverable number: D2.1

Deliverable title: Consolidated specs of accelerators IPs

Due date: M12

Actual submission
date: M14

Editor: Sergio Saponara

Authors: S. Saponara, C. Alvarez, D. Jimenez, A. Lonardo, F. Lo Cicero, P.
Cretaro, S. Di Matteo, F. Rossi, M. Cococcioni, M. Lo Gerfo

Work package: WP2

Dissemination Level: Public

No. pages: 30

Authorized (date): 31/05/2022

Responsible person: Sergio Saponara

Status: Plan Draft Working Final Submitted Approved

textarossa.eu D2.1 | 4

Revision history:

Version Date Author Comment

0.1 2022-05-10 S. Saponara Draft structure

0.2 2022-05-27

S. Saponara, C. Alvarez, D.
Jimenez, A. Lonardo, F. Lo Cicero,
P. Cretaro, S. Di Matteo, F. Rossi,
M. Cococcioni, M. Lo Gerfo

Added contribution of CINI;
INFN and BSC

0.3 2022-05-28 S. Saponara Revised draft

0.4 2022-05-30 S. Saponara Final

Quality Control:

Checking process Who Date

Checked by internal reviewer F. Magugliani May 30th, 2022

Checked by Tasks Leaders S. Saponara, A. Lonardo, C. Alvarez May 31st, 2022

Checked by WP Leader Sergio Saponara May 31st, 2022

Checked by Project Coordinator Massimo Celino May 31st, 2022

textarossa.eu D2.1 | 5

COPYRIGHT

Copyright by the TEXTAROSSA consortium, 2021-2024
This document contains material, which is the copyright of TEXTAROSSA consortium members
and the European Commission, and may not be reproduced or copied without permission,
except as mandated by the European Commission Grant Agreement No. 956831 for reviewing
and dissemination purposes.

ACKNOWLEDGEMENTS

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement no 956831. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Italy, Germany,
France, Spain, Poland.
Please see http://textarossa.eu for more information on the TEXTAROSSA project.
The partners in the project are AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA
E LO SVILUPPO ECONOMICO SOSTENIBILE (ENEA), FRAUNHOFER GESELLSCHAFT ZUR
FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. (FHG), CONSORZIO
INTERUNIVERSITARIO NAZIONALE PER L'INFORMATICA (CINI), INSTITUT NATIONAL DE
RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA), BULL SAS (BULL), E4 COMPUTER
ENGINEERING SPA (E4), BARCELONA SUPERCOMPUTING CENTER-CENTRO NACIONAL DE
SUPERCOMPUTACION (BSC), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ AKADEMII NAUK
(PSNC), ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN), CONSIGLIO NAZIONALE DELLE
RICERCHE (CNR), IN QUATTRO SRL (in4). Linked third parties of CINI are POLITECNICO DI
MILANO (CINI-POLIMI), Università di Torino (CINI-UNITO) and Università di Pisa (CINI-UNIPI);
linked third party of INRIA is Université de Bordeaux; in-kind third party of ENEA is Consorzio
CINECA (CINECA); in-kind third party of BSC is Universitat Politècnica de Catalunya (UPC).
The content of this document is the result of extensive discussions within the TEXTAROSSA ©
Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does
not necessarily represent the views expressed by the European Commission or its services.
The information contained in this document is provided by the copyright holders "as is" and
any express or implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed. In no event shall the
members of the TEXTAROSSA collaboration, including the copyright holders, or the European
Commission be liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or services; loss of
use, data, or profits; or business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise) arising in any
way out of the use of the information contained in this document, even if advised of the
possibility of such damage.

textarossa.eu D2.1 | 6

Table of contents
List of acronyms 7

Executive summary 9

1. Introduction 10

2. Accelerators with mixed-precision for AI computing and data compression 11

3. eXtreme secure crypto IP 14

4. IPs for low-latency intra-node and inter-node communication links 18

5. IP for fast task scheduling 22

6. Conclusions 29

7. References 30

textarossa.eu D2.1 | 7

List of Acronyms
Acronym Definition

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

CINI Consorzio Interuniversitario Nazionale per l'Informatica

CPU Central Processing Unit

DNN Deep Neural Network

FP32 Floating Point 32 bit

FPGA Field Programmable Gate Array

FTS Fast Task Scheduler

HE Homomorphic Encryption

HW Hardware

HPC High-Performance-Computing

INFN Istituto Nazionale di Fisica Nucleare

IP Intellectual Property

IPR Intellectual Property Rights

XOF eXtendable Output Function

PMB Project Management Board

PPU Posit Processing Unit

PQC Post Quantum Cryptography

RISC Reduced Instruction Set Computer

SEAL Simple Encrypted Arithmetic Library

SW Software

RLWE Ring Learning With Errors

UART Universal Asynchronous Receiver Transmitter interface

VHDL VHSIC Hardware Description Language

textarossa.eu D2.1 | 8

VPU Vector Processor Unit

textarossa.eu D2.1 | 9

Executive Summary
This document reports the activities done by Textarossa partners CINI (UNIPISA), INFN and BSC with
reference to consolidated specifications of accelerator IPs in WP2 and preliminary design and
synthesis results, manly in FPGA technology.

10

1. Introduction
This document reports the activities done by Textarossa partners CINI (UNIPISA), INFN and BSC with
reference to consolidated specifications of accelerator IPs in WP2 and preliminary design and
synthesis results, manly in FPGA technology.

Particularly, Section 2 deals with specification and preliminary design results of accelerators with
mixed-precision for data compression and for efficient computation of DNN (Deep Neural Network).

To this am, posits are used. Growing constraints on memory utilization, power consumption, and I/O
throughput have increasingly become limiting factors to the advancement of high performance
computing (HPC) and edge computing applications. IEEE-754 floating-point types have been the de
facto standard for floating-point number systems for decades, but the drawbacks of this numerical
representation leave much to be desired. Alternative representations are gaining traction, both in HPC
and machine learning environments. Posits have recently been proposed as a drop-in replacement for
the IEEE-754 floating-point representation. The current literature supports posits as a promising
alternative to traditional floating-point systems, both as a stand-alone replacement and in a mixed-
precision environment. Development and standardization of the posit type is ongoing, and much
research remains to explore the application of posits in different domains, how to best implement
them in hardware, and where they fit with other numerical representations.

Section 3 shows the design of accelerators for innovative security services based on Post Quantum
Cryptographic (PQC) techniques, useful also for homomorphic encryption.

Sections 2 and 3 show how the proposed accelerators can be integrated with RISC-V computing core
like the RSC-V 64B Ariane IP and the RISC-V with support of the Vector extension.

Section 4 refers to IP cores for low-latency inter-core and intra-core communications.

Section 5 refers to an IP for hardware-assistance task scheduling in high performance computing
systems.

Conclusions are drawn in Section 6.

11

2. Accelerators with mixed-precision for AI computing
and data compression

The goal of this work is twofold

 the design of an IP core for PPU (Posit Processing Unit) to be connected to a 64b RISC-V
processor.

 to build a Posit Processing Unit in the form of a co-processor to be attached to a RISC-V
processor by extending its Instruction Set Architecture.

We initially focus on the compression abilities of posits by providing a co-processor with only
conversions in mind, called light PPU, see Figure 2.1 below:

• IEEE 32-bit float (a.k.a binary32) to posit16/8 and viceversa
• Fixed point (various sizes according to posit) to posit16/8 and viceversa

Figure 2.1: Light PPU co-processor with only conversions FP32 to Posit8/16 and viceversa

As reported in Figure 2.2, this co-processor can be paired with a RISCV-V core that already has a
floating-point unit (e.g. Ariane 64b RISC-V), without disrupting the already present pipeline. On the
other hand, we can equip a RISCV-V core that does not have any floating-point support with this unit
to enable ALU computation of posit numbers with the posit-to-fixed conversion modules. We analyzed
the first use-case by equipping a CVA6 core with our PPU co-processor and synthesizing it targeting a
Xilinx Genesys 2 FPGA obtaining a functional RISC-V core that could run a general-purpose Linux
distribution.

12

Figure 2.2: PPU possible integration modes within the RISC-V instruction set (with/without the FPU)

We therefore tested compression times of the overall system with the weights of a small LeNet-5
neural network, obtaining the result shown in the table 2.1.

Table 2.1: Compression performance of Posit vs FP32 for a DNN

Another activity has been then performed to use posit also to optimize computing efficiency. A typical
workflow when computing linear algebra kernels in a vectorized environment (such that of RISC-V
with vector extension such that developed in the European Processor Initiative by BSC):
1. Load operands inside Vector Processor Unit (VPU) registers from the memory hierarchy
2. Perform as much computations as needed exploiting vector instructions
3. Store the results back into the memory
Steps 1. and 3. typically involve the transfer of big chunks of data (e.g. a 512x512 binary32 matrix that
need to be processed). These steps may take a significant amount of time in the overall process. The
load and store operations are heavily influenced by the numerical format we adopt for the
representation of the information. The core idea is to exploit one of the several numerical
compression formats (e.g. Bfloat16, Posit16) instead of FP32 to reduce the amount of data transferred
to the VPU registers and then decompress it directly inside the vector registers.
The process is the following:
We keep data stored in a compressed format. Data is loaded into the VPU registers without
decompressing it beforehand. When needed, the data is decompressed on-demand exploiting VPU
registers, see Figures 2.3 and 2.4.

13

Figure 2.3: Data (un)packing and processing in a RISC-V with vector unit

This approach can greatly help with the overlapping of instructions in an out-of-order VPU by
interleaving data-access with processing and de/compression phases.
However, in order to guarantee that the unpack and pack operations do not introduce a high latency
in the overall computation, we need to make sure that the equations on the right hold.
We were able to satisfy such conditions using the Bfloat16 format thanks to this property: a right shift
of 16 bits on binary32 number, gives us the correspondent Bfloat16 number (and vice versa). Being a
single shift handled with very low latency by the VPU ALUs we were able to exploit this approach when
using very large vector registers.

Figure 2.4: 16-bit compressed format

14

3. eXtreme Secure Crypto IP

This chapter focuses on the following cutting-edge cryptography functions and services:

 Homomorphic Encryption (HE) in the Internet of Things (IoT) context;
 eXtendable Output Functions (XOF) SHAKE 128/256 in Post-Quantum Cryptography (PQC).

These two topics will be discussed respectively in Sections Errore. L'origine riferimento non è stata
trovata. and Errore. L'origine riferimento non è stata trovata.. This chapter presents the benchmark
campaign carried out, and the achieved results on different CPU architectures of the aforementioned
cryptographic functions. This analysis aims to define the main limits and bottlenecks of such
algorithms and to start defining possible HW/SW strategies and specifications to improve
performance in terms of computation time and energy efficiency.

3.1. Homomorphic Encryption: SEAL-Embedded Library for IoT
devices

Homomorphic Encryption (HE) is a specialized type of encryption that allows specific computations on
the encrypted data and generates a cyphertext that, once decrypted, matches the result of operations
performed on the plaintext data. HE is nowadays considered a strong privacy-preserving solution that
allows users to share data with clouds or any non-secure server. However, HE requires high
computational resources and memory consumption, which limits its use in resource-constrained IoT
devices. Different HE libraries exist, and the main ones are: Microsoft SEAL [1], PALISADE [2], and
HELib [3]. Nevertheless, all of them are not specifically designed for resources-constrained devices.
The SEAL-Embedded library [4] is the first HE library targeted for embedded devices that employ
several optimizations to perform the encoding and encryption of data, featuring the CKKS HE scheme.
An assessment of the SEAL-Embedded library has been carried out to evaluate its performance on
different CPUs, and the results will be presented in the next section.

Benchmark on RISC-V CPUs
The source code of the SEAL-Embedded library can be found in [5]. Two different RISC-V processors
have been selected for the benchmark campaign, and two different environments have been
implemented on the FPGA Board Zynq UltraScale+ MPSoC ZCU106 equipped with the System-on-Chip
(SoC) XCZU7EV-2FFVC1156. Figure 3-1 shows the proposed hardware systems running the benchmark.
The selected RISC-V processors are:
 The 32-bit RISC-V RISCY, whose HDL code can be downloaded in [6]. The left side of Figure 3-1

shows the complete system implemented in the target FPGA which encompasses the RISCY CPU,
256KB of on-chip memory, and AXI4 peripherals (i.e. JTAG and serial UART interface).

 The 64-bit RISC-V CVA6, whose HDL code can be downloaded in [7]. The right side of Figure 3-1
shows the complete system implemented in the target FPGA which includes the CVA6 CPU,
512MB of memory (i.e. onboard DDR4), and AXI4 peripherals (i.e. JTAG and serial UART interface).

Both systems run at 100 MHz of frequency on the target FPGA.

15

Figure 3-1: RISCV-based systems for benchmarking the SEAL-Embedded library.

The proposed systems allowed to find out the main bottleneck of the SEAL-Embedded library, which
relies on the encryption function based on Ring Learning With Errors (RLWE) computation. Table 3-1
shows the benchmark results. The first column indicates the selected polynomial degree for the
RLWE encryption. This parameter impacts both the message size (i.e. the size of the message blocks
that must be provided to the encryption function, reported in the Msg size column) and the security
strength of the RLWE encryption. Further details about the SEAL-Embedded library can be found in
[4]. Despite the SEAL-Embedded being targeted for resource-constrained devices, it cannot be
successfully executed on the RISCY CPU for Poly-Degree higher than 4096 (256KB of memory are not
enough). In addition, the latency for the encryption process is extremely high: around 3 seconds are
required to encrypt 8 KB with 4096 Poly-Degree.

Poly-Degree Msg size CVA6 (64-bit) RISCY (32-bit)

1024 2048 B 17.19 ms 207.10 ms

2048 4096 B 37.09 ms 444.22 ms

4096 8192 B 273.80 ms 2806.43 ms

8192 16384 B 1184.19 ms --

16384 32768 B 5861.02 ms --

Table 3-1: Benchmark results for the encryption function of the SEAL-Embedded Library. Column 1
indicates the selected polynomial degree for the RLWE encryption, column 2 indicates the message
size in Bytes, column 3 shows the results for the CVA6 processor and column 4 the results for the RISCY
processor. Both CPUs run at 100 MHz.

Hardware accelerator specifications definition

Table 3-2 summarizes desired specifications of the hardware accelerator for the SEAL-
Embedded library.

16

Target Specification Condition Comments

Communication
Interface

AXI4 - Memory Mapped (MM) Must Have
Standard AXI4 Slave MM interface for the communication with
CPU.

AXI4 – Direct Memory Access
(DMA) Nice to Have

DMA for High-Throughput data exchange from/to memory.
Depending on the needs could be implemented.

Supported parameters

Poly-degree for the RLWE
symmetric encryption. Hardware
support for all the parameters (i.e.
from 1024 to 16384).

Must Have

Latency for encryption

Desired latency for encryption of
8KB (with the polynomial degree
of 4096) could be hundreds of
milliseconds.

Must Have
Depending on the needs the performance can be improved
respect to the defined specification.

Table 3-2: Specification definition of the hardware accelerator for the SEAL-Embedded library.

3.2. eXtendable Output Functions (XOF) SHAKE-128/256

An eXtendable Output Function (XOF) is a variable-length HASH function in which the length of the
output can be chosen to meet the requirements of individual applications. The XOFs can be
specialized to hash functions or used in a variety of other applications. The reference standard for
the XOF is the NIST FIPS 202 [8], where two XOFs are specified: SHAKE-128 and SHAKE-256. Several
NIST Post-Quantum finalists for both Key Encapsulation Mechanism (KEM) and Digital Signature (DS)
adopt the XOF functions SHAKE 128/256: CRYSTALS-Kyber (KEM) and Dilithium (DS), Classic McEliece
(KEM), NTRU (KEM), Saber (KEM) and Falcon (DS). In particular, in DS algorithms the hardware
acceleration of XOFs becomes crucial since they are employed to HASH messages of any size. Some
IoT applications, for instance Over-The-Air update, requires verifying the DS of large messages (e.g.
up to Gigabytes) with low latency. Next section will show the benchmark results of the DS algorithms
CRYSTALS-Dilithium and Falcon running on both RISC-V CVA6 and ARM-A53 CPUs, aiming to identify
how the message size affects the computation time.

Performance evaluation in Post-Quantum Digital Signature Algorithms
The source code of the Crystals-Dilithium and Falcon algorithms can be downloaded at the NIST official
page for the PQC competition:https://pq-crystals.org/, https://falcon-sign.info/. In this case, we
selected the CPUs RISC-V CVA6 and ARM-A53 because they can be reasonably used for IoT
applications. Two different environments have been implemented on the FPGA Board UltraScale+
MPSoC ZCU106 equipped with the System-on-Chip (SoC) XCZU7EV-2FFVC1156:

 A RISC-V CVA6-based system, the one reported on the right side of Figure 3-1. In this case, the
entire system is implemented on the target FPGA at 100 MHz of frequency.

 An ARM-A53-based hard-core system running at 1.2 GHz of frequency. The processor is
connected to 2 GB of DDR4 memory.

Table 3-3 reports the results for the DS verification function of CRYSTALS-Dilithium and Falcon
algorithms with different message lengths (i.e. from 10KB to 100 MB) on the RISC-V CVA6 CPU, while
Table 3-4 reports similar results on the ARM-A53 CPU (in this case the message length varies from
10KB to 1 GB).

17

Message
length[byte]

VERIFICATION FUNCTION – RISC-V CVA6 processor

Dilithium-2 Dilithium-5 Falcon - 512 Falcon - 1024

10K 30,27 ms 69,21 ms 14,11 ms 16,91 ms
100K 104,85 ms 143,60 ms 83,99 ms 86,88 ms
1M 865,77 ms 904,37 ms 799,24 ms 802,12 ms

10M 8455,38 ms 8492,71 ms 7.933,16 ms 7.936,13 ms

100M 84351,33 ms 84375,76 ms 79.273,83 ms 79.275,83 ms

Table 3-3: Computation time for the DS verification function of CRYSTALS-Dilithium and Falcon
algorithms on the RISC-V CVA6 CPU.

Message
length [byte]

VERIFICATION FUNCTION – ARM-A53 processor

Dilithium-2 Dilithium-5 Falcon - 512 Falcon - 1024

10K 4,65 ms 10,37 ms 4,6 ms 6,26 ms
100K 13,80 ms 19,52 ms 33,08 ms 34,71 ms
1M 107,77 ms 113,49 ms 325,00 ms 326,63 ms

10M 1.045,22 ms 1.050,89 ms 3.236,75 ms 3.238,38 ms

100M 10.419,43 ms 10.424,82 ms 32.354,11 ms 32.355,73 ms
1G 104.161,53 ms 104.167,26 ms 323.527,44 ms 323.529,06 ms

Table 3-4: Computation time for the DS verification function of CRYSTALS-Dilithium and Falcon
algorithms on the ARM-A53 CPU.

Hardware accelerator specifications definition

Table 3-5 summarizes desired specifications of the hardware accelerator for the SHAKE-
128/256 functions.

Target Specification Condition Comments

Communication
Interface

AXI4 - Memory Mapped (MM) Must Have
Standard AXI4 Slave MM interface for the communication with
CPU.

AXI4 – Direct Memory Access
(DMA)

Nice to Have DMA for High-Throughput data exchange from/to memory.
Depending on the needs could be implemented.

Supported parameters
Support both SHAKE-128 and
SHAKE-256 functions Must Have

Latency/throughput To be further investigated TBD
Depending on the needs, desired latency and throughput shall
be identified. Data exchange via DMA can significantly improve
performance.

Table 3-5: Specification definition of the hardware accelerator for the SHAKE-128/256 functions.

18

4. IPs for low-latency intra-node and inter-node
communication links

The INFN Communication IPs implement a n-D Torus direct network for FPGA accelerators, allowing
low-latency data transfer between processing tasks deployed on the same FPGA (IntraNode
communication) and on different FPGAs (InterNode communication).

Figure 4.1 : Example of IntraNode (red) and InterNode (green and blue) data transfers between

tasks

The hardware block structure, depicted in Figure 4.2, can be split into a Network_IP and a Routing_IP,
described in more detail in the next sections.

Figure 4.2: Architectural partition of Communication IPs

The INFN Communication IPs, developed in VHDL, will be implement as RTL-kernel in Vitis, a
framework which allows to develop, debug, and optimize accelerated applications using standard
programming languages for both software and hardware components.

19

In TEXTAROSSA project, target platforms are both Xilinx Alveo U200 and U280 cards, featuring the
Xilinx UltraScale+ technology

Table 4.1 collects Alveo Boards features.

Table 4.1 – Features of the Alveo family boards

These cards provide a PCI Express interface to allow communication between the host processor and
the network and are equipped with two 4-lane QSFP28 ports capable of 100 Gbps each.
QSFP+ ports available allow the connection, using point-to-point, bi-directional, full-duplex
communication channels, of each board with its two neighbors in a 1-D torus network topology (a
ring).

4.1. Routing IP
The Routing_IP defines the switching technique and routing algorithm, dynamically interconnecting
all IP’s ports and solving contentions for shared resources.
The transmission is packet-based, in the sense that Communication IP sends, receives, and routes
packets with header (shown in figure 4.3), a variable size payload and a footer.

20

Figure 4.3: Packet’s header format

The two sets of interfaces exposed, i.e. IntraNode and InterNode, are composed by a number of ports
(M and N) that can be customized at design time.
The IntraNode IF manages data flow to (RX) and from (TX) local tasks; each port consists of two FIFOs
for each direction, so that header/footer and data use a specific FIFO.
For interNode communications the routing policy applied is the dimension-order one (DOR): it consists
in reducing the coordinates offset between current and destination node to zero while routing the
packet, considering one dimension at time in an inverse lexicographic order (e.g. ZYX).
The deadlock-avoidance of DOR routing is guaranteed by the implementation in the InterNode IF of
two virtual channels for each physical channel [9].
The employed switching technique — i.e., when and how messages are transferred — is Virtual Cut-
Through (VCT) [10]: the router starts forwarding the packet as soon as the routing algorithm has
picked a direction and the receiving buffer has enough space to store the full packet.

4.1.1 HLS Communication Adaptor

Task-side, input/output channels’ interface is decoupled from the Routing IP one, so that the user
doesn’t have to care about the network protocol. A task should only implement a generic stream
interface for each communication channel, based on the AXI4-Stream protocol, as follows:
void example_task(
 message_stream_t message_data_in[N_INPUT_CHANNELS],
 message_stream_t message_data_out[N_OUTPUT_CHANNELS]
)

The Communication Library leverages AXI4-Stream Side-Channels to encode all the information
needed to forge the packet header.
Adaptation toward/from IntraNode ports of the Routing IP is done by two IPs: Aggregator and
Dispatcher. The Dispatcher receives incoming packets from the Routing IP and forwards them to the
right input channel, according to the relevant fields of the header. The Aggregator receives outgoing
packets from the task and forges the packet header, filling then the header/data FIFOs of the Routing
IP.

21

Figure 4.4: Schematic view of incoming and outgoing communication flow

4.2. Network IP

The Network_IP block, is in charge of managing data flow over the serial links between FPGAs.
In the first Communication IPs release, to transfer data between each node with its neighbors we will
use Xilinx Aurora 64B/66B cores for the serialization of the messages over the cable, and INFN APElink
IP [11] to guarantee reliable communication, performing error detection and correction.
In the final version we will implement also 10/25 Gbps and 100 Gbps Ethernet.

22

5. IP for fast task scheduling
The objective of task 2.5 is the development of a HW IP, compatible with a RISC-V core available in
BSC, for fast task management compliant at tool chain-level with OmpSs approach that in TEXTAROSSA
is then linked to the Vitis HLS tool to ensure that reconfigurable units are integrated in the tool chain.
The use of tasks to interface with the accelerators will allow the runtime to integrate both tasks
exploiting the "Kahn channel" abstraction and standard OmpSs (OpenMP) tasks which will improve
the scope of applications targeted by the project. Preliminary results show that using a HW manager
to schedule tasks significantly improves the performance of the application. This IP will be a service IP
since it interfaces with the cores and other IPs in the project.

5.1 Basic design and functionality

This document describes the basic design and functionality of the IP for fast task scheduling (from now
on FTS or Fast Task Scheduler). A first diagram is shown in Figure 5.1.1.

Figure 5.1.1 IP for fast task scheduling diagram (FTS).

As it can be seen in Figure 5.1.1 the system is composed of two command queues, one for input
coming from the CPU/exterior of the FPGA (“cmd in queue”) and another going to the CPU/exterior
of the FPGA (“cmd out queue”), two control modules (“Cmd in” and “Cmd out”) and two
interconnection multiplexers/demultiplexers. Tasks are sent from the host CPU to the fast task
scheduler by using commands that are temporarily stored in the “cmd in queue”. These commands
are processed in order by the “Cmd in” module and, depending on the accelerators availability, are
sent to the appropriate accelerator. Commands are sent through the “cmd to accelerators”
demultiplexer through an AXI stream interface, and only when accelerators are available (ready) in
order to avoid interface contention and starvation.
Once the task has been processed by the corresponding accelerator, it informs the FTS through an
output AXI stream interface that is multiplexed to reach the “Cmd out” module with a “Finished Task”
command. “Finished Task” command is expected to be processed in very few cycles (tens of cycles at
most). Therefore, although some contention can be expected when several accelerators finish at the
same time submitting this command, no significant performance drop is expected in this case.
The “Cmd out” module is in charge of processing the “Finished Task” packet by forwarding it with the
adequate format to the “cmd out queue” and to notify the “Cmd in” module about the new ready
state of the accelerator in order for the FTS to forward a new task to it.

Tasks and Periodic Tasks
In order to accomplish fast task scheduling, the prototype IP is going to be able to schedule both tasks
and periodic tasks [12].

23

Periodic systems (i.e., recurrent workloads) are a common workload in industrial environments and
real-time applications. Those workloads use the task concept to define the different activities that
must be executed periodically (after some amount of time). Thereby, task-based parallel programming
models are great candidates to support recurrent workloads. We propose extending the current
syntax of task-based parallel programming models to define the main recurrent task parameters.
Therefore, modeling recurrent workloads can be accomplished efficiently in terms of code lines, and
with all parallel capabilities of baseline programming models. Also, we propose using the
reconfigurable heterogeneous platforms to efficiently manage these recurrent workloads. These
platforms will provide an efficient management of recurrent tasks, keeping the great programmability
provided by the parallel programming models.
Periodic tasks are defined as tasks that repeat themselves a number of times. This repetition can be
set a number of times (as soon as possible) or at a certain time interval defined by the user (provided
that the task is executed in less time than the defined trigger interval). These kinds of tasks have
demonstrated to be very powerful to address the problems of industrial environments [5.1]. The
support for periodic tasks would also be incorporated in the programming model support in task 4.2.
The periodic tasks syntax include two clauses: period(N) and num_repetitions(K). An example for a
periodic and a regular task definition is shown in Figure 5.1.2.

pragma omp task inout ([10] array)
num_repetitions(reps) period (1000000)
void periodic_task (int * array , const int reps);
pragma omp task inout ([10] array)
void regular_task (int * array);
int main (...) {

int array [10];
regular_task (array);
periodic _task (array , 100);
regular_task (array);
pragma omp taskwait

}

Figure 5.1.2 Periodic and regular task definition example.

The main function calls the regular task, then the periodic task, and finally the regular, creating a chain
of three task instances due to its data dependence. The periodic task has the num_repetitions clause,
which defines that the task body will be executed reps times (in this case, the argument value is 100),
and the period clause, which defines that the task will begin the execution every 1 second (1000000
microseconds). The first regular task becomes ready when created as its data dependences are
satisfied. In contrast, the other two are postponed. The recurrent task is postponed until the first
regular task finishes, and the second regular task is postponed until the 100 repetitions of the
recurrent task have been executed.

5.2 Queues and Commands information
The following section describes the structure of memories used to communicate the Host (usually
using libxtasks) with the FTS.

Command in and Command out queues
Each queue has 1024 elements (uint64_t type) and it is divided into 16 subqueues of 64 elements.
Each subqueue corresponds to one accelerator, starting from accelerator 0 (positions [0,63]) to
accelerator 15 (positions [960,1023]) as shown in Figure 5.2.1.

24

1023 64 63 0
+--------------------------------------+
| | | | | ... | | | ... | | |
+--------------------------------------+
<--- 1 subqueue --->
<----------- 1024 positions ----------->

Figure 5.2.1 Command in and Command out queues.

Each command uses a dynamic number of slots in the queue. The number of slots depends on the
command. The odd command codes make the accelerator become busy (no further commands will
be sent to the accelerator until it returns the command out response) and the even command codes
do not. The information is structured as shown in Figure 5.2.2.

 63 0
+--+
| Valid | Command Arguments | Code |
+--+
| Command payload |
| ... |
+--+
<---------------------- 64 bits - 8 bytes ----------------------->

 - [7 :0] Command code
 * 0x01 - Execute task cmd
 * 0x03 - Finished task cmd
 * 0x05 - Execute period task cmd
 - [55 :8] Command arguments
 - [63 :56] Valid Entry
 * 0x00 - Invalid
 * 0x80 - Valid
 - [:] Command payload

Figure 5.2.2 Commands format.

As it can be seen the commands use the first position to indicate the command and the next positions
as a payload (actual command information).

Commands format
We have defined three initial commands in the FTS, a Execute task command, a Finished task
command notification and a Execute periodic task command. The Execute task and Execute periodic
task commands follow the structure shown in Figure 5.2.3.

25

 63 0
+--+
| Valid | | DesID | CompF | | #Args | Code |
+--+
| 0x00 | Task Identifier |
+--+
| Parent Task Identifier |
+--+
| Period | Num. repetitions |
+--+ Λ
| ArgumentID | | Flags | |
+--+ | 1 arg
| Argument | |
+--+ v
| Other arguments |
| ... |
+--+
<---------------------- 64 bits - 8 bytes ----------------------->

 - [7 :0] Command code
 * 0x01 - Execute task cmd
 * 0x05 - Execute periodic task cmd
 - [15 :8] Number of arguments
 - [31 :16]
 - [39 :32] Compute flag
 * 0x00 - Compute disabled
 * 0x01 - Compute enabled
 - [47 :40] Destination ID where the accelerator will send the 'complete' signal
 * 0x1F - Processing System (PS)
 - [55 :48]
 - [63 :56] Valid Entry
 * 0x00 - Invalid
 * 0x80 - Valid
 - [119:64] Task identifier
 - [127:120] 0x00 constant. This field is used to identify task commands created externally
 - [191:128] Parent Task identifier. This field is ignored by the FTS and the accelerators, it is maintained to
match the format of the internal command queue and the format expected by the accelerators.
 - [223:192] Number of times that task body will be executed (Execute periodic task cmd only)
 - [255:224] Time (us) between task body launches (Execute periodic task cmd only)

Each argument is:
 - [7 :0] Flags
 * 0x00 - BRAM
 * 0x01 - Private
 * 0x02 - Global
 * 0x10 - Enable input copy to wrapper BRAM
 * 0x20 - Enable output copy from wrapper BRAM
 * bit7 is internally used by cmd In module to store whether the input copy has been optimized or not.
 - [31 :8]
 - [63 :32] Argument ID
 - [127:64] Argument value

Figure 5.2.3 Execute task and Execute periodic task commands format.

Finally, Figure 5.2.4 shows the Finished task command format. As it can be seen this command is
simpler as it only sends the task identifier information. This information is used by the task creator

26

(runtime running in the host) to keep track of possible dependencies and could also be used by the
FTS to identify the accelerator that has finished.

 63 0
+--+
| Valid | | Code |
+--+
| Task Identifier |
+--+
<---------------------- 64 bits - 8 bytes ----------------------->

 - [7 :0] Command code (value fixed to `0x03`)
 - [55 :8]
 - [63 :56] Valid Entry
 * 0x00 - Invalid
 * 0x80 - Valid
 - [127:64] Task identifier sent to the accelerator in the execute task command

Figure 5.2.4 Finished task command format.

5.3 Data reuse optimizations
In order to reduce the amount of data to be accessed by the accelerators, FTS includes an
automatic detection of data reuse among tasks that are waiting in the command in queue.
FTS can detect if two consecutive tasks in the command in queue are re-using the same input
data. In that case, it can deactivate the copy flag of the argument to be reused of the second
task before this task is issued to the accelerator. Therefore, the accelerator will only need to
copy data that is not already in its local memory.
Figure 5.3.1 shows two execution traces of an application when data reuse is deactivated or
activated. This application has been annotated with FPGA tasks using OmpSs@FPGA and has
been cross-compiled for and executed on a Zynq 7000 family board (two Cortex-a9 at
666MHz + FPGA running at 100Mhz) as a proof of concept. This is using two different versions
of the FTS mentioned above to coordinate the two accelerators (IPs) and the software running
on the two cores in the SMP, showing that FTS IP will be able to interface with cores and other
IPs in the project. Horizontal lines in the trace show the states (different colors) on the SMP
threads (two lines on the top of each execution trace) and two accelerators (two lines on the
bottom of each execution trace), along the time.
Task execution in an accelerator has, with no optimizations, three states (colors): copy in data
(first starting with a flag - olive green), kernel execution (second - dark olive green) and the
last one copy out data (brown).

27

Figure 5.3.1 Execution traces of an application using two accelerators. Execution traces show the
same time duration. Top: FTS has data reuse deactivated. Bottom: FTS has data reuse activated for
tasks in the Command in queue.

On the execution trace on the top of the figure we can see that there are always three states
(different states start and end with flags), which is not ideal. Those tasks are always re-using
the same input vector but the accelerator is not conscious about this fact and is copying the
input vector all the time. On the other hand, the execution trace on the bottom shows the
performance achieved once FTS includes the data reuse feature. In this case FTS can
automatically detect data to be reused in an accelerator and help to almost remove all input
copies modifying the argument copy flags of the task descriptions.
Note however that there are still tasks in the execution trace on the bottom of Figure 5.3.1
that have three states and no data reuse is detected. This happens because originally data
reuse detection among the tasks is only performed among tasks waiting in the Command In
queue and no detection is done between a task being executed and tasks that arrive later to
the Command In queue. This situation may happen in several applications: a task is submitted
(first one) by the runtime, it immediately starts execution in the accelerator, and then,
another task is submitted by the runtime. Since the first one has already started, no detection
can be done between Command In queues commands. This can be solved by taking care of
the task being executed in the accelerator at that moment. FTS has been improved to detect
and be able to catch this situation. This can be seen in Figure 5.3.2. The execution trace on
the bottom incorporates that feature. Only the first task of all tasks being executed has to
copy the data, significantly improving the first FTS version (no data reuse) and allowing first
task executing-second task in Command In queue data reuse. The extra-copy seen in the
execution trace of the Figure 5.3.2 (bottom) is because the accelerator was completely empty
when a new task was submitted. The overall performance improvement with data reuse can
be significant as it can be seen in Figure 5.3.2.

28

Figure 5.3.2 Execution traces of an application using two accelerators. Execution traces show the
same time duration. Top: FTS has data reuse deactivated. Middle: FTS has data reuse activated for
tasks in the Command in queue. Bottom: FTS has data reuse activated for tasks in the Command In
queue and tasks being executed.

29

6. Conclusions
This document reports the activities done by Textarossa [13] partners CINI (UNIPISA), INFN and BSC
with reference to the consolidated specifications of accelerator IPs in WP2 and preliminary design and
synthesis results, manly in FPGA technology.

CINI UNIPI in Section 2 has presented the specification and preliminary design results of accelerators
with mixed-precision (using fixed, float and posit formats), for data compression and for efficient
computation of DNN (Deep Neural Network).

CINI UNIPI in Section 3 has presented the specification and preliminary design results of accelerators
for innovative security services based on Post Quantum Cryptographic (PQC) techniques taking into
account the NIST standardization effort. The proposed accelerator will be useful also for homomorphic
encryption where SW libraries from Microsoft have been proposed already in the market.

The specifications and preliminary design results for IP cores used in low-latency inter-node and intra-
node communications and for fast task scheduling are also presented in Sections 4 and 5.

The proposed IPs are interesting, also in view of synergies between Textarossa and the other initiatives
like EPI and the European Pilot, since all the proposed accelerators can be integrated with RISC-V
computing cores like the RISC-V 64b Ariane IP and the RISC-V with support of the Vector extension in
the EPAC (European Processor Accelerator).

30

7. References
General

[1] Chen, H., Laine, K., & Player, R. (2017). Simple Encrypted Arithmetic Library - SEAL v2.1. Financial
Cryptography Workshops.
[2] PALISADE. https://gitlab.com/palisade. New Jersey Institute of Technology(NJIT).
[3] Halevi, S., & Shoup, V. (2020). HElib design principles. Tech. Rep.
[4] Natarajan, D., & Dai, W. (2021). SEAL-Embedded: A Homomorphic Encryption Library for the
Internet of Things. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(3),
756–779. https://doi.org/10.46586/tches.v2021.i3.756-779.
[5] https://github.com/microsoft/SEAL-Embedded.
[6] https://github.com/pulp-platform/pulpino.
[7] https://github.com/openhwgroup/cva6.
[8] Dworkin, M. (2015), SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions,
Federal Inf. Process. Stds. (NIST FIPS), National Institute of Standards and Technology, Gaithersburg,
MD.
[9] Deadlock-free message routing in multiprocessor interconnection. Seitz, W. J. Dally, and C. L. 1987.
5, s.l. : Computers, IEEE Transactions on, 1987, Vol. C.36, p. 547–553.
[10] A New Computer Communication Switching Technique. P. Kermani and L. Kleinrock, Virtual Cut-
Through: Comput. Networks 3 (1979) 267.
[11] APEnet+ 34 Gbps Data Transmission System and Custom Transmission Logic. Ammendola, R et al
JINST 8 C12022
[12] Bosch J. Vidal M., Filgueras A., Jiménez-González D., Álvarez C., Martorell X., Ayguadé E.: Task-
Based Programming Models for Heterogeneous Recurrent Workloads. ARC 2021: 108-122
[13] E. Commission, “Grant Agreement 671668 - TEXTAROSSA: exploring Manycore Architectures
for Next-GeneratiOn HPC systems.” 2021.

