

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

WP1 Specifications, Co-design & Benchmarking

D1.3 Proof of Concept Design

Part I

WP-1.2: Runtime Services – T.1.2.3: I/O filter

http://textarossa.eu

Ref. Ares(2022)7423624 - 26/10/2022

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

TEXTAROSSA

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

Grant Agreement No.: 956831

Deliverable: D1.3 Proof of Concept Design

Part I – T.1.2.3

WP-1.2: Runtime Services – T.1.2.3: I/O filter

Project Start Date: 01/04/2021 Duration: 36 months

Coordinator: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO

SOSTENIBILE - ENEA , Italy.

Deliverable No D1.2 – Part I - T.1.5.1-2

WP No: WP1

WP Leader: ENEA

Due date: M6 (November 30, 2021)

Delivery date: 31/05/2022

Dissemination Level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

textarossa.eu D1.3 | 3

DOCUMENT SUMMARY INFORMATION

Project title:
Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw
Supercomputing Applications for exascale

Short project name: TEXTAROSSA

Project No: 956831

Call Identifier: H2020-JTI-EuroHPC-2019-1

Unit: EuroHPC

Type of Action: EuroHPC - Research and Innovation Action (RIA)

Start date of the project: 01/04/2021

Duration of the project: 36 months

Project website: textarossa.eu

WP1 Specifications, Co-design & Benchmarking
Deliverable number: D1.3

Deliverable title: Proof of Concept – Part I – T.1.2.3

Due date: M6

Actual submission date: 31/05/2021

Editor: Francesco Iannone

Authors: List of Authors

Work package: WP1

Dissemination Level: Public

No. pages:

Authorized (date): 31/03/2022

Responsible person: Francesco Iannone and Bérenger Bramas

Status: Plan Draft Working Final Submitted Approved

Revision history:

Version Date Author Comment

0.1 15/05/2022 F.Iannone, P.Palazzari Draft structure

0.2

Quality Control:

Checking process Who Date

Checked by internal reviewer Project Technical Committee

Checked by Task Leader

Checked by WP Leader Francesco Iannone

Checked by Project Coordinator Massimo Celino

textarossa.eu D1.3 | 4

COPYRIGHT

 © Copyright by the TEXTAROSSA consortium, 2021-2024

This document contains material, which is the copyright of TEXTAROSSA consortium members and the

European Commission, and may not be reproduced or copied without permission, except as mandated by

the European Commission Grant Agreement No. 956831 for reviewing and dissemination purposes.

ACKNOWLEDGEMENTS

This project has received funding from the European High-Performance Computing Joint Undertaking (JU)

under grant agreement no 956831. The JU receives support from the European Union’s Horizon 2020

research and innovation programme and Italy, Germany, France, Spain, Poland.

Please see http://textarossa.eu for more information on the TEXTAROSSA project.

The partners in the project are AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO

SVILUPPO ECONOMICO SOSTENIBILE (ENEA), FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER

ANGEWANDTEN FORSCHUNG E.V. (FHG), CONSORZIO INTERUNIVERSITARIO NAZIONALE PER

L'INFORMATICA (CINI), INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),

BULL SAS (BULL), E4 COMPUTER ENGINEERING SPA (E4), BARCELONA SUPERCOMPUTING CENTER-CENTRO

NACIONAL DE SUPERCOMPUTACION (BSC), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ AKADEMII NAUK

(PSNC), ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN), CONSIGLIO NAZIONALE DELLE RICERCHE (CNR),

IN QUATTRO SRL (in4). Linked third parties of CINI are POLITECNICO DI MILANO (CINI-POLIMI), Università

di Torino (CINI-UNITO) and Università di Pisa (CINI-UNIPI); linked third party of INRIA is Université de

Bordeaux; in-kind third party of ENEA is Consorzio CINECA (CINECA); in-kind third party of BSC is Universitat

Politècnica de Catalunya (UPC).

The content of this document is the result of extensive discussions within the TEXTAROSSA © Consortium

as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily

represent the views expressed by the European Commission or its services.

The information contained in this document is provided by the copyright holders "as is" and any express or

implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for

a particular purpose are disclaimed. In no event shall the members of the TEXTAROSSA collaboration,

including the copyright holders, or the European Commission be liable for any direct, indirect, incidental,

special, exemplary, or consequential damages (including, but not limited to, procurement of substitute

goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory

of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way

out of the use of the information contained in this document, even if advised of the possibility of such

damage.

http://textarossa.eu/

textarossa.eu D1.3 | 5

Table of Contents

Executive Summary ... 6

Partner Report Activity .. 6

List of Authors .. 6

List of Acronyms ... 6

1 Introduction .. 9

2 FPGA data compression ..10

2.1 The compression kernel ..11

2.2 The flow management kernels ...12

2.3 The elaboration kernels ..14

2.4 Integration design ...14

2.5 Synchronization scheme ...16

2.6 Programming models..17

3 Experimental setup design ...20

3.1 Power-Performance metrics ...20

3.2 Power analysis design ...22

textarossa.eu D1.3 | 6

Executive Summary

This report shows the co-design process within the WP1 of Textarossa project in order to design Proof

of Concept for the Task 1.2.3 regarding I/O interfaces in HPC exascale systems composed of thousands

of compute nodes, high performance networks and parallel I/O based on high performance storage

systems capable of scaling to terabytes/second of IO bandwidth while providing tens of petabytes of

capacity.

This deliverable has the subtitle Part I T1.2.3, because it’ll be a living document reporting upgrade in

several PoC design for developing on the whole stack of the co-design process. In particular this

deliverable includes the design of I/O compression and decompression filters on accelerator devices.

Partner Report Activity

Task 1.2.3
TL: INRIA

Runtime Services: to design a PoC able to improve the I/O performances reducing
the data movement by means compression and decompression filters.
Participants: ENEA

Github address The software developed and the benchmarks carried out during the activity are
downloadable at github at the address: https://gitlab-tex.enea.it

Technology ENEA HPC CRESCO Data Centre – ENEA FPGA LAB

Technical
development

The technical development is performed by ENEA

List of Authors

ENEA F. Iannone, P. Palazzari

List of Acronyms

AaaS Accelerator as Service
ABI Application Binary Interfaces
ACP Acceleration Coherency Port
ADC Analog Digital Converter
AFS Andrew File System
AI Artificial Intelligence
ALU Arithmetic Logic Unit
AMG Algebraic MultiGrid
AMS Analog Mixed Signal
API Application Program Interface
ASIC Application Specific Integrating Circuit
AXI Advanced eXtensible Interface (Xilinx IP)
BMC Baseboard Management Controller
C/R Checkpointing/Restart
CAPI Common Application Programmer's Interface
CCXI Cache Coherent Interconnect for Accelerators
CDU Cooling Distribution Unit
CLB Configurable Logic Block
CNN Convolution Neural Network
CP Common Platform
CPU Central Processing Unit
CRDB Co-design Recommended Daughter Board
CU Compute Unit

https://gitlab-tex.enea.it/

textarossa.eu D1.3 | 7

CXL Compute Express Link
DAG Data-flow Graphs
DC Direct Cooling
DCL Data Control Language
DDR Double Data Rate memory
DIMMs Dual In‑line Memory Modules
DL Deep Learning
DLC Direct Liquid Cooling
DPSNN Distributed Polychronous Spiking Neural
DSL Domain Specific Language
DSP Digital Signal Processing
DTPC Direct Two-Phase Cooling
ECC Elliptic Curve Cryptography
ECC Error correction code memory
EDP Energy Delay Product
ED2P Energy Delay Square Product
EDS Embedded Design Suite
EFLOPS Exa Floating Point Operations per Second
EPAC EPI Accelerator
EPI European Processor Initiative
ETS Energy-To-Solution
FMM Fast Multipole Method
FP Floating Point
FPGA Field Programmable Gate Array
FPU Floating Point Unit
FSB Front Side Bus
FT Fault Tolerance
FTI Fault Tolerance Interface
GCD Graphics Compute Die
GIC Generic Interrupt Controller
gpm Gallons per minute
GPU Graphics Processing Unit
GRM Global Resource Manager
HBA Host Bus Adapter
HBM High Bandwidth Memory
HDL Hardware Description Language
HEP High Energy Physics
HLL High-Level Language
HLS High Level Synthesis
HPC High Performance Computing
HPDA High Performance Data Analytics
HPL High Performance Linpack
HPS Hard Processor System
HSS High Speed Serial
HTC High Throughput Computing
IoT Internet of Things
IOB Input/Output block
IP Intellectual Property
IPMI Intelligent Platform Management Interface
IR Iterative Refinement
KPN Kahn Process Network
L2HN L2 cache Coherence Home Node
LCM Last Common Multiple
LE Logic Element
LRM Local Resource Manager
MCM Muti-Chip-Module
MD Molecular Dynamic
MDS/T Metadata Server/Target
ML Machine Learning
MMU Memory Management Unit
MPI Message Passing Interface
MPPA Multi-Purpose Processing Array
MPSoC Multi-Processor System on Chip
NFIR Non-linear Finite Impulse Response
NN Neural Network
NoC Network on Chip

textarossa.eu D1.3 | 8

NVIC Nested Vectored Interrupt Controller
NVMe Non-Volatile Memory
OAM OCP Accelerator Module
OCP Open Compute Project
QPI Quick Path Interconnect
OSS/T Object Storage Servers /Target
PCG Preconditioned Conjugate Gradient
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect Express
PFLOPS Peta Floating Point Operations per Second
PGMRES Preconditioned Generalized Minimal Residual
PoC Proof of Concept
PSU Power Suppy Unit
PU Processing Unit
PUE Power Usage Effectiveness
QCD Quantum ChromoDynamic
QFDB Quad FPGA Daughter Board
QoS Quality of Service
RAID Redundant Array of Independent Disks
RDMA Remote Direct Memory Access
RISC Reduced Instruction Set Computer
RMS Resources Management Systems
RoCE RDMA over Converged Ethernet
RTC Real Time Clock
RTRM Runtime Resource Manager
SAS/SATA Serial Attached SCSI/Serial ATA
SLR Super Logic Region of FPGA
SoC System on Chip
SpMM Sparse Matrix-sparse Matrix
SpMP Sparse Matrix Power
SpMV Sparse Matrix-Vector
SSD Solid State Drive
STX Stencil/Tensor accelerator
TCO Total Cost of Ownership
TDAQ Trigger & Data Acquisition
TDP Thermal Design Power
TOPS Tera Operations per Second
TTS Time-To-Solution
ULFM User-level Fault Mitigation
ULL Ultra-Low Latency
UVM Unified Virtual Memory
VCS Virtual Compute Server
VM Virtual Machine
VPU Vector Processing Unit
VRP Variable Precision co-processor

textarossa.eu D1.3 | 9

1 Introduction
Scientific applications produce massive amounts of data as high-performance computing (HPC)

systems are moving toward exascale. The ever-increasing volumes of data are posing challenges for

scientists to store, share, analyze, and visualize. Compression algorithms have become a crucial

component for data management in scientific workflows. Data reduction enables simulations to

output more data without worrying about exceeding storage quotas, and could capture more insights

in the simulation. However, due to the complexity and poor performance of I/O and compression

libraries as well as parallel file systems, the overall compression and I/O performance varies

significantly. Scientific simulations on HPC systems often execute on hundreds of thousands of

CPU/GPU cores and generate tens of terabytes of data periodically, such as outputting time- history

solutions and checkpoint files every certain number of simulation steps. While data is being

transferred from the HPC compute nodes’ memory to the storage system, the computation of

scientific applications is forced to stall for long periods of time, due to the gap between the

computational speed and the I/O bandwidth. This can contribute to a significant amount of total

application execution time.

Data reduction techniques, such as compression, transformations and deduplication are

straightforward solutions to minimize the energy consumption of storage systems by reducing the

amount of storage hardware required to store the same amount of data. However, data reduction

itself can consume significant amounts of energy, potentially negating its beneficial effects on energy

efficiency. Indeed algorithms with a good compression ratio are also very CPU-intensive, which adds

increased processing time. This is where FPGAs come into the picture offloading a CPU from specific

tasks, such as compression, encryption, and other functionalities, and the FPGA can be programmed

or purpose-built to do specific tasks (compression, in this case) more efficiently and in less time. This

way, we can achieve higher compression of data in the same or a shorter amount of time by offloading

the compression task to an FPGA, thus providing higher compression and freeing up the CPU for other

tasks, thereby accelerating the overall workload. Next-generation bigdata systems will be data-driven

heterogeneous architectures that leverage integration of CPU/GPU/FPGA-accelerated compute. By

offloading compute-heavy compression tasks to the FPGA, the CPU is freed to perform other tasks,

and the IT organization is free to take advantage of the significant savings in performance, power and

cooling, and space that result from reducing the total number of systems they have to support.

.

textarossa.eu D1.3 | 10

2 FPGA data compression
In cascade data compression, a series of low-level compression building blocks that can be used in

combination. Since there are many possible combinations of these building blocks, Cascaded

compression can be configured in several different ways. In this specific compression schema,

bitpacking is one of the most frequently compression block working a bit-level operation for reducing

the number of bits required to store each value. However, (de)compression should not come with any

additional cost during run time, but should be provided transparently without compromising the

overall system performance also in term of energy efficiency. To achieve that, a Proof of Concept (PoC)

focus on acceleration of bitpacking has been designed on FPGA.

The PoC design try to assess the ease of programming of the Vitis flow, verifying if and how often it

must care about the low-level details of the FPGA programming. In the present PoC, the aim is to

accelerate through FPGA the compression and processing of images coming from a high-speed video

camera. The need originated from nuclear fusion experiments with plasmas magnetically confined,

where fast cameras with high-performance CMOS sensor technology are usually adopted for acquir-

ing and storing images of plasma discharges. We had access to a Photron FASTCAM SA4 camera

installed on the Proto-Shera (Spherical Plasma for HElicity Relaxation Assessment) experiment [XXX]

in ENEA Frascati (Rome) and used in several tokamak experiments [Lampasi,2016]. The FASTCAM SA4

camera provides up to 3600 frames/s at 1024x1024 pixel resolution collected on a 12-bit depth image.

12-bit data are packed in 16-bit words, exposing an alignment that eases subsequent processing, but

wastes disk space [Fig.1]. The following picture reports a typical plasma discharge image taken with

the SA4 camera.

Fig. 1. Plasma discharge image from the FASTCAM SA4 camera

The raw data acquired with a digital camera like SA4 is a measure of the radiant intensity which refers

to the magnitude or quantity of light energy actually reflected from or transmitted through the object

being imaged by an analogue or digital device. it is the only variable that can be utilized by processing

techniques in quantitative scientific experiments. The 12-bit pixel depth, associated to the huge

amount of data produced by the SA4 camera, poses a problem of storage versus data integrity. In fact,

due to the fact that the smallest addressable unit in a digital processor is a byte, to preserve data

information it would be necessary to save each pixel in a two-byte format, thus getting a 25% storage

overhead. The alternative could be compression, but this would cause undesirable data loss. In order

to save both storage space and data integrity, a bit-packing compression algorithm operating at bit

textarossa.eu D1.3 | 11

level, has been developed to reduce the number of bit requested to store 12-bit raw data of SA4

camera. Roughly speaking, the bit-packing algorithm maps two 12-bit pixels to three 8-bit pixels as follow:

Let A(X)=[xij] a rectangular matrix n 2m of n row and 2m colunms with X the subset Nr : r-bit natural

numbers such as:

X x Nr : x [0..2p-1], p=12; r=16

Let us define the bitpacking function f transforming the A(X) matrix into the B(Y)=[yij] rectangular

matrix n 3m with Y as subset Nq: q-bit natural numbers, such that:

Y y Nq : y [0..qp-1], q=8

The bitpacking function f is given on:

f: xi,2j+1 , xi,2(j+1) A(X) (i=1..n; j=0..m-1)

Yi,3j+1 , yi,3j+2 , yi,3(j+1) B(Y)

where:

yi,3j+1 = xi,2j+1 & (2q-1)

yi,3j+2 = (xi,2j+1 > q) | (xi,2(j+1) << r-p)

yi,3(j+1) = (xi,2(j+1) >> r-p) & (2q-1)

with: &is the AND operator, / is the OR operator and >> (<<) is the RIGHT (LEFT) shift operator.

The inverse function f-1:

f-1: yi,3j+1 , yi,3j+2 ,yi,3(j+1) B(Y) (i=1..n; j=0..m-3)

xi,2j+1 , xi,(j+1) A(X)

where:

xi,2j+1 = yi,3j+1 | ((yi,3j+2 << q) & (2p-2q))

xi,2(j+1) = (yi,3j+2 >> r-p) | (yi,3(j+1) << r-p)

The PoC design uses the HLS Vitis flow to implement also a video processing library which is used to

set up a pipeline that, while bitpacking compressing video data by removing the heading four bits in

every pixel component, processes the video stream through some basic image manipulation blocks

properly arranged to form a network of communicating processes.

2.1 The compression kernel
As the original need was to compress the image coming from the SA4 camera, re-moving the four

leading bits in the pixel components, the first functionality designed is the compression function which

receives through the input stream the input image and produces through the output stream the

compressed image. If m and n are the numbers of bits used to store a component of a color N N

image, the input image has dimension 3mN2/8 bytes and the output image 3nN2/8 bytes, so the

compression ratio is m/n; indicated with S the size, in bit, of the input and output streams of the

kernel; S is constrained to be a power of 2. In the beginning, input and output images are aligned with

respect to S, i.e., both the input and output streams have a pixel component starting at bit 0 of the

input/output; to determine how many components must be read to be aligned again both at the input

and the output streams, the smallest number of pixel components k∈ℕ+ satisfying the following

equation (% is the modulus operator)

 (k · m) % S (k · n) % S (1)

textarossa.eu D1.3 | 12

From (1) it is easy to verify that the solution is:

 k=LCM(LCM(m,S)/m,LCM(n,S)/n) (2)

Where LCM(a,b) returns the Last Common Multiple of the a and b. In our case the stream size is S=512

bits (thus saturating the PCIe bandwidth in the reasonable hypothesis to use fck=300 MHz), m=16 bits

and n=12 bits; the expression (2) gives k=128. As read from the stream S bits, data are newly aligned

after k · m/S=4 reads from the input stream and k · n/S=3 writes to the output stream. From previous

computations, the structure of the compression function is in the Algorithm 1, The corresponding Vitis

HLS code, in the case S=512, m=16, n=12, is in the code 2:

Algorithm 1: compression kernel Algorithm 2: HLS code

for (i=0; i<InputImageSize/S; i+= km/S){
 read km/S words from the input stream;
 while (not all the input bits have been copied) {
 copy n bits from the input word to the output word;
 skip (n-m) bits of the input word

}
 write the kn/S words that have just been filled
}

 for (i = 0; i < ImgSize/(S/m)-3; i+=4){
#pragma HLS pipeline
 di = inStream.read();
 for (int j=0; j<(S/m); j++){
#pragma HLS unroll
 do.range((j+1)*12-
1,12*j)=di.range(16*(j+1)-5,16*j);}
 di = inStream.read();
 for (j=0; j<10; j++){
#pragma HLS unroll
 do.range(384+(j+1)*12-
1,12*j+384)=(di.range(16*(j+1)-
5,16*j));}
 do.range(511,504)=(di.range(16*10+7,16*10));
 out_stream << do; //output of the first word
 …//repeat till 4 words have been transmitted
 }

in the previous code, thanks to the unroll pragma, all the assignments from the S/m=32 input

components to the 32 output components are executed in parallel, in the same clock cycle. As we

specified the HLS pipeline pragma, the loop body will be pipelined and, every 4 clock cycles, a new

execution of the loop body will start, thus resulting in a continuous reading from the input stream of

64 bytes/cycle.

2.2 The flow management kernels
When performing image processing elaborations through streamed kernels that forks one stream to more

streams and, conversely, join more streams into one stream. The following kernels have been designed:

splitRGBChannels, mergeRGB-Channels, streamCopy, streamBinaryOperator (BinaryOperator = Add, Diff,

Mul, Div, Max, Min, Average), maskImages. Let’s review their behavior.

Unlike of the frame images acquired by FASTCAM SA4 in a format raw of a 1024x1024 pixel matrix on 12

bit depth, a general digital image processing works with RGB images, therefore a kernel function

splitRGBChannels provides to split the color components. It has one input stream, where it receives the

input image in the form r1, g1, b1, r2, g2, b2, … and three output streams, one for each color component;

its counterpart is mergeRGBChannels that has three input streams one output stream;

Fig. 2. The splitRGBChannels and mergeRGBChannels kernels

textarossa.eu D1.3 | 13

The streamCopy kernel copies data from its input stream to two output streams:

Fig. 2. The streamCopy kernel

The streamBinaryOperator receives two images from two input streams and pro-duces the output

image computed applying the binary operator to each pair of input components.

Fig. 4. The streamBinaryOp kernel

The maskImages receives two images from two input streams and a binary masking image from the

mask stream; it produces the output image taking the output pixels from one or the other image,

depending on the value of the mask image.

Fig. 5. The maskImages kernel

The structure of all previous kernels is quite similar: the kernel reads, at each cycle, S bit from each of

its input streams and writes the output whenever it is available (only the mergeRFBChannels has the

opposite behavior, writing S output bits at each cycle and reading when possible). A fragment of the

HLS code implementing the streamBinaryOp kernel is reported in the Algorithm 3.

Algorithm 3: streamBinaryOp kernel

for (int i = 0; i < (ImgSize*m/S); i++) {
#pragma HLS pipeline
 img1 = inStream1.read();
 img2 = inStream2.read();
 for (int j=0; j<PIXEL_IN_INPUT_WORD; j++){
 #pragma HLS unroll
 img1Val = (img1.range(m * (j + 1) - 1, m * j);
 img2Val = (img2.range(m * (j + 1) - 1, m * j);
 outVal = abs(img1Val-img2Val);
 outImg.range(m*(j+1)-1,m*j) = outVal;}
 outStream.write(outImg);
 }

Due to the HLS pipeline pragma, at each clock cycle S bits of img1 and img2 are read from the two

input streams and all the S bits of the output are computed in parallel, thanks to the unroll pragma in

the inner loop. As Alveo U280 Board that does not allow streaming from the host to the FPGA card,

the design implements 2 kernels that access the external memory; one, loadInput, reads data from

the external memory and writes them to the output stream and the other, storeOutput, reads data

from the input streams and writes them to the external memory. Both the streams and the memory

ports have width S. The interface with external memory uses the AXI4 standard, but this is completely

transparent to the user.

Fig. 3. The loadInput and storeOutput kernels, both interfacing with the external memory

textarossa.eu D1.3 | 14

the code to implement loadInput and storeOutput functions is in Algorithm 4 and 5.

Algorithm 4: loadInput kernel Algorithm 5: storeOutput kernel

for (int i = 0; i < (BitImgSize)/S; i++)
 inStream << in1[i];

 for (int i = 0; i < (BitImgSize)/S; i++)
 out1[i] = out_stream.read();

In both the cases, at each clock cycle S bits are read (written) from (to) memory and written (read) to

(from) the output (input) stream

2.3 The elaboration kernels
In addition to the functions defined above, in the image processing library, several functions have

been designed. They receive an image through the input stream and produce an output image through

the output stream. Among these functions designed:

• doNegative: computes the negative of the input image,

• linearScaling: perform a linear scaling on each pixel of the input image,

• RGB2YUV: converts the input image from the RGB color space to YUV,

• YUV2RGB: converts the input image from the YUV color space to RGB,

• firFilter: performs the convolution of the input image with a 3x3 filtering kernel.

Apart from the firFilter, which has a more complex structure because it needs to read and store three

lines before starting the processing, all previous kernels have the same structure which allows, at each

cycle, to read S bits from the input stream and produce S bits to the output stream. The generic kernel

has the behavior shown in Algorithm 6 (design, as an example, to the function doNegative).

Algorithm 6: doNegative kernel

for (int i = 0; i < (ImgSize*m/S); i++) {
#pragma HLS pipeline
 img = inStream.read();
 for (int j=0; j < (S/m); j++){
 #pragma HLS unroll
 imgVal = img.range(m * (j + 1) - 1, m * j);
 outVal = MAX_Y-imgVal;
 outImg.range(m*(j+1)-1,m*j) = outVal;}
 outStream.write(outImg);
 }

In the previous code, the unrolled inner loop allows the contemporaneous execution of the pixel

transformation on all the (S/m) values contained in the S bits input word; thanks to the HLS pipeline

pragma, the pipelined outer loop is started at each clock cycle, so the kernel, at each clock cycle, reads

S bits from the input stream and writes S bits to the output stream.

2.4 Integration design
Once the kernels have been designed, the desired processing is obtained collecting the kernels on a

network that performs the desired elaboration. for instance, the Fig.7 shows a network that takes as input

an RGB picture and produces as output an image which resembles a pencil drawing of the input image .

Fig. 7. Example of a network for image processing

textarossa.eu D1.3 | 15

The Fig.8 shows an example of image processing produced by FASTCAM S4 camera in a plasma

discharge of Protosphera tokamak experiment. In this case the input 1024x1024 16 bit image is

compressed by bitpacking algorithm for storing in a compressed output 1536x1024 8 bit image or

filtered with pencil drawing.

(a) (b) (c)
Fig. 8. Image processing of FASTCAM SA4 camera. (a) Input image; (b) compressed image; (c) processed image

The code needed to implement the previous network is the following Algorithm 7 (we neglect the

declaration of the streams).

Algorithm 6: Image processing network

#pragma HLS STREAM variable = s1 depth = 128
…
#pragma HLS STREAM variable = s4 depth = 4096
#pragma HLS dataflow
 loadInput(inRAM, s1,ImgSize);
 RGB2Y(s1, s2, ImgSize);
 streamCopy(s2, s3, s4, YImgSize);
 firFilter(s3,s5,Nr,Nc,c00,c01,c02,c10,c11,c12,c20,c21,c22);
 streamBinaryDiff(s3, s5, s6, YImgSize);
 doNegative(s6, s7, YImgSize);
 doCompression(s7, s8, YImageSize);
 storeOutput(outRAM, s8, compressedYImgSize);

The HLS dataflow pragma instructs the compiler to activate in parallel all the follow-ing functions,

whose execution is purely dataflow; data flow through the streams and they are consumed by the

kernels implementing the functions as soon as they are available. Apart from the streams, the other

parameters are scalars indicating the size of the images (color image, grey level image, compressed

image), the filter coefficients to implement a 3x3 gaussian filter, and the number of rows and columns

contained in the input image. The HLS stream pragma is used to specify the size of the FIFO buffers

associated with the streams; please note that s4 streams, which bypasses the firFilter, has a larger

depth to avoid deadlock. In fact, s4 must be able to store all the data till firFilter starts producing its

output: this is because the streamBinaryDiff kernel reads in parallel the two input images and does

not proceed reading one image till the other is not available. For this reason, the stream s4 connecting

streamCopy to the streamBinaryDiff must be able to buffer the data coming from streamCopy till data

do not start to be produced by firFilter. In general, all the time that convergent paths are present,

particular care has to be taken to analyze and set the buffer sizes to avoid deadlock situations due to

the saturation of some intermediate buffer.

textarossa.eu D1.3 | 16

2.5 Synchronization scheme
To allow the overlapping of communication between host and card with the computation on the FPGA

card, we adopted a double buffering scheme that uses two HBM banks HBMreadA and HBMwriteA in one

phase (A) of the computation and HBMreadB and HBMwriteB in the other phase (B). The host code has

three threads: producer thread (Algorithm 8) that sends images to be processed to an input host buffer

accessible to the card, consumer thread (Algorithm 9) that receives processed images from an output host

buffer accessible to the card, and the main thread that controls the start of the kernels on the card and the

data transfers between HBM memory banks on the card and the buffers on the host.

Algorithm 8: Producer Algorithm 9: Consumer

while(){
 sem_wait(&canProduceIn)
 write image to Bin
 sem_post(&canConsumeIn)
}

 while(){
 sem_wait(&canConsumeOut)
 read image from Bout sem_post(&canProduceOut)
}

The main thread is synchronized with the producer and consumer threads through semaphores

(canProduceIn(1), canConsumeIn(0), canProduceOut(0), can-ConsumeOut(0) – in brackets we indicate the

initial value for the semaphore) which control the access to the input and output buffers, shared with the

FPGA card. The synchronization between the main thread and the FPGA card is achieved through

readEvent, writeEvent, and RunEvent that inform the main thread about the end of a read transfer, of a

write transfer, and of a kernel execution (all data transfers and kernel executions are used as asynchronous,

non-blocking functions).

Algorithm 10: Main thread

while(){
 sem_wait(&canConsumeIn);
 doTransferHost2Card(Bin, &H2C_event);
 H2C_event.wait();
 startKernels(krnl, &krnl_event);
 sem_post(&canProduceIn);
 krnl_event.wait();
 sem_wait(&canProduceOut);
 doTransferCard2Host(Bout, &C2H_event);
 sem_post(&canConsumeOut);
}

In the fragments of code reported in Algorithm 10 is designed the basic synchronization scheme among

the producer, consumer, and main threads, for the sake of readability, we do not show the implementation

of the ping pong buffer which alternates between the bank pairs HMB0/HBM1 and HBM2/HBM3: when

transferring to/from HBM0/HBM1 the kernels are processing images on HBM2/HBM3 and vice-versa.

Algorithm 10: Main thread

while(){
 sem_wait(&canConsumeIn);
 doTransferHost2Card(Bin, &H2C_event);
 H2C_event.wait();
 startKernels(krnl, &krnl_event);
 sem_post(&canProduceIn);
 krnl_event.wait();
 sem_wait(&canProduceOut);
 doTransferCard2Host(Bout, &C2H_event);
 sem_post(&canConsumeOut);
}

textarossa.eu D1.3 | 17

The following Fig.9 shows the graphical report produced by Vitis using the events registered during the

actual run on the Xilinx U280 board. As we see, computing kernels are always running and, at the same

time, there is always a transfer to/from the external HBM banks (either HBM0/HBM1 or HBM2/HBM3).

Fig. 9. Overlap of the run of elaboration kernels with I/O on HBM banks (ping pong scheme).

2.6 Programming models
All the image processing/compression library has been designed in C/C++ standard. The only interaction

with the HW was defining the width of the streams/memory ports, which can be set through a wizard, the

mapping of the I/O buffers on dedicated HBM memory banks (again, done through a wizard), and the

definition of the depth for some stream buffers, done through a dedicated pragma. Some optimization

pragmas have been spread along with the code, instructing the compiler that certain loops should be

pipelined and other loops unrolled, and this would require a certain awareness about the type of

architecture we want to obtain (i.e., even working at the C/C++ level, we should not forget that what, and

how, you write has a direct impact on the hardware generated).

Let’s speak about the feedback we get from the flow to reach our design goal. To check for the functional

correctness of the application we are writing, there is a complete Eclipse-based environment that allows

debugging our application with the usual tools: breakpoints (several types), memory inspection, access to

the debug stack. For the hardware part, we have the automatic instantiation of a multithreaded

environment to emulate the concurrency among the different kernels. Once the functional correctness is

ensured, we have to compile for the HW (either for HW simulation through the associated HDL simulator

or for the actual run on FPGA board). At this level, we can check performance by measuring the time spent

to run the accelerated algorithm (we can use the number of clock cycles given by the HDL simulator in HW

Emulation). Should we need a more in-depth analysis of the reason why we are not obtaining the expected

performance, we found that the analysis of the I/O traffic and of the kernel activation given by the

recording of the events during the actual HW run (an example is given in Fig. 8) is useful; sometimes we

felt the need of inspecting the HDL simulation to recognize that things were not going as expected (for

instance, we were not reading on input streams at full bandwidth), understand why the HW was behaving

in that way and go back to the C source code and change it to remove the encountered inefficiency. So, at

this level, we found it still quite tricky to remove the inefficiencies and we think that more high-level

feedback should be given to guide the optimization process.

Let’s analyze this with the case of the 3x3 FIR Filter. Let’s suppose that we have implemented the functions

readLine(instream, line), which reads one line of the input image from the input stream into the local array

line, writeLine(outstream, line), which writes the local array line into the output stream, and

filterOneLine(il1, il2, il3, ol), which produces the output line ol from the input lines il1, il2, il3 through a 3x3

convolution kernel. A simple way to apply the filter to an image is the following Algorithm 11.

textarossa.eu D1.3 | 18

The code is scheduled by the Vitis flow as in the Fig.11 (we report the start signals of the functions S1-S5,

as taken from the HDL simulator of Vitis).

Algorithm 11: filter processing design

readLine(inStream,line1);
 writeLine(out_stream, line1);
 readLine(inStream,line2,);
 for (i=2; i<ImgRows; i++)
 {
 S1: readLine(inStream,line3,);
 S2: filterOneLine(line1, line2, line3, lineout);
 S3: writeLine(out_stream, lineout);
 S4: copyLine(line2, line1);
 S5: copyLine(line3, line2);
 }
 writeLine(out_stream, line3, NbParallelInputWords);

The Fig.10, the computing kernel S2 is often inactive. We have to go back to the code and understand why

it is scheduled in such a way. If we look at the algorithm, we see that, at each iteration, it receives a new

input line and produces a new output line. As the input and output lines cannot be touched during the

processing, we should introduce a 4th input line and an additional output line so that, while processing

three input lines and writing on the output line A, the readLine can read the 4th input line and the writeLine

can write the previously written line B.

Fig.10. Scheduling of functions in the loop body of image filtering code

Furthermore, in order to avoid the copyLine operations, we manually unroll the loop by a factor of 4, so

that we process (il1, il2, il3, olA) while reading il4 and writing olB, then we process (il2, il3, il4, olB) while

reading il1 and writing olA, then we process (il3, il4, il1, olA) while reading il2 and writing olB, then we

process (il4, il1, il2, olB) while reading il3 and writing olA, then we are again at the original situation and

we can close the loop iteration. The main elaboration loop can be organized as in the Algorithm 12 and

time diagram shown in Fig.11.

Algorithm 12: Main loop

For (i=0; i<LinesToBeProcesssed; i+=4){
 S1: readLine(inStream,line4,);
 S3: filterOneLine (line1, line2, line3, lineoutA);
 S2: writeLine(out_stream, lineoutA);
 S1: readLine (inStream,line1);
 S3: filterOneLine (line2, line3, line4, lineoutB);
 S2: writeLine (out_stream, lineoutB);
 S1: readLine (inStream,line2);
 S3: filterOneLine (line3, line4, line1, lineoutA);
 S2: writeLine (out_stream, lineoutA);
 S1: readLine (inStream,line3);
 S3: filterOneLine (line4, line1, line2, lineoutB);
 S2: writeLine (out_stream, lineoutB);}

textarossa.eu D1.3 | 19

The previous loop is scheduled by Vitis overlapping, apart from the initial phase that has to be ad hoc

managed, the read from the input stream of a new line with the computation of a new output line and

the write to the output stream of the just processed line.

Fig. 11. Scheduling of the optimized loop body

To give an idea of the performance achievable through the HLS flow, we defined an image filtering

network constituted by the loadInput, the cascade of 20 FIR filters, the compression, and the

storeOutput kernels. Each of these kernels (apart from the compression and the last one, each one

producing 75% of the stream size) reads S=64 Bytes/cycle, resulting in an aggregated throughput of

(NFIR_Kernels + 2.5) S fck [B/s] and a sustained computation speed of NFIR_Kernels Nops_FIR

fck [Op/s]. We used NFIR_kernels=20 and fck=300MHz; the number of 16 bit operations executed at

each clock cycle by a 3x3 pipelined FIR kernel is Nops_FIR=17, so the internal data throughput is 400

GB/s and the sustained speed is 100 GOp/s.

REFERENCE

[Lampasi,2016] A. Lampasi at al.: Progress of the Plasma Centerpost for the PROTO-SPHERA Spheri-

cal Tokamak, Energies 2016, 9, 508. https://doi.org/10.3390/en9070508

textarossa.eu D1.3 | 20

3 Experimental setup design
The PoC of the bitpacking data compression and decompression has been designed for developing on

the ENEA FPGA LAB in CRESCO Data Centre on premises.

The ENEA CRESCO FPGA LAB (Fig.12) has made available to the TextaROssa a pool of compute nodes

equipped as follow:

• n.6 Linux X86_64 nodes with 2 x Intel Xeon Haswell CPU, 128 GB RAM

• n.2 Xilinx U280 + n.2 Xilinx U250

• Sys.Op. Linux Centos 7.4

• Development software tools: Xilinx VITIS & Intel OneAPI

The access to the FPGA Lab resources is available getting an account in ENEAGRID infrastructure

following the access rules reported in ENEA CRESCO portal [CRESCO,2021]. The compute nodes

equipped with FPGA boards can be access via ssh on front-end node: cresco-in.portici.enea.it and

forwarding on to:

cresco-xilinx0/1/2/3/4/5.portici.enea.it

A graphical remote access to compute nodes of the FPGA Lab is available using ENEA F.A.R.O. (Fast

Access Remote Objects) using a client ThinLIC on the front-end node: cresco-in-gui.portici.enea.it

For the TextaRossa project are available some Development Operations tools as follow:

A gitlab for source codes and data benchmark repositories [GITLAB,2021]

ENEA Staging Storage Sharing system based on Owncloud using AFS (Andrew File System), The

geographical distributed filesystem of the ENEAGRID infrastructure as backend [E3S,2021]

Fig.12: The ENEA FPGA Lab, with F.A.R.O as GUI to develop with VITIS and Intel OneAPI

3.1 Power-Performance metrics
Usually the following four classes of metrics to quantify the power-performance characteristics of a

HPC systems [Feng,2005].

textarossa.eu D1.3 | 21

− Power. It is responsible for heat dissipation rate or system operating temperature For a HPC

system, power can be defined at various levels of granularity from highest to lowest: HPC

system (PHPC), compute node (PCN) and component (PC). Furthermore the power

consumption varies with HPC workload. Since an application uses only a part of the power

consumption of the system, we define this part as the power application (PA), that can be can

divided into idle and load power. The idle power is the power consumption under zero

workload (i.e., system overhead) and the load power is the increased part of the power

consumption when workloads execute on a node. Usually, idle power is a constant while load

power varies with time and workload.

− Energy. The energy consumed by a HPC system in the time interval [t1 ,t2] is:

𝐸𝑆 = ∫ 𝑃𝐻𝑃𝐶

𝑡2

𝑡1

𝑑𝑡

The application Energy is:

𝐸𝐴 = ∫ 𝑃𝐴

𝐷

0

𝑑𝑡

Here D is delay which is equivalent to (t2-t1) in the Power system equation or TTS (Time-to-solution

for the application). Similarly, application energy consumption can be broken into idle part and

load part.

− Performance. Performance (i.e. reduced TTS) is the critical design constraint in high-performance

systems. For fixed workload, speedup can be used to quantify performance comparisons between

two alternatives designs or two operating points.

− Power Performance efficiency. Sometimes, the performance of HPC systems is improved at the

cost of more energy consumption. For example, the number of nodes or operating points used by

an application directly affects both energy consumption and TTS; for a fixed problem size on an

increasing number of nodes, it is likely that there is some operating point at which point increasing

nodes results in largely increased energy consumption with little or no performance gain (i.e. TTS).

Therefore, to quantify the power-performance tradeoff of an application on different system

configurations, the energy-delay product, E ⋅ D and/or energy-delay-square product (ED2P) is

used, E ⋅ D2 to quantify power-performance efficiency in the context of parallel scalability.

For the power Performance efficiency, there are some specific definitions [Goz,2019]. The most obvious

one is to compare the TTS to the energy-to-solution (ETS) for a set of runs of both codes and

benchmarks. The power performance efficiency can be estimate in terms of Energy Delay Product

(EDP). The EDP proposed by Cameron, is a metric to evaluate trade-off between TTS and ETS. The EDP

is defined as:

𝐸𝐷𝑃 = 𝐸 × 𝑇𝑤

where E is the total energy consumed during the run, T is TTS and w is a parameter to weight

performance versus power. Common values of this parameter are w=1,2,3. The larger is the w

exponent the greater the weight we assign to its performance.

textarossa.eu D1.3 | 22

3.2 Power analysis design
Power is defined as the amount of electrical energy consumed per unit time, where the unit of power

is Joule/second or commonly Watt. There are various techniques to measure and report electric

power. For example to measure the instantaneous raw power, average power, peak power, minimum

power, root mean square (RMS) power, or a moving average applied to the raw power data. Usually

a standard measure in computing systems is the so-called “1-second moving average” that is the form

of power analysis thermally relevant for this kind of systems. This averaging provides correlation to

real world measurable thermal events. For example, the measure of instantaneous power on

millisecond range, useful for other power analysis, detects spikes in power levels for short durations

that will not have measurable impacts to the silicon temperature on the heat sink o other thermal

solution. Many chipsets provide power sensors with 1 second moving average when report the total

compute electric power consumed in watt.

Another common power terms is the Thermal Design Power (TDP). This is the CPU power rating which

is typically specified in watts. The TDP ratings refers to the maximum amount of heat generated by

the CPU for which the designed cooling system is required to dissipate while running common

software. This does not mean that power is strictly limited to the TDP rating. The TDP rating is not the

same as “peak possible power” but more like a power rating when running with typical parallel

number crunching applications. The TDP specification is also a good baseline number of the wattage

power budget needed to run a processor to full performance (100% of utilization). It is possible for

processors to consume more than the TDP power specification for a short period of time without it

being thermally significant because heat will take same time to propagate, so a short spike in power

consumption typically will not violate TDP. To ensure that many CPUs stay within the thermal

specifications under such over TDP power consumption, the CPUs have built-in power management

hardware which reduces power of the processor by reducing the voltage and/or modulates the

processor clock frequency (throttling) until the thermal violation is corrected.

Accurate and timely information regarding power consumption of compute nodes in large scale HPC

systems is important in establishing ways to mitigate both the energy consumed and the overall cost.

Monitoring tools enable the measurement of the energy efficiency of a HPC data center focusing on

energy modelling, profiling capabilities and upon calibration of models.

There are both hardware and software solutions available today to measure the power consumption

of HPC systems while running parallel workloads. One the easiest and most common hardware

solutions for measuring total system power is the usage of an AC power meter. This is an instrument

that passes power to compute node under load and measures the power consumption in real time.

Most of these instruments have ethernet/GPIB/USB interfaces allowing a power data logging by

means computer. Another hardware method used to measure system power is the usage of power

distribution units (PDUs). These are typically used in data center racks that house HPC systems. The

PDU is a smart AC power strip that has an embedded controller that is continually monitoring the total

power consumption or load of all compute nodes it supplies with power in a rack including its

temperature. These smart PDUs are accessible using a simple web interface or a Simple Network

Management Protocol (SNMP) to gather and log the total system power.

textarossa.eu D1.3 | 23

On the other hand software tools are able to utilise various data sources such as Baseboard

Management Controllers (BMCs) that have various sensors for reporting on the physical hosts. These

sensors include measurements for the energy and power consumed of a physical host and are able to

report this using the Intelligent Platform Management Interface (IPMI). These sensors are however

subject to error and cannot be practically substituted with more accurate Watt meters.

In order to gather sensor data there are two principle sources for monitoring infrastructures to collect

data from. The first is reporting data from the operating system, which can utilise special structures

such as /proc/ on Linux. The second is to use more specialist hardware such as baseboard management

controllers (BMCs) and standardised interfaces.

This can include aspects such as CPU performance counters as well as standardised interfaces such as

IPMI. IPMI allows for sensors that are integrated in current generation server hardware to be accessed

over a common API. The sensors that have traditionally been used to remotely manage and monitor

larger clusters of physical machines and are starting to include power sensing capabilities. The data

gathered by these sensors can the be utilised to generate a model, that can calculate the power

consumed based on utilisation. Errors in the values reported by the models that drive the energy

modeller and Watt meter emulator can occur at two stages. The first is the calibration phase and the

second is at operation time.

The calibration phase results in an inaccurate model that does not correctly represent the relationship

between load and power consumption. This can occur for several different reasons:

− Unsynchronized metric update intervals for different metric types: This could occur when
measuring CPU utilisation and power together. For calibration to be accurate it requires the
measurements to be perfectly synced or for the utilisation to remain stable during a
measurement phase, so that both measurements represent the physical host’s true state.

− Measurement arrival latency (Monitoring infrastructure over-head): Differing on the above
case, where synchronisation issues may occur, this is caused by the inherent delays in taking
a measurement, transferring the value across a network and recording it in the monitoring
infrastructure. This effects the detection of the start and end of periods of induced load. This
can be mitigated by performing the calibration run locally without the use of a full monitoring
infrastructure, such as Zabbix, Ganglia etc. This however will only work during the calibration
and will not work during normal operations. Locally monitoring load will however have the
side effect of measuring a small amount of load induced by itself.

− Averaging and time windows of measurement’s values: Measurements arrive with a given
polling interval, however measurements such as CPU load also have a time window in which
the measurement was taken e.g. over the last minute. This averaging causes errors in the
model and requires the CPU utilisation measurement window to be made as small as possible.
One alternative is for measurements used in the calibration dataset to only start to be taken
after load has been induced for a time that is longer than the length of the averaging period.

− Update interval of a sensor’s reported value Sensors such as power measurements taken over
IPMI update slower than the interval at which the baseboard can be queried. Thus rapid
polling of the interface can result in the previously reported value been reported again,
without prospect of change. Hence the poll interval should not exceed this update interval. In
the case of IPMI power values polling should hence restricted to every 1 seconds.

Therefore this provides the basis of several recommendations which we implement in that should be

followed while calibrating an energy model:

textarossa.eu D1.3 | 24

− to use metrics that represent the physical host in its most recent state, which we call spot
metrics and tend to avoid averaging and representing long periods of time. The sensors base
data acquisition of the compute nodes is generally of the millisecond scale, but the firmware
of chipset motherboards provides different sampling periods ranging from a minimum of 1
second up to the minutes. Usually the IPMI command interfacing the Data Center
Manageability Interface (DCMI) provides electric power measurement of compute node like
this:

Linux IPMI Command:

ipmitool -H nodename -U XXXXX -P XXXXX dcmi power reading
with the following output:
 Instantaneous power reading: 89 Watts
 Minimum during sampling period: 87 Watts
 Maximum during sampling period: 89 Watts
 Average power reading over sample period: 88 Watts
 IPMI timestamp: Wed May 18 18:07:25 2022
 Sampling period: 00000001 Seconds.
 Power reading state is: activated

For example the Lenovo compute nodes, in ENEA FPGA labs, provide an average power
reading with a sampling period of 1 second instead the Supermicro compute nodes of
CRESCO5F ENEA HPC clusters provide a sampling period of 1 minute. In order to gather electric
power measurement of a Supermicro compute node the IPMI command is as follow:

ipmitool raw -H nodename -U XXXXX -P XXXXX 0x30 0xe2 0x00

Unfortunately a complete description of the IPMI tool in raw mode is not available by

Supermicro compute node.

− The CPU/GPU/FPGA load should be induced followed by waiting a set period of time for the
values to stabilise and then taking measurements. A further addition to this is to detect
plateaus in the measured values and only using congruent data points as shown in Fig.1, which
can be used as a mechanism to determine how long to wait before accepting measurements
as being valid when a compute node is loaded by applications.

Fig.13: Power monitoring of compute node via IPMI

An alternative technique to collect power consumption induced by applications is to embed

in the source code some events probes providing start and end timestamps of the event. each

event also reports the identifier of its type (”eventType”), which allows identifying different

textarossa.eu D1.3 | 25

types of events for the same application to be analyzed separately. For example a typical json

structure is as follow:

Json structure for power monitoring via IPMI

{
 “schema version”:
 {
 “schema”: “JSON”,
 “creation_date”: "Wed Aug 3 14:37:51 2022 GMT"
 }
 “event”:
 {
 “appID”: “App 1”,
 “eventType”: “Event 1”,
 “deviceID”: “fpga 0000:0b:00.1”,
 “starttime:” Wed Aug 3 14:37:51 2022 GMT”,
 “endtime:” Wed Aug 3 14:37:55 2022 GMT”,
 }
}

− to take measurements remotely avoiding intrusive monitoring overloading compute node.
Network Time Protocol (NTP) has to be used to sync timestamps between remote and
undertest compute node. The sync accuracy in at few msec. The timestamp collected within
function kernels in users applications should provide a reliable measure of energy to solution.

− About the granularity in terms of energy consumption of single components hardware it
depends on the BMC sensors list that obviously doesn’t include the energy consumption of
GPU/FPGA processors installed in the node under test.
The commands like : nvidia-smi for GPU NVIDIA as well as xbutil for FPGA Xilinx can be run

only in intrusive mode consuming CPU power of the node under test.

In GPU NVIDIA, the NVIDIA System Management Interface (nvidia-smi) is a command line

utility, based on top of the NVIDIA Management Library (NVML), intended to aid in the

management and monitoring of NVIDIA GPU devices.

The command provides all runtime metric data of GPU devices installed into the compute

node and it works also in virtualized environment based on ESXI and XenServer. It allows the

usage for logging with timeout linux command set the queries in a time window. An example

of query with 1 second steps on 5 seconds of time window for GPU id 0 is as follow:

timeout 5 nvidia-smi -i 0 --query-gpu= timestamp, name, pstate, pcie.link.gen.max, pcie.link.gen.current, temperature.gpu,

utilization.gpu, utilization.memory, memory.total,memory. free,memory.used, power.draw --format=csv -l 1

timestamp, name, pstate, pcie.link.gen.max, pcie.link.gen.current, temperature.gpu, utilization.gpu [%], utilization.memory [%],

memory.total [MiB], memory.free [MiB], memory.used [MiB], power.draw [W]

2022/08/04 14:39:47.721, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.82 W

2022/08/04 14:39:48.728, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.82 W

2022/08/04 14:39:49.733, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.82 W

2022/08/04 14:39:50.738, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.92 W

2022/08/04 14:39:51.745, NVIDIA A100-PCIE-40GB, P0, 4, 4, 30, 0 %, 0 %, 40960 MiB, 40300 MiB, 53 MiB, 32.82 W

The above command provides several metric data tagged with a timestamps including:

temperature in Celsius degree, GPU and memory utilization as percentage, power

consumption in Watt.

textarossa.eu D1.3 | 26

In FPGA Xilinx Alveo boards the Xilinx Runtime Library (XRT) provides a standardized software

interface that facilitates communication between the application code and the accelerated-

kernels deployed on the reconfigurable portion of PCIe based Alveo accelerator cards. The

stack software of the XRT is as the following picture Fig.14:

Fig.14: ALVEO XRT software stack

The command xbutil examine -d <fpga_device> -r all provides all runtime data of FPGA device,

including:

Electrical
 Max Power : 225 Watts
 Power : 24.823374 Watts
 Power Warning : false
 Power Rails : Voltage Current
 12 Volts Auxillary : 12.223 V, 0.857 A
 12 Volts PCI Express : 12.253 V, 1.171 A
 3.3 Volts PCI Express : 3.278 V
 3.3 Volts Auxillary : 3.379 V
 Internal FPGA Vcc : 0.850 V, 11.250 A
 DDR Vpp Bottom : 2.500 V
 DDR Vpp Top : 2.496 V
 5.5 Volts System : 5.458 V
 Vcc 1.2 Volts Top : 1.198 V
 Vcc 1.2 Volts Bottom : 1.199 V
 1.8 Volts Top : 1.795 V
 0.9 Volts Vcc : 0.897 V
 12 Volts SW : 12.166 V
 Mgt Vtt : 1.197 V

Thermals
 PCB Top Front : 25 C
 PCB Top Rear : 24 C
 FPGA : 29 C
 FPGA HBM : 24 C

These data can be selected also with electrical and thermals options of the xbutil examine command.

REFERENCE

[Feng,2005] Feng, Xizhou & Ge, Rong & Cameron, K.W.. (2005). Power and Energy Profiling of Scientific

Applications on Distributed Systems. 34- 34. 10.1109/IPDPS.2005.346.

[Goz,2019] Goz, David et al. “Direct N-body application on low-power and energy-efficient parallel

architectures.” PARCO (2019). https://doi.org/10.48550/arXiv.1910.14496

