

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

WP2 New accelerator designs exploiting mixed precision

D2.10 IP for fast task scheduling, part 1

Ref. Ares(2022)7423559 - 26/10/2022

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

TEXTAROSSA

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

Grant Agreement No.: 956831

Deliverable: D2.10 IP for fast task scheduling, part 1

Project Start Date: 01/04/2021 Duration: 36 months

Coordinator: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO

SOSTENIBILE - ENEA , Italy.

Deliverable No D2.10

WP No: WP2

WP Leader: CINI-POLIMI

Due date: M18 (September 30, 2022)

Delivery date: ???/??/2022

Dissemination Level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

textarossa.eu D2.10 | 3

DOCUMENT SUMMARY INFORMATION

Project title:
Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw
Supercomputing Applications for exascale

Short project name: TEXTAROSSA

Project No: 956831

Call Identifier: H2020-JTI-EuroHPC-2019-1

Unit: EuroHPC

Type of Action: EuroHPC - Research and Innovation Action (RIA)

Start date of the project: 01/04/2021

Duration of the project: 36 months

Project website: textarossa.eu

WP 2 New accelerator designs exploiting mixed precision
Deliverable number: D2.10

Deliverable title: IP for fast task scheduling, part 1

Due date: M18

Actual submission

date:
M18

Editor: Carlos Álvarez

Authors: A. Filgueras, M. Vidal, C. Alvarez, D. Jimenez, X. Martorell

Work package: WP2

Dissemination Level: Public

No. pages: 18

Authorized (date): 10/10/2022

Responsible person: Carlos Álvarez

Status:
Plan Draft Working Final Submitted

Approve

d

Revision history:

Version Date Author Comment

0.1 2022-09-30 A. Filgueras Draft structure

0.2 2022-10-07
A. Filgueras, D. Jiménez, C. Álvarez, M.
Vidal

Writing

0.3 2022-10-10 X. Martorell Review

0.4 2022-10-12 B. Cantalupo, P. Palazzari Internal review

textarossa.eu D2.10 | 4

Quality Control:

Checking process Who Date

Checked by internal reviewer X. Martorell 2022-10-10

Checked by Task Leader X. Martorell 2022-10-10

Checked by WP Leader

Checked by Project Coordinator Massimo Celino 2022-10-15

textarossa.eu D2.10 | 5

COPYRIGHT

Copyright by the TEXTAROSSA consortium, 2021-2024

This document contains material, which is the copyright of TEXTAROSSA consortium members and the

European Commission, and may not be reproduced or copied without permission, except as mandated by

the European Commission Grant Agreement No. 956831 for reviewing and dissemination purposes.

ACKNOWLEDGEMENTS

This project has received funding from the European High-Performance Computing Joint Undertaking (JU)

under grant agreement no 956831. The JU receives support from the European Union’s Horizon 2020

research and innovation programme and Italy, Germany, France, Spain, Poland.

Please see http://textarossa.eu for more information on the TEXTAROSSA project.

The partners in the project are AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO

SVILUPPO ECONOMICO SOSTENIBILE (ENEA), FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER

ANGEWANDTEN FORSCHUNG E.V. (FHG), CONSORZIO INTERUNIVERSITARIO NAZIONALE PER

L'INFORMATICA (CINI), INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),

BULL SAS (BULL), E4 COMPUTER ENGINEERING SPA (E4), BARCELONA SUPERCOMPUTING CENTER-CENTRO

NACIONAL DE SUPERCOMPUTACION (BSC), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ AKADEMII NAUK

(PSNC), ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN), CONSIGLIO NAZIONALE DELLE RICERCHE (CNR),

IN QUATTRO SRL (in4). Linked third parties of CINI are POLITECNICO DI MILANO (CINI-POLIMI), Università

di Torino (CINI-UNITO) and Università di Pisa (CINI-UNIPI); linked third party of INRIA is Université de

Bordeaux; in-kind third party of ENEA is Consorzio CINECA (CINECA); in-kind third party of BSC is Universitat

Politècnica de Catalunya (UPC).

The content of this document is the result of extensive discussions within the TEXTAROSSA © Consortium

as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily

represent the views expressed by the European Commission or its services.

The information contained in this document is provided by the copyright holders "as is" and any express or

implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for

a particular purpose are disclaimed. In no event shall the members of the TEXTAROSSA collaboration,

including the copyright holders, or the European Commission be liable for any direct, indirect, incidental,

special, exemplary, or consequential damages (including, but not limited to, procurement of substitute

goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory

of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way

out of the use of the information contained in this document, even if advised of the possibility of such

damage.

http://textarossa.eu/

textarossa.eu D2.10 | 6

Table of contents
Table of contents .. 6

List of Figures .. 6

List of Tables ... 6

List of listings... 7

List of Acronyms .. 7

Executive Summary ... 8

1 Introduction .. 9

2 Basic design .. 9

3 Implementation ..10

3.1 Command in module ..10

3.2 Command out module ...11

3.3 Copy Optimizer module ...12

4 Resource usage ...13

5 Performance ...13

6 Conclusions and Future Work ..17

7 References ..17

Appendix A. Hardware modules source code ..18

List of Figures
Figure 2.1 IP for fast task scheduling diagram (FTS) ... 9

Figure 5.1: FTS performance across different frequencies and number of accelerators 14

Figure 5.2: Execution trace of an application using two accelerators .. 15

Figure 5.3: Matrix multiplication kernel performance with FTS ... 16

List of Tables
Table 4.1: Resource usage by the Fast Task Scheduler IP developed .. 13

textarossa.eu D2.10 | 7

List of listings
Listing 3.1: Module Command In basic functionality pseudocode .. 10

Listing 3.2: Update availability pseudocode in module Command In.. 11

Listing 3.3: Module Command Out basic functionality pseudocode ... 11

Listing 3.4: Module Copy Optimizer functionality pseudocode ... 12

List of Acronyms
Acronym Definition

ASIC Application Specific Integrated Circuit

BP Business Plan

BRAM Block Random Access Memory (in-FPGA RAM module)

DSP Digital Signal Processor

FF Flip Flop

FPGA Field Programmable Gate Array

FTS Fast Task Scheduler

HPC High-Performance-Computing

IP Intellectual Property

LUT Look-Up Table

PCIe Peripheral Component Interconnect express

SMP Symmetric Multi-Processor

URAM Ultra Random Access Memory (in-FPGA large RAM module)

textarossa.eu D2.10 | 8

Executive Summary
This document reports on the activities done by Textarossa partner BSC with reference to the design

of the Fast Task Scheduler IP in WP2 and preliminary design and synthesis results, mainly in FPGA

technology.

textarossa.eu D2.10 | 9

1 Introduction
The main objective of developing an IP for fast task scheduling is to provide an effective and efficient way

to send tasks to accelerators implemented in the FPGA. The scheduler IP allows to offload the process of

scheduling tasks into individual accelerators and keeping track of accelerator status and finished tasks.

This reduces the communications and synchronizations between host and FPGA accelerators, increasing

overall performance.

This document describes both the high-level design and the inner-most functionality description of such

IP. The document is organized as follows:

• Section 2 presents the basic design, with is complemented by the information already available

in deliverable 2.1 Consolidated specs of accelerators IPs.

• Section 3 explains some key algorithmic implementation details.

• Section 4 highlights the implementation results in terms of FPGA resource usage and timing

capacities of the mechanism.

• Section 5 shows some earlier performance results and

• Section 6 concludes the report.

As a demonstrator deliverable, appendix A shows the source code of the IP developed.

2 Basic design
Basic design, as well as interface with accelerators and host system are described in finer-grain detail in

D2.1 Consolidated specs of accelerators IPs. Only an introductory high-level overview is provided in this

document.

Figure 2.1 IP for fast task scheduling diagram (FTS).

Figure 2.1 shows a diagram of the IP for fast task scheduling (from now on FTS or Fast Task Scheduler). The

main objective of the FTS is to take care of scheduling tasks into individual accelerators. To achieve this

objective, the FTS IP is composed of two command queues, one for input coming from the CPU/exterior of

the FPGA (“Command in queue”) and another going to the CPU/exterior of the FPGA (“Command out

queue”), two control modules (“Command in” and “Command out”) and two interconnection

multiplexers/demultiplexers.

The workflow in the FTS follows. First of all, tasks are sent from the host CPU to the Fast Task Scheduler by

using commands that are temporarily stored in the “Command in queue”. These commands are processed

textarossa.eu D2.10 | 10

in order by the “Command in” module and, depending on the accelerator's availability, are sent to the

appropriate one. Commands are sent through the “Command to accelerators” demultiplexer through an

AXI stream interface, and only when accelerators are available (ready) in order to avoid interface

contention and starvation.

Once the task has been processed by the corresponding accelerator, the accelerator informs the FTS

through an output AXI stream interface that is multiplexed to reach the “Command out” module with a

“Finished Task” command. “Finished Task” command is expected to be processed in very few cycles (tens

of cycles at most). Therefore, although some contention can be expected when several accelerators finish

at the same time submitting this command, no significant performance drop is expected in this case.

Finally, the “Command out” module is in charge of processing the “Finished Task” packet by forwarding it

with the adequate format to the “Command out queue” and to notify the “Command in” module about

the new ready state of the accelerator in order for the FTS to forward a new task to it.

3 Implementation

3.1 Command in module

Command in module reads commands from the command in queue, and sends them to accelerators if

possible.

Module behaviour is described in pseudocode in listing 3.1. The original source code can be found in

Appendix A.

 1 InOut:
 2 cmd_in_q: set of #accelerators circular sub-queues
 3 while true:
 4 foreach acc in accelerators:
 5 current_slot = getQFront(acc)
 6 cmd = getCMD(cmd_in_q, current_slot)
 7
 8 if valid(cmd) && isIdle(acc) && !isRunning(cmd):
 9 if valid(getCMD(cmd_in_q, current_slot+1))
 10 optimize_copies(cmd_in_q, current_slot)
 11 sendCommand(cmd, acc)
 12 setRunning(cmd)
 13 setBusy(acc)
 14 else if valid(cmd) && isIdle(acc) && isRunning(cmd):
 15 popCMD(cmd_in_q, cmd)
 16 setFinished(cmd)

Listing 3.1: Module Command In basic functionality pseudocode.

As shown in listing 3.1, Cmd_in_q is a circular queue that consists of one sub-queue per accelerator. When

one of the sub-queues is not empty (has a valid command) and the accelerator is idle and the valid

command is not being run, the command is read and checked for copy optimizations. Copy optimizations

consists on avoiding unnecessary copies that are already in the accelerator. Then, the command is sent to

the device and the command is marked as running.

textarossa.eu D2.10 | 11

Otherwise, if the command in front of the queue is marked as running, but the accelerator running it is

idle, it means that the command at the top of the queue has finished and we can pop it out of the queue

and update command status as finished.

Another process of the same module, is run concurrently. It listens for messages from command out

module and updates internal accelerator status. This is shown in listing 3.2.

 1 Input:
 2 acc: accelerator
 3 Ouput:
 4 cmd_in_queue: circular queue
 5
 6 setIdle(acc)

Listing 3.2: Update availability pseudocode in module Command In

In listing 3.2, the update process of “Command in” works as an interrupt module. When it receives an

interrupt from the command out module, it updates the accelerator status.

3.2 Command out module

Command out module listens for finished task messages from accelerators. Upon receiving a message, it

sends an accelerator availability update to the command in module and writes the finished task to the

finish task queue for the host to read and update task state in the runtime library.

Detailed behaviour is described in listing 3.3. The complete source code of the Command Out module can

be found in Appendix A.

 1 Input:
 2 finish_str: finished task stream
 3 Output:
 4 cmd_out_q: set of #accelerators circular sub-queues
 5
 6 while true:
 7 acc, taskId = getFinishedTask(finished_str)
 8 cmdIn_updateAvail(acc)
 9 push_queue(cmd_out_q, acc, taskId)

Listing 3.3: Module Command Out basic functionality pseudocode.

The Command Out module waits for an incoming message from any accelerator, which notifies that a task

has finished execution. This is represented as a blocking call to getFinishedTask in listing 3.3. Then, an

interrupt is sent to notify that the accelerator is idle again (cmdIn_updateAvail call in listing 3.3), and the

taskId of the finished task is pushed into the finished task queue for the runtime system to consume

(push_queue call in listing 3.3).

textarossa.eu D2.10 | 12

After that, the software part of the runtime system will update internal task status so that progress is made

through application execution.

3.3 Copy Optimizer module

The Copy Optimizer module looks for data copies that can be optimized out and reuse data from previous

accelerator execution. This module is not shown in the design schematic as it is physically allocated within

the Command In module. However, keeping it as a different module improves overall design readability

and maintainability. Its complete original source code can also be found in Appendix A.

Copy Optimizer looks for arguments in consecutive tasks that are data copies and point to the same

address. If this is the case, it updates the copy flags in order to disable that copy as the version of the data

in the accelerator is already valid. Copy flags are part of the task description and are interpreted within the

accelerator. Each accelerator includes OmpSs autogenerated hardware that deals with the hardware

runtime notifications and data copies, in addition to the programmer FPGA task code. These copy flags are

used in this autogenerated hardware to decide if a copy is necessary or not.

As described in listing 3.4, the optimizer module peeks both the task in the queue front and the next one

(if it exists). Then, it iterates through the arguments and disables copies if current and next task arguments

point to the same address.

In the case of inputs, copies are disabled in the next task if data can be reused according to the arguments

of current task. There’s a special case for multiple tasks reusing the same input. In this case, a special chain

flag is set. Otherwise, only disabling input copy, inCopyEnabled test in line 15 of listing 3.4 would fail and

data copy will not be disabled even if we can reuse data from previous execution.

For output copies, we disable copies for current task based on information regarding next task. In this case,

there’s no need to track optimization chains as the reuse can be set task by task.

 1 Input:
 2 ready_task_queue: circular queue with
 3 tasks made of the same number of arguments
 4 and copy flags,
 5 current_slot: index of the
 6 current slot in the queue
 7 task_current = ready_task_queue[current_slot];
 8 task_next = ready_task_queue[current_slot+1];
 9 for i = 0; i < #args; i = i+1 do
 10 flags_current = task_current.flags[i];
 11 flags_next = task_next.flags[i];
 12 if task current.args[i] == task_next.args[i] then
 13 if outCopyEnabled(flags_next) then
 14 suppressOutCopy(flags_current);
 15 if inCopyEnabled(flags_current) or
 16 chainBitEnabled(flags_current) then
 17 if inCopyEnabled(flags_next) then
 18 enableChainBit(flags_next);
 19 suppressInCopy(flags_next);

Listing 3.4: Module Copy Optimizer functionality pseudocode.

textarossa.eu D2.10 | 13

It is worth noting that copies can only be optimized when they are done in the same argument. Data storage

for each task argument is synthesized as individual hardware resources (usually BRAM or URAM) and is

connected to different parts of the accelerator. Therefore, arguments cannot be swapped in any case.

4 Resource usage
Resource usage after implementation is specified in Table 4.1. It shows the number of used resources by

the FTS module and submodules as well as the total available resources in the device.

Resource usage in Table 4.1, is shown as a hierarchy. Each module includes all its submodules. FTS total

contains the sum of all resources used by Comand_In and Command_Out. Command_In includes Copy

Optimizer module, also detailed in Table 4.1.

 LUT FF LUTRAM BRAM URAM DSP

Available (u280) 1303680 2607360 600960 2016 960 9024

FTS total 265 356 0 0 0 0

 Command Out 68 176 0 0 0 0

 Command In 197 180 0 0 0 0
 - Copy Optimizer 135 92 0 0 0 0

Table 4.1: Resource usage by the Fast Task Scheduler IP developed

All resources that the hardware runtime uses are well below 1% of the available resources in the Alveo

U280 FPGA. It uses approximately 0.02% of LUT and 0.01% of available FF. Even considering all auxiliary

logic needed for the FTS, such as memory resources for task queues and interconnection with the rest of

the system, used resources are still below 0.1% of total device resources.

5 Performance
Performance of the FTS for the matrix multiplication is described in detail in D4.1. In this section, we focus

in how FTS works and how enabling or disabling FTS features (copy optimizations) affects application

execution. Having a Hardware Task Scheduler has already been demonstrated to provide significant

performance gains over their Software counterparts [3],[6].

In order to measure performance of the FTS itself, we created a synthetic benchmark that consists of very

small (few cycles) independent tasks. We run this benchmark with varying number of accelerators and

different clock frequencies, showing the results in Figure 5.1. This figure shows the number of tasks per

second that are handled by the system.

textarossa.eu D2.10 | 14

Figure 5.1: FTS performance across different frequencies and number of accelerators

It is important to remark that the FTS is able to process a task in less than 100 cycles, so its estimated

maximum throughput is at least one million tasks per second [1],[4] at 100 MHz. As can be seen in figure

5.1, the obtained maximum throughput in the system is around tens of thousands of tasks per second.

When running FTS at 100 MHz, the bottleneck seems to be the in-FPGA data storage. Resources in the

board other than the PCIe (that always runs at 250MHz) run at the same speed as the accelerators and the

FTS. That includes BRAM structures that are in the critical path of the PCIe transactions. Thus, using a

frequency that is significantly slower that the PCIe working frequency makes the communication slower

than its maximum potential. As can be seen in figure 5.1, as soon as the frequency is closer to the PCIe

frequency, the storage frequency is not the problem anymore and the PCIe becomes the bottleneck.

When increasing the number of accelerators to two or more a small improvement in system throughput

can also be observed. This is due to the fact that communication with the accelerators is done by

independent software (and hardware) queues. Consequently, certain number of operations can be

overlapped when sending data to two or more accelerators (like lock acquisition by the software threads,

structure creation and filling, etc.). This overlap allows the PCIe to increase its performance and,

consequently the system throughput is increased. As can also be observed in figure 5.1, a 200MHz working

system and two or more accelerators reach the maximum throughput and, without selecting a different

communication mechanism it cannot be improved. The FTS is, consequently deemed fast enough to the

system as it can operate orders of magnitude faster than the PCIe communication.

The data copy optimizer module is also something that we have tested from a performance point of view.

Figure 5.2 shows three execution traces of an application when data reuse is deactivated or activated. This

application has been annotated with FPGA tasks using OmpSs@FPGA and has been cross-compiled for and

executed on a Zynq 7000 family board (two Cortex-a9 at 666MHz + FPGA running at 100Mhz) as a proof of

concept. This is using two different versions, with and without copy optimizations activated, of the FTS to

coordinate the two accelerators (IPs) and the software running on the two cores in the SMP. Horizontal

lines in the trace show the states (different colors) on the SMP threads (two lines on the top of each

execution trace) and two accelerators (two lines on the bottom of each execution trace), along the time.

textarossa.eu D2.10 | 15

Task execution in an accelerator has, with no optimizations, three states (colours): copy in data (first

starting with a flag - olive green), kernel execution (second - dark olive green) and the last one copy out

data (brown).

Figure 5.2: Execution trace of an application using two accelerators. Traces show execution behavior in the same time

range. Top: FTS has copy optimizer module deactivated. Middle: FTS has copy optimizer module activated for tasks in

the Command in queue. Bottom: FTS has copy optimizer module activated for tasks in the Command In queue and tasks

being executed.

On the execution trace on the top of figure 5.2 we can see that there are always three states (different

states start and end with flags), which is not ideal. Those tasks are always re-using the same input data but

the accelerator is not conscious about this fact and is copying the input data all the time. On the other

hand, the execution trace on the bottom shows the performance achieved once FTS includes the data reuse

feature. In this case FTS can automatically detect data to be reused in an accelerator and help to almost

remove all input copies modifying the argument copy flags of the task descriptions.

Note however that there are still tasks in the execution trace on the middle of Figure 5.2 that have three

states and no data reuse is detected. This happens because originally data reuse detection among the tasks

is only performed among tasks waiting in the Command In queue and no detection is done between a task

being executed and tasks that arrive later to the Command In queue. This situation may happen in several

applications: a task is submitted (first one) by the runtime, it immediately starts execution in the

accelerator, and then, another task is submitted by the runtime. Since the first one has already started, no

detection can be done between Command In queues commands. This can be solved by taking care of the

task being executed in the accelerator at that moment. FTS has been improved to detect and be able to

catch this situation. This can be seen on the bottom trace of Figure 5.2. The execution trace on the bottom

incorporates that feature. Only the first task of all tasks being executed has to copy the data, significantly

improving the first FTS version (no data reuse) and allowing first task executing-second task in Command

In queue data reuse. The extra-copy seen in the execution trace of the Figure 5.2 (bottom) is because the

accelerator was completely empty when a new task was submitted. The overall performance improvement

with data reuse can be significant as it can be seen in Figure 5.2. Based on previous research [2] we expect

this optimization to deliver significant performance gains.

textarossa.eu D2.10 | 16

In the case of application performance when using the FTS, we are going to analyse some details about

the Matrix Multiplication algorithm performance related to the FTS hardware design. A more detailed

analysis from a more holistic point of view can be found in Deliverable 4.1

Figure 5.3 shows performance when using FTS module described in section 3 implementation and Matrix

Multiplication accelerators. As matrix multiplication algorithm is computation bound, performance is

limited by accelerator execution time. Host system is able to send tasks to FTS faster than accelerators can

consume them. Also, FTS is able to keep accelerators busy, as it takes few cycles to send a task to an

accelerator as opposed to the accelerator taking thousands of cycles to compute the task. To highlight the

importance of the Copy Optimizer module, two different configurations are showed. In the case of NoOpt,

data copies optimization is disabled. In this case, no data is reused between tasks. On the other hand, in

CopyOpt bars data copies optimization is enabled. As in can be seen in figure 5.3, this results in better

performance results for the same algorithm using the same hardware.

Figure 5.3: Matrix multiplication kernel performance with FTS

In the case of baseline, which does not enable memory access interleaving, memory optimizations have a

bigger effect on overall execution while with memory interleaving the effect is diminished. This is because

with interleaving (that spreads data over all the different memory banks available), memory accesses are

faster and take up less part of total execution time, dampening the effect of this optimization. Even in worst

case scenario, enabling this optimization does not have a negative impact on performance, due to its cost

being negligible. Checking for data reuse in FTS takes something in the order of 10 cycles per task.

Note that these first results reported here are competitive with what are to the best of our knowledge the

current best results reported for a Matrix Multiplication algorithm over an Alveo U200 FPGA [5]. As can be

seen in Deliverable 4.1 (section 3.4.2 Performance improvement results), such figures can be further

improved with a careful software-hardware co-design [2] between the programming model and the FTS.

We are currently preparing a conference paper to publish this project outcome.

textarossa.eu D2.10 | 17

6 Conclusions and Future Work
As this deliverable shows, the IP for fast task scheduling is being actively developed and progressing as

expected. A first version of the IP has been designed, implemented and tested in the Textarossa IDV-E

platform. The design has been integrated with the OmpSs@FPGA task-based programming model in WP

4.2 Task-based Models and its functionality has been verified.

After that, an improved version that saves data transfers between the FPGA accelerators and the FPGA

main memory has also been designed, implemented and tested. The results show that the whole IP is fast

and has an efficient resource usage in the Textarossa IDV-E platform. Indeed, to the best of our knowledge

the IP allows for the current fastest implementation of the Matrix Multiplication reported in the literature.

Some preliminary results have been used to publish an early results conference paper [7] and another

paper with the later results is under preparation.

Our future work, in addition to finishing the current paper, includes further improving the IP to obtain even

more performance out of the system, test different applications and evolve it to support the new features

planned in Work Package 4.

7 References
[1] Jaume Bosch, Miquel Vidal, Antonio Filgueras, Daniel Jiménez-González, Carlos Álvarez, Xavier

Martorell, Eduard Ayguadé: Task-Based Programming Models for Heterogeneous Recurrent Workloads. In

Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2021. Lecture Notes in

Computer Science, vol 12700. Springer, Cham. https://doi.org/10.1007/978-3-030-79025-7_8. 2021.

[2] Juan Miguel De Haro Ruiz, Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jiménez-González,

Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, Jesús Labarta: OmpSs@FPGA Framework for High

Performance FPGA Computing. IEEE Trans. Computers 70(12): 2029-2042 (2021)

[3] Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Xavier Martorell, Eduard Ayguadé:

Asynchronous runtime with distributed manager for task-based programming models. Parallel Computing,

Volume 97, 2020, 102664, ISSN 0167-8191, https://doi.org/10.1016/j.parco.2020.102664.

[4] Jaume Bosch, Miquel Vidal, Antonio Filgueras, Carlos Álvarez, Daniel Jiménez-González, Xavier

Martorell, Eduard Ayguadé: PPoPP '20: Proceedings of the 25th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming. February 2020. Pages 419–420.

https://doi.org/10.1145/3332466.3374545

[5] Johannes de Fine Licht, Grzegorz Kwasniewski, Torsten Hoefler: Flexible Communication Avoiding

Matrix Multiplication on FPGA with High-Level Synthesis. In FPGA '20: Proceedings of the 2020 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, February 2020. Pages 244–254.

https://doi.org/10.1145/3373087.3375296

[6] Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard Ayguadé, Mateo Valero: A

Hardware Runtime for Task-Based Programming Models. In IEEE Transactions on Parallel and Distributed

Systems, vol. 30, no. 9, pp. 1932-1946, 1 Sept. 2019, doi: 10.1109/TPDS.2019.2907493.

[7] Antonio Filgueras, Daniel Jiménez-González, Carlos Álvarez: Improving resource usage in large FPGA

accelerators. 9th BSC Doctoral Symposium Book of Abstracts. 2022.

textarossa.eu D2.10 | 18

Appendix A. Hardware modules source code
Source code of all hardware modules described in this document, as well as the wrappers that interconnect

and instantiate them, are available via BSC’s B2Drop platform:

https://b2drop.bsc.es/index.php/s/tbEzqEHegxNXLP6

https://b2drop.bsc.es/index.php/s/tbEzqEHegxNXLP6

