

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw Supercomputing Applications for exascale

Innovative Two-Phase Cooling Solutions for the Exascale Computing Systems

Giuseppe Zummo

g.zummo@in-quattro.com

In Quattro Company - www.in-quattro.com

THE TWD-PHASE CODLING COMPANY

ISC High Performance 2022 - May 29 - June 2, 2022

TEXTAROSSA

TEXTAROSSA: Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw Supercomputing Applications for exascale

TEXTAROSSA is an European project funded by EuroHPC (The European High Performance Computing Joint Undertaking)

The project will develop core technologies for computing architectures towards exascale-class systems.

Objectives: to realize the EuroHPC roadmap for energy-efficiency, highperformance and secure services by enabling new computation paradigms for HPC, AI and HPDA applications

Innovative Two-Phase Cooling system for thermal control

TEXTAROSSA

TEXTAROSSA: Towards **EX**treme scale **T**echnologies and **A**ccelerators for euROhpc hw/Sw Supercomputing Applications for exascale

Participant No.	Participant organisation name	Short name	Country
1 (Coordinator)	Agenzia Nazionale per l'Energia, le Nuove	ENEA	IT
	Tecnologie e lo Sviluppo Economico Sostenibile		
2	Fraunhofer Gesellschaft Zur Förderung der	FHG	DE
	Angewandten Forschung E.V.		
3	Consorzio Interuniversitario per l'Informatica	CINI	IT
4	Institut National de Recherche en Informatique	INRIA	FR
	et en Automatique		
5	Bull SAS	ATOS	FR
6	E4 Computer Engineering SpA	E4	IT
7	Barcelona Supercomputing Center - Centro	BSC	ES
	Nacional de Supercomputacion		
8	Instytut Chemii Bioorganicznej Polskiej	PSNC	PL
	Akademii Nauk		
9	Istituto Nazionale di Fisica Nucleare	INFN	IT
10	Consiglio Nazionale delle Ricerche	CNR	IT
11	In Quattro Srl	InQuattro	IT

3

Thermal Control of Electronics: Problem

Driven by the continuous <u>increase in power loads</u> and continuous <u>miniaturization</u> of processors, thermal management presents a complex challenge to thermal engineers.

Present cooling solutions are not adequate (air cooling, heat pipes, liquid cooling) for demanding electronics and future requirements.

Thermal Control of Electronics: Problem

Temperature difference versus heat flux for some heat transfer mechanisms

Kraus and Bar-Cohen, 1983

COOLING TECHNOLOGIES

Air (Natural/Forced Convection, Sensible Heat) Liquid (Natural/Forced Convetion, sensible heat) Phase Change (evaporation & condensation, latent heat) Evaporative Liquid Cooling

> Given the rate of heat dissipation and the maximum allowable component temperature, the graph helps to determine the appropriate cooling technology.

Temperature difference is the difference between the case surface temperature (max. allowable value) and the ambient temperature.

Surface heat flux is determined by dividing the power dissipation rate to the exposed surface of the device.

Thermal Control of Electronics: Solution

Two-Phase cooling technology Evaporative Liquid Cooling

Two-Phase Mechanically Pumped Loop: a new cooling technology for the next generation of electronic components (Data Centers)

The innovative feature of this system is the use of flow boiling heat transfer (latent heat) for cooling electronic devices. Compared to traditional cooling systems, significantly higher heat transfer coefficients can be achieved at significantly lower flow rates and pumping power.

Flow boiling is one of the most efficient cooling systems. It is the cooling systems of the components of fusion reactor (ITER).

Thermal Control of Electronics: Solution

Two-Phase cooling technology Direct to Chip Two-Phase Cooling

Features:

- 1. Decrease energy consumption.
- 2. Increase processing capacity
- 3. Increase density
- 3. Safety: dielectric fluids

TEXTAROSSA: Two-Phase Cooling

WP 3 Development of the two-phase cooling technology Leader: InQuattro. Partners : ATOS, E4-Company, ENEA, Politecnico di Milano

The Two-Phase Cooling system will be installed in two server configurations:

FPGA platform (E4-Company)
GPU platform (ATOS)

Objectives 1. Performances (thermal power dissipation, energy efficiency)

2. Modeling of the cooling system

3. Developent of thermal and power management strategies

In Quattro - Who We Are

THE TWD-PHRSE CODLING COMPANY

In Quattro is a registered Italian start-up (July 2018) with a strong expertise in thermal management systems for terrestrial and space applications.

In Quattro develops and manufactures advanced two-phase cooling solutions for thermal management of high performance computers and high power electronics.

In Quattro is a spin-off of ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development).

In Quattro is included in the ESA (European Space Agency) Business Incubation Centre in Rome (Regione Lazio), Italy

business incubation centre

In Quattro - Who We Are

THE TWD-PHASE COOLING COMPANY

In Quattro was formed by four researchers of ENEA with strong background in Two-Phase Thermal Management of nuclear reactors and of components for space.

The team has 14 years of experience in microgravity thermal management systems, and have been performing many parabolic-flight campaigns in the frame of ESA projects.

In Quattro - People

THE TWD-PHASE COOLING COMPANY

Giuseppe Zummo Co-Founder Mechanical Engineer, PhD

Francesco Romanello Co-Foiunder Electronic Engineer

Luca Saraceno Co-Founder Nuculear Enginerr

Antonio Scotolini Co-Founder Technical Engineer

Leo Tseng Mechanical Engineer

Giorgia Lancione Energy Engineer

Antonio Lasaracina Senior Advisor

Giulia Luccioli Rusiness Advisor

Micol Montesanti Senior Designer - Marketing

Gianmarco Romanello Business Advisor

Andrea Romanello Product Specialist Advisor

In Quattro team is formed by 11 people in different areas: thermal enegineering, legal, marketing, management, design, electronics, sensors

In Quattro

THANK YOU FOR YOUR ATTENTION!

Giuseppe Zummo g.zummo@in-quattro.com

THE TWD-PHRSE CODLING COMPRNY

