
This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No

956831

Towards EXtreme scaleeTechnologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

WP4 Tool chain for heterogeneous multi-node HPC

platform

D4.2 Efficient Memory Management strategies for

CNNs at node level

http://textarossa.eu

Ref. Ares(2022)7601418 - 03/11/2022

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No

956831

TEXTAROSSA

Towards EXtreme scale Technologies and Accelerators for euROhpc

hw/Sw Supercomputing Applications for exascale

Grant Agreement No.: 956831

Deliverable: D4.2 Efficient Memory Management strategies for CNNs at node level

Project Start Date: 01/04/2021 Duration: 36 months

Coordinator: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO

ECONOMICO SOSTENIBILE - ENEA , Italy.

Deliverable No D4.2

WP No: WP4

WP Leader: INRIA

Due date: M18 (October 31, 2022)

Delivery date: 10/10/2022

Dissemination Level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

DOCUMENT SUMMARY INFORMATION

Project title:
Towards EXtreme scale Technologies and Accelerators for

euROhpc hw/Sw Supercomputing Applications for exascale

Short project name: TEXTAROSSA

Project No: 956831

Call Identifier: H2020-JTI-EuroHPC-2019-1

Unit: EuroHPC

Type of Action: EuroHPC - Research and Innovation Action (RIA)

Start date of the
project:

01/04/2021

Duration of the
project:

36 months

Project website: textarossa.eu

WP4 Tool chain for heterogeneous multi-node HPC platform

Deliverable number: D4.2

Due date: M18

Actual submission date: TODO

Editor: Bérenger Bramas

Authors: Olivier Beaumont, Lionel Eyraud-Dubois, Samuel

Thibault

Work package: 4

Dissemination Level: Public

No. pages: TODO

Authorized (date): TODO

Responsible person: Bérenger Bramas

Status: Plan Draft Working [Final] Submitted Approved

Revision history:

Version Date Author Comment

0.1 2022-10-18 Olivier Beaumont Draft structure + V0

0.2 2022-19-19 Lionel Eyraud-Dubois Details Section 7

0.3 2022-20-10 Samuel Thibault proofreading

0.3 2022-20-10 Olivier Beaumont proofreading

Quality Control:

Checking process Who Date

Checked by internal

reviewer

Checked by Task Leader

Checked by WP Leader Bérenger Bramas 2022-10-20

Checked by Project

Coordinator
Massimo Celino 20/10/2022

COPYRIGHT

Copyright by the TEXTAROSSA consortium, 2021-2024

This document contains material, which is the copyright of TEXTAROSSA consortium

members and the European Commission, and may not be reproduced or copied without

permission, except as mandated by the European Commission Grant Agreement No. 956831

for reviewing and dissemination purposes.

ACKNOWLEDGEMENTS

This project has received funding from the European High-Performance Computing Joint

Undertaking (JU) under grant agreement no 956831. The JU receives support from the

European Union’s Horizon 2020 research and innovation programme and Italy, Germany,

France, Spain, Poland.

Please see http://textarossa.eu for more information on the TEXTAROSSA project.

The partners in the project are AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE,

L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE (ENEA), FRAUNHOFER

GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

(FHG), CONSORZIO INTERUNIVERSITARIO NAZIONALE PER L'INFORMATICA

(CINI), INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET

AUTOMATIQUE (INRIA), BULL SAS (BULL), E4 COMPUTER ENGINEERING SPA

(E4), BARCELONA SUPERCOMPUTING CENTER-CENTRO NACIONAL DE

SUPERCOMPUTACION (BSC), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK (PSNC), ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN),

CONSIGLIO NAZIONALE DELLE RICERCHE (CNR), IN QUATTRO SRL (in4). Linked

third parties of CINI are POLITECNICO DI MILANO (CINI-POLIMI), Università di Torino

(CINI-UNITO) and Università di Pisa (CINI-UNIPI); linked third party of INRIA is

Université de Bordeaux; in-kind third party of ENEA is Consorzio CINECA (CINECA); in-

kind third party of BSC is Universitat Politècnica de Catalunya (UPC).

The content of this document is the result of extensive discussions within the TEXTAROSSA

© Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does

not necessarily represent the views expressed by the European Commission or its services.

The information contained in this document is provided by the copyright holders "as is" and

any express or implied warranties, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose are disclaimed. In no event shall the

members of the TEXTAROSSA collaboration, including the copyright holders, or the

European Commission be liable for any direct, indirect, incidental, special, exemplary, or

consequential damages (including, but not limited to, procurement of substitute goods or

services; loss of use, data, or profits; or business interruption) however caused and on any

theory of liability, whether in contract, strict liability, or tort (including negligence or

otherwise) arising in any way out of the use of the information contained in this document,

even if advised of the possibility of such damage.

http://textarossa.eu/

Table of contents

Table of contents .. 6

Executive Summary ... 7

1 Introduction .. 8

2 Re-materialization based Strategies in Automatic Differentiation 8

3 Re-materialization for DNNs .. 9

4 Offloading ... 11

5 Combination of Re-materialization and Offloading ... 12

6 Pipelined Model Parallelism ... 12

7 Use of Task-Based Systems for DNN Inference. ... 15

8 Conclusion .. 16

9 References .. 16

Executive Summary

This deliverable provides a survey of the literature on the optimization of memory

management in the context of training on deep neural networks. Due to the increase of the

size of the networks, the training on a single resource (either multicore CPU, GPU or FPGA)

is not possible without implementing specific memory saving techniques. These techniques

either induce (i) more computations (re-materialization or checkpointing), or (ii) more data

exchanges between the (limited) memory of the accelerators and the memory attached to the

CPU (offloading), or (iii) a distribution of the model over several resources which in turn

induces extra communications. We will distinguish between approaches that limit the

memory associated with the storage of intermediate data (activations) and those that limit the

memory associated with the storage of network weights (and optimizer states). For each

approach, we will detail the possible approaches and their current limitations in terms of the

shape of the networks, and we will analyze in particular their overhead in terms of data

transfer. We will also analyze the original and possible use of dynamic runtimes (StarPU and

OmpSs) in this context, focusing first on inference. In particular, we will consider the

possibility of relying on a task-based model to process a stream of inferences. A case of

special interest is the one where the complete model is too large to be stored in a single

resource, but small enough to be replicated on a Textarossa node.

1 Introduction

WP4 focuses on the middle layer of the TEXTAROSSA project. It is tied to hardware and

software, making the bridge between hardware features and software interfaces. Consequently,

most WP4 activities are highly coupled with other WPs. The main activities of WP4 include

the improvement of the streaming and task-based programming models to computing nodes

with FPGAs. In this report we concentrate on the use of runtime systems in the context of the

training of Deep Neural Networks (DNNs). The current document surveys the literature and

summarize the state of the art of memory saving techniques and explores the possible use of

task-based systems to dynamically handle the communications and the allocation of inference

and training tasks in the context of a single heterogeneous node..

2 Re-materialization based Strategies in Automatic

Differentiation

Adjoints computation is a numerical method for computing the gradient of a function, which

may be complex. This method is at the core of many scientific applications, from climate and

ocean modeling [2] to oil refinery [14]. In addition, the structure of the underlying

dependence graph is also at the basis of the backpropagation step of machine learning [35],

and thus the models considered in this report are based on it.

Storage has been one of the key issues with the computation of adjoints: it is required to keep

all the intermediate data to compute the final gradient, but it is possible to recompute them.

Therefore, the computation of adjoints has always been a trade-off between re-computations

and memory requirements [23].

When one type of limited memory is available, authors of [26] showed the optimality of a

binomial approach that was later implemented under the name Revolve [24]. In the latter

paper, closed form formulas providing the exact position of saved data have even been

proposed for homogeneous chains (each operation has the same duration and memory cost).

When computation times are heterogeneous, but data sizes are identical, an optimal

checkpointing strategy can be obtained with Dynamic Programming [25]. The problem of

adjoint computations has received an increasing attention in the recent years with the

introduction of a second level of storage of infinite capacity but with access (write and read)

costs [60, 5, 4, 58, 52]. Indeed, with the increase in the problem size, the memory was not

sufficient anymore to solve the problems in a reasonable time. Hence solutions have started

considering the usage of disks to store some of the intermediary data. Several works have

considered this problem. In [60], a first heuristic was presented that applies the schedule

provided by Revolve, where the checkpoints that stay idle for the longest period are stored on

disk (level 2 storage). Some implementations (for example [52]) are based on two-levels

checkpointing strategy: the first pass (forward mode) of the adjoint graph checkpoints

periodically to disk (level 2), then the second pass (reverse mode) reads those disk

checkpoints one after the other and uses Revolve with only memory (level 1) checkpoints.

The main parameter (period used for the forward checkpointing) can be chosen by the user.

The algorithm designed in [5] is able to solve this problem optimally. In a subsequent work,

authors of [4] showed that the optimal solution is weakly periodic, meaning that the number

of forward computations performed between two consecutive checkpoints into the second

level of storage is always the same except for a bounded number of them. More recently, they

extended this result for a hierarchical memory architecture with an arbitrary number of

storage levels [29].

In [7], the classical results of [24] are extended to meet the requirements of more complex

adjoint computations emerging in DNN graphs of Siamese Neural Networks [13, 18, 45] and

Cross-Modal-Embeddings [44, 47]. They represent a class of graphs that has a shape of

multiple chains joint together at the end by the last operation, which in case of Deep Learning

is a loss function. This work shows that dynamic programming is still applicable for the new

type of graph, but its complexity grows exponentially with a number of chains.

3 Re-materialization for DNNs

When a DNN represents a single chain of layers, the computation of the gradients in the

training phase is similar to Automatic Differentiation (AD). The checkpointing strategies

used in AD to reduce memory consumption are known in AI as Re-materialization or

gradient checkpointing strategies. Re-materialization is the method that relies on re-

computations to reduce the memory footprint of a given fixed model or architecture, while

obtaining the exact same output of the training phase.

For example, the authors of [51] show, for a popular neural network like DenseNet, that using

shared memory storages and recomputing concatenation and batch normalization operations

during backpropagation help to go from quadratic memory cost to linear memory cost for

storing feature maps. Along the same idea, re-implementations of some commonly used

layers like batch normalization have been proposed [57]. In the latter case, memory usage is

reduced by rewriting the gradient calculation for this layer so that it does not depend on

certain activation values (so that it is no longer necessary to store them). A generic divide-

and-conquer approach based on compiler techniques is able to perform automatic

differentiation for arbitrary programs [59].

The use of re-materialization strategies inspired by AD has recently been advocated for

DNNs in several papers [27, 16, 35, 36, 21, 33]. A direct adaptation of the results on

homogeneous chains was proposed for the case of Recurrent Neural Networks (RNNs) in

[27], but cannot be extended to other DNNs. Apart from this, for practical usage, an

implementation of re-materialization exists in PyTorch [1], based on a simple periodic and

single-pass re-materialization strategy that exploits the ideas presented in [16]. In this

strategy, the chain is divided in equal-length segments, and only the input of each segment is

materialized during the forward phase. This strategy provides non-optimal solutions in terms

of throughput and memory usage, because it does not benefit from the fact that more memory

is available when computing the backward phase of the first segment (since values

materialized for later segments have already been used). This implementation was

nevertheless used to process significantly larger models [22].

Some researches attempted to adapt re-materialization strategies to Arbitrary Computation

Graphs (ACG). On the one hand, a polynomial algorithm is provided in [21] that finds the re-

materialization strategy for the forward propagation that minimizes memory used to execute

ACG, under the assumption that activation deletion is not allowed during the backward phase

(activations can be recomputed only once), which is a very strong and restrictive assumption

in practice, especially in the case of deep networks. On the other hand, in the AD literature,

the process is fully recursive, allowing the full memory usage throughout the entire training,

since the released memory can be used later. In what follows, we refer to such solutions as

single-pass re-materialization strategies.

A similar problem is considered in [36], where activation deletion during backward

propagation are possible, though similarly the framework is restrictive on several points that

are crucial in terms of practical performance and applicability. First, the study is limited to

unit costs for data. More importantly, the approach described in [36] is based on the

computation of a tree-width decomposition of the graph and only derives the minimum

computational cost associated with the minimum memory footprint. The minimum memory

footprint then depends on the quality of the decomposition, which is an NP-complete problem

for which (large) constant approximation algorithms exist. In practice, the problem to be

solved is rather to minimize the computational cost while meeting a given memory constraint.

Indeed, limiting the search to the smallest possible memory size obviously leads to a

significant additional computational cost.

Another closely related approach is Checkmate [33] in which an Integer Linear Program is

proposed to solve the re-materialization problem. This program can handle arbitrary graphs

by assuming a fixed ordering of the execution, and can provide a solution of minimum

runtime given a memory limit. However, solving this ILP is very computationally expensive

and does not converge in a reasonable time as soon as the network exceeds a few dozen

layers. Its rational approximation, however, can be easily found, but may push memory usage

above memory limits.

At last, other approaches finely control the tradeoff between memory and computation. In

[37], the authors also consider a general ACG framework. Their work can be seen as a

generalization of [16] algorithm to ACGs. More specifically, their goal is to decompose the

ACG into groups of nodes and during the forward phase, only the boundaries between groups

are materialized. Then, during the backward phase, to perform the gradient computations of a

group, it is required to recompute all the activations of the group using its input saved

boundary, and then the backward phase is performed without additional recomputing

operations. On the one hand, the advantage of this approach is that it is tractable for ACGs

using dynamic programming. On the other hand, as in [16] and [21], the search is restricted to

single-pass re-materialization strategies.

In [34], the authors proposed Dynamic Tensor Re-materialization that dynamically choose

which activations should be discarded and then recomputed at runtime. Still, it is based on a

heuristic approach that encourages to discard tensors that have large memory and staleness

costs and that can be easily recomputed while allowing cheap re-computations of other

tensors as well. This heuristic showed good results, though optimal static re-materialization

methods remain more reliable, considering that execution times and memory costs of layers

normally do not change much over iterations.

Rotor https://gitlab.inria.fr/hiepacs/rotor is the first attempt to precisely model heterogeneity

and more importantly the ability, offered in DNN frameworks, to combine two types of

activation savings, by either storing only the layer inputs (as done in AD literature), or by

recording the complete history of operations that produced the outputs (as available in

autograd tools). For this model, a static algorithm is proposed with an optimality proof, based

on dynamic programming. This algorithm manages to find the best schedule in polynomial

time.

4 Offloading

Offloading is a potentially complementary approach to re-materialization that consists in

offloading some of the forward activations from the memory of the GPU to the memory of

the CPU, which is expected to be much larger [55, 6]. In [55], the authors propose a simple

and effective mechanism of Memory Virtualization, that nevertheless introduces unnecessary

idle time by enforcing some synchronization between data transfers and computations of later

forward activations. This approach has been later improved in [6] by the design of techniques

to deal with memory fragmentation. Nevertheless, in both papers, the algorithmic strategies

to decide which activations to offload into the main memory are relatively straightforward.

Proposed strategies consist in trying to offload either all activations or only those that

correspond to convolutional layers. Indeed, convolutional layers are known to induce a large

computational time with respect to their input size, which make them good candidates to

overlap offloading and processing.

Several fworks offer improvements over this first attempt. In order to reduce the overhead

induced by communications, some authors [56] recommend to add compression to decrease

the communication time, while others [38] design a memory-centric architecture to help with

data transfers. Memory Virtualization was further considered in [46, 39, 30, 65]. In [46, 39,

30], the authors implement memory virtualization by manipulating the computational graphs

and inserting special operations called swap in and swap out that send the activations in and

out of the device memory. Such an approach can be applied to any ACG that represent neural

network training graphs. The authors of [39] improve the candidate selection and prefetching

https://gitlab.inria.fr/hiepacs/rotor

mechanisms by introducing thresholds to filter out different possibilities. Moreover, some

works try to combine Offloading with other memory optimizing techniques. Memory

Swapping and Memory Pooling are implemented together in [65], where candidates for

swapping are found by assigning priority scores to all activations.

As a complement to these practical approaches, in [8] a theoretical analysis of the underlying

optimization problem is proposed: which data to offload and how to schedule transfers. An

extension to perform weight offloading can be found in [12].

5 Combination of Re-materialization and Offloading

The works, combining both approaches, are relatively recent, though the idea comes naturally

from the fact that they serve the same purpose, while they make use of different resources.

The speed-centric re-materialization from [16] enhanced with memory-centric re-

materialization (discards activations of every segment all the time) was combined with the

simple offloading approach from [55] in [62]. Then, the authors in [54] also use the re-

materialization of sheme [16] with a possibility of further offloading saved checkpoints to the

CPU if re-materialization only is not enough to perform training under memory constraint.

Another approach that combines re-computations and data offloading from GPU memory to

CPU memory was proposed in [53]. This approach is especially useful in the case where the

size of the activations is small compared to the size of the model, which is the case in most

recent NLP models. In this case, the network weights are offloaded to the CPU memory [12],

that serves as a parameter-server host.

In [9], the goal is to find simultaneously optimal Re-materialization and Offloading strategies

that could for the makespan in the case of DNNs represented by heterogeneous complex

chains. In this context, it is assued that the model weights stay in GPU and the only

activations can be moved to the CPU memory.

6 Pipelined Model Parallelism

When using Model Parallelism [17], the different layers of a network are spread over

different resources, so that the storage of DNN weights and activations is shared between the

resources. In Model Parallelism, only activations should be communicated and transfers take

place just between layers assigned to different processors, which adds up to a low total

amount of data movements with respect to other types of parallelisms. Despite that, the

scalability of the method is poor because of chain connections in DNN computational graph

that force a sequential execution of all the tasks.

The execution within Model Parallelism can be accelerated if several mini-batches are

pipelined, and thus several training iterations are active at the same time, helping to keep

computing resources busy most part of the time. The practical use of Pipelined Model

Parallelism is nevertheless a delicate issue and the analysis of the induced memory needs is

complex. In [31], it is proposed to split the training batch into several mini-batches, which are

then pipelined through the layers of the network (and the different computing resources).

Once the forward and backward phases have been computed on all these mini-batches, the

weights are then updated. This approach is fairly simple to implement but has the

disadvantage of leaving the computational resources largely idle (e.g. after the first resource

has executed its forward operations on the pipelined mini-batches, it has to wait until the

corresponding backward operations become available to complete the iteration). The

Pipedream approach proposed in [48] improves this training process, by only enforcing that

the forward and backward tasks use the same model weights for a given mini-batch. Such a

weakened constraint on the training process allows Pipedream to achieve a much better

utilization of the processing resources, but the asynchronous updates affect badly the overall

convergence of the training.

Despite its advantages, Pipedream has a number of issues: (i) degraded convergence because

of weight staleness that is non-uniform with respect to different stages, (ii) poor memory

management because of redundant weight and activation copies produced by non-optimal

schedule, (iii) inferior load balancing being restricted to contiguous allocations, (iv) not

suitable for heterogeneous GPUs.

The poor convergence of asynchronous methods has been addressed in several papers. It is

caused by weight staleness when the delayed gradients are used to perform an update step.

Some works [28, 15] propose to predict weights during forward and backward propagation

using the momentum of the gradient. Performing the updates less regularly [28, 49] (in

contrast in Pipedream they are done after each backward) helps limiting weight staleness as

well. Alternatively, PipeMare [63] proposes to reschedule learning rate depending on the

pipeline stage and adapt the model weights for backward so that they are defined by the most

recent version of weights and the accumulated weighted difference between the model

weights from successive iterations and the stage number. The last method achieves the same

convergence rate as Gpipe, while having the same resource utilization as Pipedream without

storing multiple copies of the weights.

Another important issue related to Pipedream is the need to keep many copies of the model

parameters, which can potentially cancel the benefit of using Model Parallelism. To address

this issue, the same methods that help with weight staleness can be used: in [49] the updates

are done so that it is possible to keep only two versions of the weights; in [15] two versions

of the weights are needed too, but also one gradient and momentum should be stored. The

inefficient memory utilization by Pipedream has been also observed in [32]. Unlike other

works, they offer another version of pipelining different from Gpipe and Pipedream. Its

principle of work can be described in the following way: once all forward steps on one mini-

batch are processed by all GPUs and the first backward of the last stage is done, the same

GPU can proceed to the first stage of the next mini-batch by performing its forward and then

the remaining forwards of the new mini-batch are executed on the other processors in the

reverse order just after the backwards of the preceding mini-batch. This allows GPUs to use

memory immediately after it is released during backward steps. In general, it uses memory

more efficiently, though memory itself is not considered as a constraint.

Contiguous allocations can be also a bottleneck that hinders a throughput. The authors of [19]

offer a method suitable for fine-tuning large models. They obtain non-contiguous allocations,

by coarsely building stages that have a high ratio of computation time with respect to

communication time. These stages can be further allocated to any device, allowing more than

one stage per processor. To find non-contiguous allocation for ACGs, the authors of [61]

propose two Integer Linear Programs (ILPs) (one minimizes latency, the other one

maximizes throughput for a steady state situation) and a dynamic program. The obtained

solutions are optimal for inference and can be adapted for training, though those methods do

not consider the pipelining nature of model parallelism and scheduling, which have a

significant influence on the peak memory usage.

Some researchers have worked on extending the results of Pipedream to heterogeneous

computing clusters and heterogeneous communication links [64, 50, 43]. Finding the optimal

load balance and schedule for heterogeneous settings is a difficult task, thus all of them rely

on some simplifications and heuristics. To solve issues in the case of high communication

costs and heterogeneous networking, the authors of [64] proposed an updated dynamic

programming strategy that assumes no overlap between computations and communications.

The HetPipe proposal [50] considers a different way of combining Data and Model

Parallelism, in which nodes may contain different GPUs. The idea of HetPipe is to

heuristically split the GPUs into virtual workers that may contain heterogeneous GPUs and

use Data Parallelism between virtual workers. Model Parallelism is used inside the virtual

workers, based on a simplified ILP that assumes no overlap between computation and

communication. Pipelined Model Parallelism in [43] is done with a help of Deep

Reinforcement Learning.

Other extensions of Pipedream explore different ways of combining Model Parallelism with

other types of parallelism [50, 20, 40, 41]. In the DAPPLE framework [20], Model

Parallelism is implemented alongside Data Parallelism. There, the focus is on the case of

several nodes, each equipped with several GPUs. DAPPLE extends Pipedream by allowing

more possibilities to map a stage of the DNN to GPUs located in several nodes. The

assignment problem is solved without taking memory constraints into account. Furthermore,

[40] does Hybrid Parallelism, using Tensor Slicing, Data and Model Parallelism, finding job

allocation with dynamic programming. However, this method does not consider memory

constraints.

Transformers offer a new dimension for pipelined parallelism. In [41], the pipelining is not

performed through micro-batching. Instead, they pipeline the tokens in the input sequence.

Such approach manages to significantly accelerate the training of GPT-3. Their solution is

based on dynamic programming without memory considerations.

The work in [10] carefully investigates the limitations of Pipedream. It carefully estimates the

effect of the chosen schedule on the peak memory usage of the pipeline. It also evaluates to

which extent non-contiguous allocations can be advantageous with respect to contiguous

ones. Therefore, in [10] an Integer Linear Program is described that finds simultaneously the

optimal load balance based on non-contiguous allocations and the optimal schedule, taking

into account all sources of memory consumption.The heuristic MadPipe, proposed in [11], is

based on dynamic programming that also combines non-contiguous allocations with

scheduling considerations to find the best load balancing. These methods can be combined

with [28, 15, 49, 63] to improve the training convergence.

7 Use of Task-Based Systems for DNN Inference.

We are now exploring the possibility of using StarPU [3] https://starpu.gitlabpages.inria.fr to

increase the throughput obtained in inference tasks. Indeed, the new networks used for the

most recent applications, such as GPT like networks, induce increasingly important resource

costs. These resource costs encompass both the computational workload and the storage

requirements. Such networks require such a large number of parameters that storing them use

a significant amount of memory, and that even performing the inference operation requires a

large number of computations. In this context, it is essential to perform the inference in a

parallel way, in order to increase the throughput of the operation, defined as the number of

inputs processed per second.

This task raises both system and algorithmic challenges. At the system level, it is necessary to

design a software architecture that allows a network (typically trained within PyTorch) to be

exported as a task graph composed of StarPU tasks. To accomplish this task, we rely on the

ONNX library [42] to retrieve tasks and dependencies, and on the ONNX Runtime library

https://onnx.ai to provide efficient implementations of all computational kernels. The ONNX

format provides a unified interface for all possible task types in a Deep Neural Network, and

the ONNX Runtime provides implementations for a large set of computing devices. This first

part of the work was done as part of Jean-François David’s PhD thesis and is now (almost)

functional.

The second part is more algorithmic in nature, and consists in designing optimization

algorithms to solve the placement problem. The problem input consists of a set of tasks (with

their internal dependencies, their associated computational costs and the volumes of input and

output data) and a set of potentially heterogeneous computational resources (characterized by

their memory sizes and their computational speeds for the different tasks). This set of tasks

represents all the layers of the Deep Neural Network, and the goal is to be able to process as

https://starpu.gitlabpages.inria.fr/
https://onnx.ai/

many inference operations per second as possible. This is done by assigning layers to the

computational resources, which incurs a storage requirement for all the parameters of that

layer. There is thus a tradeoff, where assigning layers to more computational resources allows

to perform more operations in parallel, but is limited by the available memory on the

resources. Additionally, the assignment needs to take into account the fact that some

computational resources are more efficient for some computational tasks than others. The

second part of Jean-François David’s PhD thesis will be to design and analyze new and

efficient assignment algorithms, which lead to an optimized resource usage in a Textarossa

node. Once validated, these algorithms will be integrated within a Textarossa node.

8 Conclusion

In the context of training, we have seen in the survey that multiple strategies can be

envisioned to save memory, at the cost of re-computations, data transfers at the node level, or

the use of parallel resources. From the point of view of parallelism, multiple strategies can

also be used (data parallelism, model parallelism, kernel parallelism), and they also have an

influence on the memory requirements and on the induced communications. It is therefore

necessary to know how to solve the allocation problem, for a given type of neural network

and a given description of the computational node (computation speed of each resource on

each task, speed of the different communication resources, memory sizes). This problem is

naturally very complex and is likely to lead to very rigid scheduling solutions, difficult to

implement in practice and very sensitive to the slightest modeling errors of the platform.

However, we know that the interactions between communication threads and thermal

interactions make accurate predictions extremely difficult. In Textarossa, our goal is to

extract from the solution of this optimization problem a set of task and data placement

directives, and then let task-based runtimes such as StarPU or OmpSs dynamically schedule

computations and communications to take full advantage of the heterogeneous computational

capabilities of Textarossa's resources and communications capabilities of the nodes. This will

be covered during the second phase of Task 4.2 and Task 4.6.

9 References

[1] Periodic checkpointing in pytorch, 2018. https://pytorch.org/docs/stable/checkpoint.html.

[2] A Adcroft, JM Campin, S Dutkiewicz, C Evangelinos, D Ferreira, G Forget, B Fox-Kemper, P

Heimbach, C Hill, E Hill, et al. Mitgcm user manual, 2008.

[3] C édric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-Andr ́e Wacrenier. Starpu: a

unified platform for task scheduling on heterogeneous multicore architec- tures. In European

Conference on Parallel Processing, pages 863–874. Springer, 2009.

[4] Guillaume Aupy and Julien Herrmann. Periodicity in optimal hierarchical checkpointing schemes

for adjoint computations. Optimization Methods and Software, 32(3):594– 624, 2017.

[5] Guillaume Aupy, Julien Herrmann, Paul Hovland, and Yves Robert. Optimal multistage

algorithm for adjoint computation. SIAM Journal on Scientific Computing, 38(3):232–255, 2016.

[6] Shriram S B, Anshuj Garg, and Purushottam Kulkarni. Dynamic memory management for gpu-

based training of deep neural networks. In IEEE International Parallel and Distributed Processing

Symposium (IPDPS). IEEE Press, 2019.

[7] Olivier Beaumont, Lionel Eyraud-Dubois, Julien Herrmann, Alexis Joly, and Alena Shilova.

Optimal checkpointing for heterogeneous chains: how to train deep neural networks with limited

memory. Research Report RR-9302, Inria Bordeaux Sud-Ouest, under Minor Revision at ACM

Transactions on Mathematical Software, ACM TOMS, 2022.

[8] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Optimal gpu-cpu offloading

strategies for deep neural network training. In European Conference on Par- allel Processing, pages

151–166. Springer, 2020.

[9] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Efficient Combination of Re-

materialization and Offloading for Training DNNs. In NeurIPS 2021 - Thirty- fifth Conference on

Neural Information Processing Systems, Virtual-only Conference, France, December 2021.

[10] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Pipelined model parallelism:

Complexity results and memory considerations. In European Conference on Parallel Processing,

pages 183–198. Springer, 2021.

[11] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. MadPipe: Memory Aware

Dynamic Programming Algorithm for Pipelined Model Parallelism. In ScaDL 2022 - Scalable Deep

Learning over Parallel and Distributed Infrastructure - An IPDPS 2022 Workshop, Proceedings of

IPDPS W’22, Lyon / Virtual, France, June 2022.

[12] Olivier Beaumont, Lionel Eyraud-Dubois, Alena Shilova, and Xunyi Zhao. Weight Offloading

Strategies for Training Large DNN Models. working paper or preprint, February 2022.

[13] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard S ̈ackinger, and Roopak Shah. Signature

verification using a” siamese” time delay neural network. In Advances in neural information

processing systems, pages 737–744, 1994.

[14] Phil Brubaker. Engineering Design Optimization using Calculus Level Methods. 2016.

[15] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. Efficient and robust parallel dnn

training through model parallelism on multi-gpu platform. arXiv preprint arXiv:1809.02839, 2018.

[16] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear

memory cost. arXiv preprint arXiv:1604.06174, 2016.

[17] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew

Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances

in neural information processing systems, pages 1223–1231, 2012.

[18] William Du, Michael Fang, and Margaret Shen. Siamese convolutional neural networks for

authorship verification. Proceedings, 2017.

[19] Saar Eliad, Ido Hakimi, Alon De Jagger, Mark Silberstein, and Assaf Schuster. Fine-tuning giant

neural networks on commodity hardware with automatic pipeline model parallelism. In 2021

USENIX Annual Technical Conference (USENIX ATC 21), pages 381–396. USENIX Association,

2021.

[20] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu,

Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei Lin. Dapple: A pipelined

data parallel approach for training large models, 2020.

[21] Jianwei Feng and Dong Huang. Optimal gradient checkpoint search for arbitrary computation

graphs, 2018.

[22] Priya Goyal. Pytorch memory optimizations via gradient checkpointing, 2018.

[23] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse

automatic differentiation. Optimization Methods and software, 1(1):35–54, 1992.

[24] Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: an implementation of

checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on

Mathematical Software (TOMS), 26(1):19–45, 2000.

[25] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of

algorithmic differentiation, volume 105. Siam, 2008.

[26] Jos é Grimm, Lo ı̈c Pottier, and Nicole Rostaing-Schmidt. Optimal time and minimum space-

time product for reversing a certain class of programs. In Martin Berz, Christian H. Bischof, George

F. Corliss, and Andreas Griewank, editors, Computational Differentiation: Techniques, Applications,

and Tools, pages 95–106. SIAM, Philadelphia, PA, 1996.

[27] Audrunas Gruslys, R émi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-

efficient backpropagation through time. In Advances in Neural Information Processing Systems,

pages 4125–4133, 2016.

[28] Lei Guan, Wotao Yin, Dongsheng Li, and Xicheng Lu. Xpipe: Efficient pipeline model

parallelism for multi-gpu dnn training. arXiv preprint arXiv:1911.04610, 2019.

[29] Julien Herrmann. H-revolve: a framework for adjoint computation on synchronous hierarchical

platforms. ACM Transactions on Mathematical Software (TOMS), 46(2):1– 25, 2020.

[30] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learning beyond the gpu

memory limit via smart swapping. In Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 1341–1355, 2020.

[31] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,

HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant

neural networks using pipeline parallelism. In Advances in Neural Information Processing Systems,

pages 103–112, 2019.

[32] Arpan Jain, Ammar Ahmad Awan, Asmaa M Aljuhani, Jahanzeb Maqbool Hashmi, Quentin G

Anthony, Hari Subramoni, Dhableswar K Panda, Raghu Machiraju, and Anil Parwani. Gems: Gpu-

enabled memory-aware model-parallelism system for distributed dnn training. In SC20: International

Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–15. IEEE,

2020.

[33] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion

Stoica, and Joseph E. Gonzalez. Checkmate: Breaking the memory wall with optimal tensor re-

materialization, 2019.

[34] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch,

Tianqi Chen, and Zachary Tatlock. Dynamic tensor re-materialization. arXiv preprint

arXiv:2006.09616, 2020.

[35] Navjot Kukreja, Jan Hu ̈ckelheim, and Gerard J Gorman. Backpropagation for long sequences:

beyond memory constraints with constant overheads. arXiv preprint arXiv:1806.01117, 2018.

[36] Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. Efficient re-

materialization for deep networks. In Advances in Neural Information Processing Systems, pages

15146–15155, 2019.

[37] Mitsuru Kusumoto, Takuya Inoue, Gentaro Watanabe, Takuya Akiba, and Masanori Koyama. A

graph theoretic framework of re-computation algorithms for memory-efficient backpropagation. arXiv

preprint arXiv:1905.11722, 2019.

[38] Youngeun Kwon and Minsoo Rhu. Beyond the memory wall: A case for memory-centric hpc

system for deep learning. In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 148–161. IEEE, 2018.

[39] Tung D Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. Tflms: Large model

support in tensorflow by graph rewriting. arXiv preprint arXiv:1807.02037, 2018.

[40] Jiange Li, Yuchen Wang, Jinghui Zhang, Jiahui Jin, Fang Dong, and Lei Qian. Pipepar: A

pipelined hybrid parallel approach for accelerating distributed dnn training. In 2021 IEEE 24th

International Conference on Computer Supported Cooperative Work in Design (CSCWD), pages

470–475. IEEE, 2021.

[41] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn Song, and Ion

Stoica. Terapipe: Token-level pipeline parallelism for training large-scale language models. arXiv

preprint arXiv:2102.07988, 2021.

[42] Wei-Fen Lin, Der-Yu Tsai, Luba Tang, Cheng-Tao Hsieh, Cheng-Yi Chou, Ping-Hao Chang,

and Luis Hsu. Onnc: A compilation framework connecting onnx to proprietary deep learning

accelerators. In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems

(AICAS), pages 214–218. IEEE, 2019.

[43] Yingchi Mao, Zijian Tu, Fagang Xi, Qingyong Wang, and Shufang Xu. Tapp: Dnn training for

task allocation through pipeline parallelism based on distributed deep reinforcement learning. Applied

Sciences, 11(11):4785, 2021.

[44] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar, Ingmar

Weber, and Antonio Torralba. Recipe1m: A dataset for learning cross-modal embeddings for cooking

recipes and food images. arXiv preprint arXiv:1810.06553, 2018.

[45] Jonathan Masci, Davide Migliore, Michael M Bronstein, and Ju ̈rgen Schmidhuber. Descriptor

learning for omnidirectional image matching. In Registration and Recognition in Images and Videos,

pages 49–62. Springer, 2014.

[46] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. Training deeper models by

gpu memory optimization on tensorflow. In Proc. of ML Systems Workshop in NIPS, 2017.

[47] M. Mueller, A. Arzt, S. Balke, M. Dorfer, and G. Widmer. Cross-modal music re-trieval and

applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1):52–62, Jan

2019.

[48] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,

Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. PipeDream: generalized pipeline

parallelism for DNN training. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles, pages 1–15, 2019.

[49] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia. Memory-

efficient pipeline-parallel dnn training. In Marina Meila and Tong Zhang, editors, Proceedings of the

38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning

Research, pages 7937–7947. PMLR, 18–24 Jul 2021.

[50] Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T. Nguyen, Seungmin Lee, Jaesik Choi,

Sam H. Noh, and Young ri Choi. Hetpipe: Enabling large dnn training on (whimpy) heterogeneous

gpu clusters through integration of pipelined model parallelism and data parallelism, 2020.

[51] Geoff Pleiss, Danlu Chen, Gao Huang, Tongcheng Li, Laurens van der Maaten, and Kilian Q

Weinberger. Memory-efficient implementation of densenets. arXiv preprint arXiv:1707.06990, 2017.

[52] GC Pringle, DC Jones, S Goswami, SHK Narayanan, and D Goldberg. Providing the archer

community with adjoint modelling tools for high-performance oceanographic and cryospheric

computation. 2016.

[53] Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, and Sujeeth Bharadwaj. Training

large neural networks with constant memory using a new execution algorithm. arXiv preprint

arXiv:2002.05645, 2020.

[54] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory

optimizations toward training trillion parameter models. In SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[55] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W Keckler.

vdnn: Virtualized deep neural networks for scalable, memory-efficient neural network design. In The

49th Annual IEEE/ACM International Symposium on Microarchitecture, page 18. IEEE Press, 2016.

[56] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon, and Stephen W

Keckler. Compressing dma engine: Leveraging activation sparsity for training deep neural networks.

In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), pages

78–91. IEEE, 2018.

[57] Samuel Rota Bul`o, Lorenzo Porzi, and Peter Kontschieder. In-place activated batch-norm for

memory-optimized training of dnns. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 5639–5647, 2018.

[58] Michel Schanen, Oana Marin, Hong Zhang, and Mihai Anitescu. Asynchronous two-level

checkpointing scheme for large-scale adjoints in the spectral-element solver nek5000. Procedia

Computer Science, 80:1147–1158, 2016.

[59] Jeffrey Mark Siskind and Barak A. Pearlmutter. Divide-and-conquer checkpointing for arbitrary

programs with no user annotation. Optimization Methods and Software, 33(4-6):1288–1330, 2018.

[60] Philipp Stumm and Andrea Walther. Multistage approaches for optimal offline check- pointing.

SIAM Journal on Scientific Computing, 31(3):1946–1967, 2009.

[61] Jakub Tarnawski, Amar Phanishayee, Nikhil R Devanur, Divya Mahajan, and Fanny Nina

Paravecino. Efficient algorithms for device placement of dnn graph operators. arXiv preprint

arXiv:2006.16423, 2020.

[62] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu,

and Tim Kraska. Superneurons: Dynamic gpu memory management for training deep neural

networks. SIGPLAN Not., 53(1):41–53, February 2018.

[63] Bowen Yang, Jian Zhang, Jonathan Li, Christopher R ́e, Christopher Aberger, and Christopher

De Sa. Pipemare: Asynchronous pipeline parallel dnn training. Proceedings of Machine Learning and

Systems, 3, 2021.

[64] Jun Zhan and Jinghui Zhang. Pipe-torch: Pipeline-based distributed deep learning in a gpu

cluster with heterogeneous networking. In 2019 Seventh International Conference on Advanced

Cloud and Big Data (CBD), pages 55–60. IEEE, 2019.

[65] Junzhe Zhang, Sai Ho Yeung, Yao Shu, Bingsheng He, and Wei Wang. Efficient memory

management for gpu-based deep learning systems. arXiv preprint arXiv:1903.06631, 2019.

