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Executive  Summary 

This report shows the co-design process within the WP1 of Textarossa project in order to design Proof 

of Concept for the Task 1.2.3 regarding I/O interfaces in HPC exascale systems composed of thousands 

of compute nodes, high performance networks and parallel I/O based on high performance storage 

systems capable of scaling to terabytes/second of IO bandwidth while providing tens of petabytes of 

capacity.  

This deliverable has the subtitle Part I T1.2.3, because it’ll be a living document reporting upgrade in 

several PoC design for developing on the whole stack of the co-design process. In particular this 

deliverable includes the design of I/O compression and decompression filters on accelerator devices. 

  

Partner Report Activity 

Task 1.2.3 
TL: INRIA 
 
 

Runtime Services: to design a PoC able to improve the I/O performances reducing 
the data movement by means compression and decompression filters. 
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downloadable at github at the address: https://gitlab-tex.enea.it 
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Technical 
development 

The technical development is performed by ENEA 
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1 Introduction 
Scientific applications produce massive amounts of data as high-performance computing (HPC) 

systems are moving toward exascale. The ever-increasing volumes of data are posing challenges for 

scientists to store, share, analyze, and visualize. Compression algorithms have become a crucial 

component for data management in scientific workflows. Data reduction enables simulations to 

output more data without worrying about exceeding storage quotas, and could capture more insights 

in the simulation. However, due to the complexity and poor performance of I/O and compression 

libraries as well as parallel file systems, the overall compression and I/O performance varies 

significantly. Scientific simulations on HPC systems often execute on hundreds of thousands of 

CPU/GPU cores and generate tens of terabytes of data periodically, such as outputting time- history 

solutions and checkpoint files every certain number of simulation steps. While data is being 

transferred from the HPC compute nodes’ memory to the storage system, the computation of 

scientific applications is forced to stall for long periods of time, due to the gap between the 

computational speed and the I/O bandwidth. This can contribute to a significant amount of total 

application execution time. 

Data reduction techniques, such as compression, transformations and deduplication are 

straightforward solutions to minimize the energy consumption of storage systems by reducing the 

amount of storage hardware required to store the same amount of data. However, data reduction 

itself can consume significant amounts of energy, potentially negating its beneficial effects on energy 

efficiency. Indeed algorithms with a good compression ratio are also very CPU-intensive, which adds 

increased processing time. This is where FPGAs come into the picture offloading a CPU from specific 

tasks, such as compression, encryption, and other functionalities, and the FPGA can be programmed 

or purpose-built to do specific tasks (compression, in this case) more efficiently and in less time. This 

way, we can achieve higher compression of data in the same or a shorter amount of time by offloading 

the compression task to an FPGA, thus providing higher compression and freeing up the CPU for other 

tasks, thereby accelerating the overall workload. Next-generation bigdata systems will be data-driven 

heterogeneous architectures that leverage integration of CPU/GPU/FPGA-accelerated compute. By 

offloading compute-heavy compression tasks to the FPGA, the CPU is freed to perform other tasks, 

and the IT organization is free to take advantage of the significant savings in performance, power and 

cooling, and space that result from reducing the total number of systems they have to support. 

 

. 



  

textarossa.eu   D1.3 | 10 

2 FPGA data compression 
In cascade data compression, a series of low-level compression building blocks that can be used in 

combination. Since there are many possible combinations of these building blocks, Cascaded 

compression can be configured in several different ways. In this specific compression schema, 

bitpacking is one of the most frequently compression block working a bit-level operation for reducing 

the number of bits required to store each value. However, (de)compression should not come with any 

additional cost during run time, but should be provided transparently without compromising the 

overall system performance also in term of energy efficiency. To achieve that, a Proof of Concept (PoC) 

focus on acceleration of bitpacking has been designed on FPGA. 

The PoC design try to assess the ease of programming of the Vitis flow, verifying if and how often it 

must care about the low-level details of the FPGA programming. In the present PoC, the aim is to 

accelerate through FPGA the compression and processing of images coming from a high-speed video 

camera. The need originated from nuclear fusion experiments with plasmas magnetically confined, 

where fast cameras with high-performance CMOS sensor technology are usually adopted for acquir-

ing and storing images of plasma discharges. We had access to a Photron FASTCAM SA4 camera 

installed on the Proto-Shera (Spherical Plasma for HElicity Relaxation Assessment) experiment [XXX] 

in ENEA Frascati (Rome) and used in several tokamak experiments [Lampasi,2016]. The FASTCAM SA4 

camera provides up to 3600 frames/s at 1024x1024 pixel resolution collected on a 12-bit depth image. 

12-bit data are packed in 16-bit words, exposing an alignment that eases subsequent processing, but 

wastes disk space [Fig.1]. The following picture reports a typical plasma discharge image taken with 

the SA4 camera. 

 

Fig. 1. Plasma discharge image from the FASTCAM SA4 camera 

The raw data acquired with a digital camera like SA4 is a measure of the radiant intensity which refers 

to the magnitude or quantity of light energy actually reflected from or transmitted through the object 

being imaged by an analogue or digital device. it is the only variable that can be utilized by processing 

techniques in quantitative scientific experiments. The 12-bit pixel depth, associated to the huge 

amount of data produced by the SA4 camera, poses a problem of storage versus data integrity. In fact, 

due to the fact that the smallest addressable unit in a digital processor is a byte, to preserve data 

information it would be necessary to save each pixel in a two-byte format, thus getting a 25% storage 

overhead. The alternative could be compression, but this would cause undesirable data loss. In order 

to save both storage space and data integrity, a bit-packing compression algorithm operating at bit 
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level, has been developed to reduce the number of bit requested to store 12-bit raw data of SA4 

camera. Roughly speaking, the bit-packing algorithm maps two 12-bit pixels to three 8-bit pixels as follow: 

Let A(X)=[xij] a rectangular matrix n 2m of n row and 2m colunms with X the subset Nr : r-bit natural 

numbers such as: 

X x Nr : x [0..2p-1], p=12; r=16 

Let us define the bitpacking function f transforming the A(X) matrix into the B(Y)=[yij] rectangular 

matrix n 3m with Y as subset Nq: q-bit natural numbers, such that: 

Y y Nq : y [0..qp-1], q=8 

The bitpacking function f is given on: 

f:  xi,2j+1 , xi,2(j+1)  A(X) (i=1..n; j=0..m-1) 

 

Yi,3j+1 , yi,3j+2 , yi,3(j+1)  B(Y) 

where: 

yi,3j+1 = xi,2j+1 & (2q-1) 

yi,3j+2 = ( xi,2j+1 > q ) | (xi,2(j+1) << r-p ) 

yi,3(j+1) = ( xi,2(j+1) >> r-p ) & (2q-1) 

with: &is the AND operator, / is the OR operator and >> (<<) is the RIGHT (LEFT) shift operator. 

The inverse function f-1: 

f-1:  yi,3j+1 , yi,3j+2 ,yi,3(j+1)  B(Y) (i=1..n; j=0..m-3) 

 

xi,2j+1 , xi,(j+1)  A(X) 

where: 

xi,2j+1 = yi,3j+1 | ( (yi,3j+2 << q) &  (2p-2q) ) 

xi,2(j+1) = ( yi,3j+2 >> r-p ) | ( yi,3(j+1) << r-p ) 

The PoC design uses the HLS Vitis flow to implement also a video processing library which is used to 

set up a pipeline that, while bitpacking compressing video data by removing the heading four bits in 

every pixel component, processes the video stream through some basic image manipulation blocks 

properly arranged to form a network of communicating processes. 

2.1 The compression kernel 
As the original need was to compress the image coming from the SA4 camera, re-moving the four 

leading bits in the pixel components, the first functionality designed is the compression function which 

receives through the input stream the input image and produces through the output stream the 

compressed image. If m and n are the numbers of bits used to store a component of a color N N 

image, the input image has dimension 3mN2/8 bytes and the output image 3nN2/8 bytes, so the 

compression ratio is m/n; indicated with S the size, in bit, of the input and output streams of the 

kernel; S is constrained to be a power of 2. In the beginning, input and output images are aligned with 

respect to S, i.e., both the input and output streams have a pixel component starting at bit 0 of the 

input/output; to determine how many components must be read to be aligned again both at the input 

and the output streams, the smallest number of pixel components k∈ℕ+ satisfying the following 

equation (% is the modulus operator)  

 (k · m) % S (k ·  n) % S     (1) 
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From (1) it is easy to verify that the solution is:   

 k=LCM(LCM(m,S)/m,LCM(n,S)/n)  (2) 

Where LCM(a,b) returns the Last Common Multiple of the a and b. In our case the stream size is S=512 

bits (thus saturating the PCIe bandwidth in the reasonable hypothesis to use fck=300 MHz), m=16 bits 

and n=12 bits; the expression (2) gives k=128. As read from the stream S bits, data are newly aligned 

after k · m/S=4 reads from the input stream and k · n/S=3 writes to the output stream. From previous 

computations, the structure of the compression function is in the Algorithm 1, The corresponding Vitis 

HLS code, in the case S=512, m=16, n=12, is in the code 2: 

Algorithm 1: compression kernel Algorithm 2: HLS code 

for (i=0; i<InputImageSize/S; i+= km/S){  
    read km/S words from the input stream;  
    while (not all the input bits have been copied) {  
       copy n bits from the input word to the output word;  
       skip (n-m) bits of the input word 

}  
      write the kn/S words that have just been filled 
} 

  for (i = 0; i < ImgSize/(S/m)-3; i+=4){ 
#pragma HLS pipeline 
   di = inStream.read(); 
   for (int j=0; j<(S/m); j++){ 
#pragma HLS unroll 
  do.range((j+1)*12-   
1,12*j)=di.range(16*(j+1)-5,16*j);} 
   di = inStream.read(); 
   for (j=0; j<10; j++){ 
#pragma HLS unroll 
  do.range(384+(j+1)*12-
1,12*j+384)=(di.range(16*(j+1)- 
5,16*j));} 
   do.range(511,504)=(di.range(16*10+7,16*10)); 
   out_stream << do;  //output of the first word 
   …//repeat till 4 words have been transmitted 
  } 

 

in the previous code, thanks to the unroll pragma, all the assignments from the S/m=32 input 

components to the 32 output components are executed in parallel, in the same clock cycle. As we 

specified the HLS pipeline pragma, the loop body will be pipelined and, every 4 clock cycles, a new 

execution of the loop body will start, thus resulting in a continuous reading from the input stream of 

64 bytes/cycle. 

2.2 The flow management kernels 
When performing image processing elaborations through streamed kernels that forks one stream to more 

streams and, conversely, join more streams into one stream. The following kernels have been designed: 

splitRGBChannels, mergeRGB-Channels, streamCopy, streamBinaryOperator (BinaryOperator = Add, Diff, 

Mul, Div, Max, Min, Average), maskImages. Let’s review their behavior. 

Unlike of the frame images acquired by FASTCAM SA4 in a format raw of a 1024x1024 pixel matrix on 12 

bit depth, a general digital image processing works with RGB images, therefore a kernel function 

splitRGBChannels provides to split the color components. It has one input stream, where it receives the 

input image in the form r1, g1, b1, r2, g2, b2, …  and three output streams, one for each color component; 

its counterpart is mergeRGBChannels that has three input streams one output stream; 

Fig. 2. The splitRGBChannels and mergeRGBChannels kernels 
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The streamCopy kernel copies data from its input stream to two output streams: 

Fig. 2. The streamCopy kernel 

The streamBinaryOperator receives two images from two input streams and pro-duces the output 

image computed applying the binary operator to each pair of input components. 

Fig. 4. The streamBinaryOp kernel 

The maskImages receives two images from two input streams and a binary masking image from the 

mask stream; it produces the output image taking the output pixels from one or the other image, 

depending on the value of the mask image. 

 

Fig. 5. The maskImages kernel 

The structure of all previous kernels is quite similar: the kernel reads, at each cycle, S bit from each of 

its input streams and writes the output whenever it is available (only the mergeRFBChannels has the 

opposite behavior, writing S output bits at each cycle and reading when possible). A fragment of the 

HLS code implementing the streamBinaryOp kernel is reported in the Algorithm 3. 

Algorithm 3:  streamBinaryOp kernel 

for (int i = 0; i < (ImgSize*m/S); i++) { 
#pragma HLS pipeline 
  img1 = inStream1.read(); 
  img2 = inStream2.read(); 
  for (int j=0; j<PIXEL_IN_INPUT_WORD; j++){ 
 #pragma HLS unroll 
   img1Val = (img1.range(m * (j + 1) - 1, m * j); 
   img2Val = (img2.range(m * (j + 1) - 1, m * j); 
   outVal = abs(img1Val-img2Val); 
   outImg.range(m*(j+1)-1,m*j) = outVal;} 
  outStream.write(outImg); 
 } 

Due to the HLS pipeline pragma, at each clock cycle S bits of img1 and img2 are read from the two 

input streams and all the S bits of the output are computed in parallel, thanks to the unroll pragma in 

the inner loop. As Alveo U280 Board that does not allow streaming from the host to the FPGA card, 

the design implements 2 kernels that access the external memory; one, loadInput, reads data from 

the external memory and writes them to the output stream and the other, storeOutput, reads data 

from the input streams and writes them to the external memory. Both the streams and the memory 

ports have width S. The interface with external memory uses the AXI4 standard, but this is completely 

transparent to the user. 

Fig. 3. The loadInput and storeOutput kernels, both interfacing with the external memory 
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the code to implement loadInput and storeOutput functions is in Algorithm 4 and 5. 

Algorithm 4: loadInput kernel Algorithm 5: storeOutput kernel 

for (int i = 0; i < (BitImgSize)/S; i++) 
 inStream << in1[i]; 

  for (int i = 0; i < (BitImgSize)/S; i++)  
 out1[i] = out_stream.read(); 

In both the cases, at each clock cycle S bits are read (written) from (to) memory and written (read) to 

(from) the output (input) stream 

2.3 The elaboration kernels 
In addition to the functions defined above, in the image processing library, several functions have 

been designed. They receive an image through the input stream and produce an output image through 

the output stream. Among these functions designed:  

• doNegative: computes the negative of the input image,  

• linearScaling: perform a linear scaling on each pixel of the input image,  

• RGB2YUV: converts the input image from the RGB color space to YUV,  

• YUV2RGB: converts the input image from the YUV color space to RGB,  

• firFilter: performs the convolution of the input image with a 3x3 filtering kernel. 

Apart from the firFilter, which has a more complex structure because it needs to read and store three 

lines before starting the processing, all previous kernels have the same structure which allows, at each 

cycle, to read S bits from the input stream and produce S bits to the output stream. The generic kernel 

has the behavior shown in Algorithm 6 (design, as an example, to the function doNegative). 

Algorithm 6:  doNegative kernel 

for (int i = 0; i < (ImgSize*m/S); i++) { 
#pragma HLS pipeline 
  img = inStream.read(); 
  for (int j=0; j < (S/m); j++){ 
 #pragma HLS unroll 
   imgVal = img.range(m * (j + 1) - 1, m * j); 
   outVal = MAX_Y-imgVal; 
   outImg.range(m*(j+1)-1,m*j) = outVal;} 
  outStream.write(outImg); 
 } 

In the previous code, the unrolled inner loop allows the contemporaneous execution of the pixel 

transformation on all the (S/m) values contained in the S bits input word; thanks to the HLS pipeline 

pragma, the pipelined outer loop is started at each clock cycle, so the kernel, at each clock cycle, reads 

S bits from the input stream and writes S bits to the output stream. 

2.4 Integration design 
Once the kernels have been designed, the desired processing is obtained collecting the kernels on a 

network that performs the desired elaboration. for instance, the Fig.7 shows a network that takes as input 

an RGB picture and produces as output an image which resembles a pencil drawing of the input image . 

Fig. 7. Example of a network for image processing 
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The Fig.8 shows an example of image processing produced by FASTCAM S4 camera in a plasma 

discharge of Protosphera tokamak experiment. In this case the input 1024x1024 16 bit image is 

compressed by bitpacking algorithm for storing in a compressed output 1536x1024 8 bit image or 

filtered with pencil drawing. 

(a) (b) (c) 
Fig. 8. Image processing of FASTCAM SA4 camera. (a) Input image; (b) compressed image; (c) processed image 

The code needed to implement the previous network is the following Algorithm 7 (we neglect the 

declaration of the streams). 

Algorithm 6:  Image processing network 

#pragma HLS STREAM variable = s1 depth = 128 
… 
#pragma HLS STREAM variable = s4 depth = 4096 
#pragma HLS dataflow 
 loadInput(inRAM, s1,ImgSize);  
 RGB2Y(s1, s2, ImgSize); 
 streamCopy(s2, s3, s4, YImgSize);  
 firFilter(s3,s5,Nr,Nc,c00,c01,c02,c10,c11,c12,c20,c21,c22); 
 streamBinaryDiff(s3, s5, s6, YImgSize); 
 doNegative(s6, s7, YImgSize); 
 doCompression(s7, s8, YImageSize);   
 storeOutput(outRAM, s8, compressedYImgSize); 

The HLS dataflow pragma instructs the compiler to activate in parallel all the follow-ing functions, 

whose execution is purely dataflow; data flow through the streams and they are consumed by the 

kernels implementing the functions as soon as they are available. Apart from the streams, the other 

parameters are scalars indicating the size of the images (color image, grey level image, compressed 

image), the filter coefficients to implement a 3x3 gaussian filter, and the number of rows and columns 

contained in the input image. The HLS stream pragma is used to specify the size of the FIFO buffers 

associated with the streams; please note that s4 streams, which bypasses the firFilter, has a larger 

depth to avoid deadlock. In fact, s4 must be able to store all the data till firFilter starts producing its 

output: this is because the streamBinaryDiff kernel reads in parallel the two input images and does 

not proceed reading one image till the other is not available. For this reason, the stream s4 connecting 

streamCopy to the streamBinaryDiff must be able to buffer the data coming from streamCopy till data 

do not start to be produced by firFilter. In general, all the time that convergent paths are present, 

particular care has to be taken to analyze and set the buffer sizes to avoid deadlock situations due to 

the saturation of some intermediate buffer. 
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2.5 Synchronization scheme 
To allow the overlapping of communication between host and card with the computation on the FPGA 

card, we adopted a double buffering scheme that uses two HBM banks HBMreadA and HBMwriteA in one 

phase (A) of the computation and HBMreadB and HBMwriteB in the other phase (B). The host code has 

three threads: producer thread (Algorithm 8) that sends images to be processed to an input host buffer 

accessible to the card, consumer thread (Algorithm 9) that receives processed images from an output host 

buffer accessible to the card, and the main thread that controls the start of the kernels on the card and the 

data transfers between HBM memory banks on the card and the buffers on the host.  

Algorithm 8: Producer Algorithm 9: Consumer 

while(){   
            sem_wait(&canProduceIn) 
           write image to Bin 
          sem_post(&canConsumeIn) 
} 

  while(){  
         sem_wait(&canConsumeOut) 
         read image from Bout sem_post(&canProduceOut) 
} 

The main thread is synchronized with the producer and consumer threads through semaphores 

(canProduceIn(1), canConsumeIn(0), canProduceOut(0), can-ConsumeOut(0) – in brackets we indicate the 

initial value for the semaphore) which control the access to the input and output buffers, shared with the 

FPGA card. The synchronization between the main thread and the FPGA card is achieved through 

readEvent, writeEvent, and RunEvent that inform the main thread about the end of a read transfer, of a 

write transfer, and of a kernel execution (all data transfers and kernel executions are used as asynchronous, 

non-blocking functions).  

Algorithm 10: Main thread  

while(){ 
             sem_wait(&canConsumeIn); 
            doTransferHost2Card(Bin, &H2C_event);    
           H2C_event.wait();  
           startKernels(krnl, &krnl_event);   
          sem_post(&canProduceIn);  
         krnl_event.wait();  
        sem_wait(&canProduceOut); 
       doTransferCard2Host(Bout, &C2H_event);  
      sem_post(&canConsumeOut); 
} 

In the fragments of code reported in Algorithm 10 is designed the basic synchronization scheme among 

the producer, consumer, and main threads, for the sake of readability, we do not show the implementation 

of the ping pong buffer which alternates between the bank pairs HMB0/HBM1 and HBM2/HBM3: when 

transferring to/from HBM0/HBM1 the kernels are processing images on HBM2/HBM3 and vice-versa. 

Algorithm 10: Main thread  

while(){ 
             sem_wait(&canConsumeIn); 
            doTransferHost2Card(Bin, &H2C_event);    
           H2C_event.wait();  
           startKernels(krnl, &krnl_event);   
          sem_post(&canProduceIn);  
         krnl_event.wait();  
        sem_wait(&canProduceOut); 
       doTransferCard2Host(Bout, &C2H_event);  
      sem_post(&canConsumeOut); 
} 
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The following Fig.9 shows the graphical report produced by Vitis using the events registered during the 

actual run on the Xilinx U280 board. As we see, computing kernels are always running and, at the same 

time, there is always a transfer to/from the external HBM banks (either HBM0/HBM1 or HBM2/HBM3). 

Fig. 9. Overlap of the run of elaboration kernels with I/O on HBM banks (ping pong scheme).  

2.6 Programming models  
All the image processing/compression library has been designed in C/C++ standard. The only interaction 

with the HW was defining the width of the streams/memory ports, which can be set through a wizard, the 

mapping of the I/O buffers on dedicated HBM memory banks (again, done through a wizard), and the 

definition of the depth for some stream buffers, done through a dedicated pragma. Some optimization 

pragmas have been spread along with the code, instructing the compiler that certain loops should be 

pipelined and other loops unrolled, and this would require a certain awareness about the type of 

architecture we want to obtain (i.e., even working at the C/C++ level, we should not forget that what, and 

how, you write has a direct impact on the hardware generated). 

Let’s speak about the feedback we get from the flow to reach our design goal. To check for the functional 

correctness of the application we are writing, there is a complete Eclipse-based environment that allows 

debugging our application with the usual tools: breakpoints (several types), memory inspection, access to 

the debug stack. For the hardware part, we have the automatic instantiation of a multithreaded 

environment to emulate the concurrency among the different kernels. Once the functional correctness is 

ensured, we have to compile for the HW (either for HW simulation through the associated HDL simulator 

or for the actual run on FPGA board). At this level, we can check performance by measuring the time spent 

to run the accelerated algorithm (we can use the number of clock cycles given by the HDL simulator in HW 

Emulation). Should we need a more in-depth analysis of the reason why we are not obtaining the expected 

performance, we found that the analysis of the I/O traffic and of the kernel activation given by the 

recording of the events during the actual HW run (an example is given in Fig. 8) is useful; sometimes we 

felt the need of inspecting the HDL simulation to recognize that things were not going as expected (for 

instance, we were not reading on input streams at full bandwidth), understand why the HW was behaving 

in that way and go back to the C source code and change it to remove the encountered inefficiency. So, at 

this level, we found it still quite tricky to remove the inefficiencies and we think that more high-level 

feedback should be given to guide the optimization process. 

Let’s analyze this with the case of the 3x3 FIR Filter. Let’s suppose that we have implemented the functions 

readLine(instream, line), which reads one line of the input image from the input stream into the local array 

line, writeLine(outstream, line), which writes the local array line into the output stream, and 

filterOneLine(il1, il2, il3, ol), which produces the output line ol from the input lines il1, il2, il3 through a 3x3 

convolution kernel. A simple way to apply the filter to an image is the following Algorithm 11. 
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The code is scheduled by the Vitis flow as in the Fig.11 (we report the start signals of the functions S1-S5, 

as taken from the HDL simulator of Vitis). 

Algorithm 11:  filter processing design 

readLine(inStream,line1); 
 writeLine(out_stream, line1);  
 readLine(inStream,line2,); 
 for (i=2; i<ImgRows; i++) 
 { 
  S1: readLine(inStream,line3,); 
  S2: filterOneLine(line1, line2, line3, lineout); 
  S3: writeLine(out_stream, lineout); 
  S4: copyLine(line2, line1); 
  S5: copyLine(line3, line2); 
 } 
               writeLine(out_stream, line3, NbParallelInputWords); 

The Fig.10, the computing kernel S2 is often inactive. We have to go back to the code and understand why 

it is scheduled in such a way. If we look at the algorithm, we see that, at each iteration, it receives a new 

input line and produces a new output line. As the input and output lines cannot be touched during the 

processing, we should introduce a 4th input line and an additional output line so that, while processing 

three input lines and writing on the output line A, the readLine can read the 4th input line and the writeLine 

can write the previously written line B.  

Fig.10. Scheduling of functions in the loop body of image filtering code 

Furthermore, in order to avoid the copyLine operations, we manually unroll the loop by a factor of 4, so 

that we process (il1, il2, il3, olA) while reading il4 and writing olB, then we process (il2, il3, il4, olB) while 

reading il1 and writing olA, then we process (il3, il4, il1, olA) while reading il2 and writing olB, then we 

process (il4, il1, il2, olB) while reading il3 and writing olA, then we are again at the original situation and 

we can close the loop iteration. The main elaboration loop can be organized as in the Algorithm 12 and 

time diagram shown in Fig.11. 

Algorithm 12:  Main loop 

For (i=0; i<LinesToBeProcesssed; i+=4){ 
  S1: readLine(inStream,line4,); 
  S3: filterOneLine (line1, line2, line3, lineoutA); 
  S2: writeLine(out_stream, lineoutA); 
  S1: readLine (inStream,line1); 
  S3: filterOneLine (line2, line3, line4, lineoutB); 
  S2: writeLine (out_stream, lineoutB); 
  S1: readLine (inStream,line2); 
  S3: filterOneLine (line3, line4, line1, lineoutA); 
  S2: writeLine (out_stream, lineoutA); 
  S1: readLine (inStream,line3); 
  S3: filterOneLine (line4, line1, line2, lineoutB); 
  S2: writeLine (out_stream, lineoutB);} 
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The previous loop is scheduled by Vitis overlapping, apart from the initial phase that has to be ad hoc 

managed, the read from the input stream of a new line with the computation of a new output line and 

the write to the output stream of the just processed line. 

Fig. 11. Scheduling of the optimized loop body 

To give an idea of the performance achievable through the HLS flow, we defined an image filtering 

network constituted by the loadInput, the cascade of 20 FIR filters, the compression, and the 

storeOutput kernels. Each of these kernels (apart from the compression and the last one, each one 

producing 75% of the stream size) reads S=64 Bytes/cycle, resulting in an aggregated throughput of 

(NFIR_Kernels + 2.5)  S  fck [B/s] and a sustained computation speed of NFIR_Kernels  Nops_FIR  

fck [Op/s]. We used NFIR_kernels=20 and fck=300MHz; the number of 16 bit operations executed at 

each clock cycle by a 3x3 pipelined FIR kernel is Nops_FIR=17, so the internal data throughput is 400 

GB/s and the sustained speed is 100 GOp/s. 
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3 Experimental setup design 
The PoC of the bitpacking data compression and decompression has been designed for developing on 

the ENEA FPGA LAB in CRESCO Data Centre on premises.  

The ENEA CRESCO FPGA LAB (Fig.12) has made available to the TextaROssa a pool of compute nodes 

equipped as follow: 

• n.6 Linux X86_64 nodes with 2 x Intel Xeon Haswell CPU, 128 GB RAM 

• n.2 Xilinx U280 + n.2 Xilinx U250 

• Sys.Op. Linux Centos 7.4 

• Development software tools: Xilinx VITIS & Intel OneAPI 

The access to the FPGA Lab resources is available getting an account in ENEAGRID infrastructure 

following the access rules reported in ENEA CRESCO portal [CRESCO,2021]. The compute nodes 

equipped with FPGA boards can be access via ssh on front-end node: cresco-in.portici.enea.it and 

forwarding on to: 

cresco-xilinx0/1/2/3/4/5.portici.enea.it 

A graphical remote access to compute nodes of the FPGA Lab is available using ENEA F.A.R.O. (Fast 

Access Remote Objects) using a client ThinLIC on the front-end node: cresco-in-gui.portici.enea.it   

For the TextaRossa project are available some Development Operations tools as follow: 

A gitlab for source codes and data benchmark repositories [GITLAB,2021]  

ENEA Staging Storage Sharing system based on Owncloud using AFS (Andrew File System), The 

geographical distributed filesystem of the ENEAGRID infrastructure as backend [E3S,2021] 

Fig.12: The ENEA FPGA Lab, with F.A.R.O as GUI to develop with VITIS and Intel OneAPI 

3.1 Power-Performance metrics 
Usually the following four classes of metrics to quantify the power-performance characteristics of a 

HPC systems [Feng,2005]. 
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− Power. It is responsible for heat dissipation rate or system operating temperature For a HPC 

system, power can be defined at various levels of granularity from highest to lowest: HPC 

system ( PHPC ), compute node ( PCN ) and component ( PC ). Furthermore the power 

consumption varies with HPC workload. Since an application uses only a part of the power 

consumption of the system, we define this part as the power application ( PA ), that can be can 

divided into idle and load power. The idle power is the power consumption under zero 

workload (i.e., system overhead) and the load power is the increased part of the power 

consumption when workloads execute on a node. Usually, idle power is a constant while load 

power varies with time and workload. 

− Energy. The energy consumed by a HPC system in the time interval [t1 ,t2] is: 

𝐸𝑆 = ∫ 𝑃𝐻𝑃𝐶

𝑡2

𝑡1

𝑑𝑡 

The application Energy is: 

𝐸𝐴 = ∫ 𝑃𝐴

𝐷

0

𝑑𝑡 

Here D is delay which is equivalent to (t2-t1) in the Power system equation or TTS (Time-to-solution 

for the application). Similarly, application energy consumption can be broken into idle part and 

load part. 

− Performance. Performance (i.e. reduced TTS) is the critical design constraint in high-performance 

systems. For fixed workload, speedup can be used to quantify performance comparisons between 

two alternatives designs or two operating points. 

− Power Performance efficiency. Sometimes, the performance of HPC systems is improved at the 

cost of more energy consumption. For example, the number of nodes or operating points used by 

an application directly affects both energy consumption and TTS; for a fixed problem size on an 

increasing number of nodes, it is likely that there is some operating point at which point increasing 

nodes results in largely increased energy consumption with little or no performance gain (i.e. TTS). 

Therefore, to quantify the power-performance tradeoff of an application on different system 

configurations, the energy-delay product, E ⋅ D and/or energy-delay-square product ( ED2P ) is 

used, E ⋅ D2 to quantify power-performance efficiency in the context of parallel scalability. 

For the power Performance efficiency, there are some specific definitions [Goz,2019]. The most obvious 

one is to compare the TTS to the energy-to-solution ( ETS ) for a set of runs of both codes and 

benchmarks. The power performance efficiency can be estimate in terms of Energy Delay Product 

(EDP). The EDP proposed by Cameron, is a metric to evaluate trade-off between TTS and ETS. The EDP 

is defined as: 

𝐸𝐷𝑃 = 𝐸 × 𝑇𝑤 

where E is the total energy consumed during the run, T is TTS and w is a parameter to weight 

performance versus power. Common values of this parameter are w=1,2,3. The larger is the w 

exponent the greater the weight we assign to its performance. 
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3.2 Power analysis design 
Power is defined as the amount of electrical energy consumed per unit time, where the unit of power 

is Joule/second or commonly Watt. There are various techniques to measure and report electric 

power. For example to measure the instantaneous raw power, average power, peak power, minimum 

power, root mean square (RMS) power, or a moving average applied to the raw power data. Usually 

a standard measure in computing systems is the so-called “1-second moving average” that is the form 

of power analysis thermally relevant for this kind of systems. This averaging provides correlation to 

real world measurable thermal events. For example, the measure of instantaneous power on 

millisecond range, useful for other power analysis, detects spikes in power levels for short durations 

that will not have measurable impacts to the silicon temperature on the heat sink o other thermal 

solution. Many chipsets provide power sensors with 1 second moving average when report the total 

compute electric power consumed in watt. 

Another common power terms is the Thermal Design Power (TDP). This is the CPU power rating which 

is typically specified in watts. The TDP ratings refers to the maximum amount of heat generated by 

the CPU for which the designed cooling system is required to dissipate while running common 

software. This does not mean that power is strictly limited to the TDP rating. The TDP rating is not the 

same as “peak possible power” but more like a power rating when running with typical parallel 

number crunching applications. The TDP specification is also a good baseline number of the wattage 

power budget needed to run a processor to full performance (100% of utilization). It is possible for 

processors to consume more than the TDP power specification for a short period of time without it 

being thermally significant because heat will take same time to propagate, so a short spike in power 

consumption typically will not violate TDP. To ensure that many CPUs stay within the thermal 

specifications under such over TDP power consumption, the CPUs have built-in power management 

hardware which reduces power of the processor by reducing the voltage and/or modulates the 

processor clock frequency (throttling) until the thermal violation is corrected. 

Accurate and timely information regarding power consumption of compute nodes in large scale HPC 

systems is important in establishing ways to mitigate both the energy consumed and the overall cost. 

Monitoring tools enable the measurement of the energy efficiency of a HPC data center focusing on 

energy modelling, profiling capabilities and upon calibration of models.  

There are both hardware and software solutions available today to measure the power consumption 

of HPC systems while running parallel workloads. One the easiest and most common hardware 

solutions for measuring total system power is the usage of an AC power meter. This is an instrument 

that passes power to compute node under load and measures the power consumption in real time. 

Most of these instruments have ethernet/GPIB/USB interfaces allowing a power data logging by 

means computer. Another hardware method used to measure system power is the usage of power 

distribution units (PDUs). These are typically used in data center racks that house HPC systems. The 

PDU is a smart AC power strip that has an embedded controller that is continually monitoring the total 

power consumption or load of all compute nodes it supplies with power in a rack including its 

temperature. These smart PDUs are accessible using a simple web interface or a Simple Network 

Management Protocol (SNMP) to gather and log the total system power. 
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On the other hand software tools are able to utilise various data sources such as Baseboard 

Management Controllers (BMCs) that have various sensors for reporting on the physical hosts. These 

sensors include measurements for the energy and power consumed of a physical host and are able to 

report this using the Intelligent Platform Management Interface (IPMI). These sensors are however 

subject to error and cannot be practically substituted with more accurate Watt meters. 

In order to gather sensor data there are two principle sources for monitoring infrastructures to collect 

data from. The first is reporting data from the operating system, which can utilise special structures 

such as /proc/ on Linux. The second is to use more specialist hardware such as baseboard management 

controllers (BMCs) and standardised interfaces. 

This can include aspects such as CPU performance counters as well as standardised interfaces such as 

IPMI. IPMI allows for sensors that are integrated in current generation server hardware to be accessed 

over a common API. The sensors that have traditionally been used to remotely manage and monitor 

larger clusters of physical machines and are starting to include power sensing capabilities. The data 

gathered by these sensors can the be utilised to generate a model, that can calculate the power 

consumed based on utilisation. Errors in the values reported by the models that drive the energy 

modeller and Watt meter emulator can occur at two stages. The first is the calibration phase and the 

second is at operation time. 

The calibration phase results in an inaccurate model that does not correctly represent the relationship 

between load and power consumption. This can occur for several different reasons: 

− Unsynchronized metric update intervals for different metric types: This could occur when 
measuring CPU utilisation and power together. For calibration to be accurate it requires the 
measurements to be perfectly synced or for the utilisation to remain stable during a 
measurement phase, so that both measurements represent the physical host’s true state. 

− Measurement arrival latency (Monitoring infrastructure over-head): Differing on the above 
case, where synchronisation issues may occur, this is caused by the inherent delays in taking 
a measurement, transferring the value across a network and recording it in the monitoring 
infrastructure. This effects the detection of the start and end of periods of induced load. This 
can be mitigated by performing the calibration run locally without the use of a full monitoring 
infrastructure, such as Zabbix, Ganglia etc. This however will only work during the calibration 
and will not work during normal operations. Locally monitoring load will however have the 
side effect of measuring a small amount of load induced by itself. 

− Averaging and time windows of measurement’s values: Measurements arrive with a given 
polling interval, however measurements such as CPU load also have a time window in which 
the measurement was taken e.g. over the last minute. This averaging causes errors in the 
model and requires the CPU utilisation measurement window to be made as small as possible. 
One alternative is for measurements used in the calibration dataset to only start to be taken 
after load has been induced for a time that is longer than the length of the averaging period. 

− Update interval of a sensor’s reported value Sensors such as power measurements taken over 
IPMI update slower than the interval at which the baseboard can be queried. Thus rapid 
polling of the interface can result in the previously reported value been reported again, 
without prospect of change. Hence the poll interval should not exceed this update interval. In 
the case of IPMI power values polling should hence restricted to every 1 seconds. 
 

Therefore this provides the basis of several recommendations which we implement in  that should be 

followed while calibrating an energy model: 
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− to use metrics that represent the physical host in its most recent state, which we call spot 
metrics and tend to avoid averaging and representing long periods of time. The sensors base 
data acquisition of the compute nodes is generally of the millisecond scale, but the firmware 
of chipset motherboards provides different sampling periods ranging from a minimum of 1 
second up to the minutes. Usually the IPMI command interfacing the Data Center 
Manageability Interface (DCMI) provides electric power measurement of compute node like 
this: 

Linux IPMI Command:   

ipmitool -H nodename -U XXXXX -P XXXXX dcmi power reading  
with the following output: 
    Instantaneous power reading:                    89 Watts 
    Minimum during sampling period:                 87 Watts 
    Maximum during sampling period:                 89 Watts 
    Average power reading over sample period:       88 Watts 
    IPMI timestamp:                           Wed May 18 18:07:25 2022 
    Sampling period:                          00000001 Seconds. 
    Power reading state is:                   activated 

For example the Lenovo compute nodes, in ENEA FPGA labs, provide an average power 
reading with a sampling period of 1 second instead the Supermicro compute nodes of 
CRESCO5F ENEA HPC clusters provide a sampling period of 1 minute. In order to gather electric 
power measurement of a Supermicro compute node the IPMI command is as follow: 

ipmitool raw -H nodename -U XXXXX -P XXXXX 0x30 0xe2 0x00 

Unfortunately a complete description of the IPMI tool in raw mode is not available by 

Supermicro compute node. 

− The CPU/GPU/FPGA load should be induced followed by waiting a set period of time for the 
values to stabilise and then taking measurements. A further addition to this is to detect 
plateaus in the measured values and only using congruent data points as shown in Fig.1, which 
can be used as a mechanism to determine how long to wait before accepting measurements 
as being valid when a compute node is loaded by applications. 
 

 

Fig.13: Power monitoring of compute node via IPMI 

An alternative technique to collect power consumption induced by applications is to embed 

in the source code some events probes providing start and end timestamps of the event. each 

event also reports the identifier of its type (”eventType”), which allows identifying different 
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types of events for the same application to be analyzed separately. For example a typical json 

structure is as follow: 

Json structure for power monitoring via IPMI 

{ 
 “schema version”: 
 { 
  “schema”: “JSON”, 
                                   “creation_date”: "Wed Aug  3 14:37:51 2022 GMT" 
                  } 
                  “event”: 
                  { 
                    “appID”: “App 1”, 
                    “eventType”: “Event 1”, 
                   “deviceID”: “fpga 0000:0b:00.1”, 
                   “starttime:” Wed Aug  3 14:37:51 2022 GMT”, 
                   “endtime:” Wed Aug  3 14:37:55 2022 GMT”, 
                 } 
} 

− to take measurements remotely avoiding intrusive monitoring overloading compute node. 
Network Time Protocol (NTP) has to be used to sync timestamps between remote and 
undertest compute node. The sync accuracy  in at few msec. The timestamp collected within 
function kernels in users applications should provide a reliable measure of energy to solution. 

− About the granularity in terms of energy consumption of single components hardware it 
depends on the BMC sensors list that obviously doesn’t include the energy consumption of 
GPU/FPGA processors installed in the node under test. 
The commands like : nvidia-smi for GPU NVIDIA as well as  xbutil for FPGA Xilinx can be run 

only in intrusive mode consuming CPU power of the node under test. 

In GPU NVIDIA, the NVIDIA System Management Interface (nvidia-smi) is a command line 

utility, based on top of the NVIDIA Management Library (NVML), intended to aid in the 

management and monitoring of NVIDIA GPU devices. 

The command provides all runtime metric data of GPU devices installed into the compute 

node and it works also in virtualized environment based on ESXI and XenServer. It allows the 

usage for logging with timeout linux command set the queries in a time window. An example 

of query with 1 second steps on 5 seconds of time window for GPU id 0 is as follow: 
 

timeout 5  nvidia-smi -i 0 --query-gpu= timestamp, name, pstate, pcie.link.gen.max, pcie.link.gen.current, temperature.gpu, 

utilization.gpu, utilization.memory, memory.total,memory. free,memory.used, power.draw --format=csv -l 1 

timestamp, name, pstate, pcie.link.gen.max, pcie.link.gen.current, temperature.gpu, utilization.gpu [%], utilization.memory [%], 

memory.total [MiB], memory.free [MiB], memory.used [MiB], power.draw [W] 

2022/08/04 14:39:47.721, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.82 W 

2022/08/04 14:39:48.728, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.82 W 

2022/08/04 14:39:49.733, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.82 W 

2022/08/04 14:39:50.738, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.92 W 

2022/08/04 14:39:51.745, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.82 W 

The above command provides several metric data tagged with a timestamps including: 

temperature in Celsius degree, GPU and memory utilization as percentage, power 

consumption in Watt. 
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In FPGA Xilinx Alveo boards the Xilinx Runtime Library (XRT) provides a standardized software 

interface that facilitates communication between the application code and the accelerated-

kernels deployed on the reconfigurable portion of PCIe based Alveo accelerator cards. The 

stack software of the XRT is as the following picture Fig.14: 

Fig.14: ALVEO XRT software stack 

The command xbutil examine -d <fpga_device> -r all provides all runtime data of FPGA device, 

including: 

Electrical 
  Max Power              : 225 Watts 
  Power                  : 24.823374 Watts 
  Power Warning          : false 
 Power Rails            : Voltage   Current 
  12 Volts Auxillary     : 12.223 V,  0.857 A 
  12 Volts PCI Express   : 12.253 V,  1.171 A 
  3.3 Volts PCI Express  :  3.278 V 
  3.3 Volts Auxillary    :  3.379 V 
  Internal FPGA Vcc      :  0.850 V, 11.250 A 
  DDR Vpp Bottom         :  2.500 V 
  DDR Vpp Top            :  2.496 V 
  5.5 Volts System       :  5.458 V 
  Vcc 1.2 Volts Top      :  1.198 V 
  Vcc 1.2 Volts Bottom   :  1.199 V 
  1.8 Volts Top          :  1.795 V 
  0.9 Volts Vcc          :  0.897 V 
  12 Volts SW            : 12.166 V 
  Mgt Vtt                :  1.197 V 

Thermals 
  PCB Top Front          : 25 C 
  PCB Top Rear           : 24 C 
  FPGA                   : 29 C 
  FPGA HBM               : 24 C 

These data can be selected also with electrical and thermals options of the xbutil examine command. 
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