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Executive Summary 

This deliverable provides a survey of the literature on the optimization of memory 

management in the context of training on deep neural networks. Due to the increase of the 

size of the networks, the training on a single resource (either multicore CPU, GPU or FPGA) 

is not possible without implementing specific memory saving techniques. These techniques 

either induce (i) more computations (re-materialization or checkpointing), or (ii) more data 

exchanges between the (limited) memory of the accelerators and the memory attached to the 

CPU (offloading), or (iii) a distribution of the model over several resources which in turn 

induces extra communications. We will distinguish between approaches that limit the 

memory associated with the storage of intermediate data (activations) and those that limit the 

memory associated with the storage of network weights (and optimizer states). For each 

approach, we will detail the possible approaches and their current limitations in terms of the 

shape of the networks, and we will analyze in particular their overhead in terms of data 

transfer. We will also analyze the original and possible use of dynamic runtimes (StarPU and 

OmpSs) in this context, focusing first on inference. In particular, we will consider the 

possibility of relying on a task-based model to process a stream of inferences. A case of 

special interest is the one where the complete model is too large to be stored in a single 

resource, but small enough to be replicated on a Textarossa node. 



  

   

 

1 Introduction 

WP4 focuses on the middle layer of the TEXTAROSSA project. It is tied to hardware and 

software, making the bridge between hardware features and software interfaces. Consequently, 

most WP4 activities are highly coupled with other WPs. The main activities of WP4 include 

the improvement of the streaming and task-based programming models to computing nodes 

with FPGAs. In this report we concentrate on the use of runtime systems in the context of the 

training of Deep Neural Networks (DNNs). The current document surveys the literature and 

summarize the state of the art of memory saving techniques and explores the possible use of 

task-based systems to dynamically handle the communications and the allocation of inference 

and training tasks in the context of a single heterogeneous node.. 

2 Re-materialization based Strategies in Automatic 

Differentiation 

Adjoints computation is a numerical method for computing the gradient of a function, which 

may be complex. This method is at the core of many scientific applications, from climate and 

ocean modeling [2] to oil refinery [14]. In addition, the structure of the underlying 

dependence graph is also at the basis of the backpropagation step of machine learning [35], 

and thus the models considered in this report are based on it.  

 

Storage has been one of the key issues with the computation of adjoints: it is required to keep 

all the intermediate data to compute the final gradient, but it is possible to recompute them. 

Therefore, the computation of adjoints has always been a trade-off between re-computations 

and memory requirements [23].  

 

When one type of limited memory is available, authors of [26] showed the optimality of a 

binomial approach that was later implemented under the name Revolve [24]. In the latter 

paper, closed form formulas providing the exact position of saved data have even been 

proposed for homogeneous chains (each operation has the same duration and memory cost). 

When computation times are heterogeneous, but data sizes are identical, an optimal 

checkpointing strategy can be obtained with Dynamic Programming [25]. The problem of 

adjoint computations has received an increasing attention in the recent years with the 

introduction of a second level of storage of infinite capacity but with access (write and read) 

costs [60, 5, 4, 58, 52]. Indeed, with the increase in the problem size, the memory was not 

sufficient anymore to solve the problems in a reasonable time. Hence solutions have started 

considering the usage of disks to store some of the intermediary data. Several works have 

considered this problem. In [60], a first heuristic was presented that applies the schedule 

provided by Revolve, where the checkpoints that stay idle for the longest period are stored on 

disk (level 2 storage). Some implementations (for example [52]) are based on two-levels 

checkpointing strategy: the first pass (forward mode) of the adjoint graph checkpoints 



  

   

 

periodically to disk (level 2), then the second pass (reverse mode) reads those disk 

checkpoints one after the other and uses Revolve with only memory (level 1) checkpoints. 

The main parameter (period used for the forward checkpointing) can be chosen by the user. 

The algorithm designed in [5] is able to solve this problem optimally. In a subsequent work, 

authors of [4] showed that the optimal solution is weakly periodic, meaning that the number 

of forward computations performed between two consecutive checkpoints into the second 

level of storage is always the same except for a bounded number of them. More recently, they 

extended this result for a hierarchical memory architecture with an arbitrary number of 

storage levels [29].  

 

In [7], the classical results of [24] are extended to meet the requirements of more complex 

adjoint computations emerging in DNN graphs of Siamese Neural Networks [13, 18, 45] and 

Cross-Modal-Embeddings [44, 47]. They represent a class of graphs that has a shape of 

multiple chains joint together at the end by the last operation, which in case of Deep Learning 

is a loss function. This work shows that dynamic programming is still applicable for the new 

type of graph, but its complexity grows exponentially with a number of chains.  

3 Re-materialization for DNNs 

When a DNN represents a single chain of layers, the computation of the gradients in the 

training phase is similar to Automatic Differentiation (AD). The checkpointing strategies 

used in AD to reduce memory consumption are known in AI as Re-materialization or 

gradient checkpointing strategies. Re-materialization is the method that relies on re-

computations to reduce the memory footprint of a given fixed model or architecture, while 

obtaining the exact same output of the training phase.  

 

For example, the authors of [51] show, for a popular neural network like DenseNet, that using 

shared memory storages and recomputing concatenation and batch normalization operations 

during backpropagation help to go from quadratic memory cost to linear memory cost for 

storing feature maps. Along the same idea, re-implementations of some commonly used 

layers like batch normalization have been proposed [57]. In the latter case, memory usage is 

reduced by rewriting the gradient calculation for this layer so that it does not depend on 

certain activation values (so that it is no longer necessary to store them). A generic divide-

and-conquer approach based on compiler techniques is able to perform automatic 

differentiation for arbitrary programs [59].  

 

The use of re-materialization strategies inspired by AD has recently been advocated for 

DNNs in several papers [27, 16, 35, 36, 21, 33]. A direct adaptation of the results on 

homogeneous chains was proposed for the case of Recurrent Neural Networks (RNNs) in 

[27], but cannot be extended to other DNNs. Apart from this, for practical usage, an 

implementation of re-materialization exists in PyTorch [1], based on a simple periodic and 

single-pass re-materialization strategy that exploits the ideas presented in [16]. In this 

strategy, the chain is divided in equal-length segments, and only the input of each segment is 



  

   

 

materialized during the forward phase. This strategy provides non-optimal solutions in terms 

of throughput and memory usage, because it does not benefit from the fact that more memory 

is available when computing the backward phase of the first segment (since values 

materialized for later segments have already been used). This implementation was 

nevertheless used to process significantly larger models [22]. 

 

Some researches attempted to adapt re-materialization strategies to Arbitrary Computation 

Graphs (ACG). On the one hand, a polynomial algorithm is provided in [21] that finds the re-

materialization strategy for the forward propagation that minimizes memory used to execute 

ACG, under the assumption that activation deletion is not allowed during the backward phase 

(activations can be recomputed only once), which is a very strong and restrictive assumption 

in practice, especially in the case of deep networks. On the other hand, in the AD literature, 

the process is fully recursive, allowing the full memory usage throughout the entire training, 

since the released memory can be used later. In what follows, we refer to such solutions as 

single-pass re-materialization strategies.  

 

A similar problem is considered in [36], where activation deletion during backward 

propagation are possible, though similarly the framework is restrictive on several points that 

are crucial in terms of practical performance and applicability. First, the study is limited to 

unit costs for data. More importantly, the approach described in [36] is based on the 

computation of a tree-width decomposition of the graph and only derives the minimum 

computational cost associated with the minimum memory footprint. The minimum memory 

footprint then depends on the quality of the decomposition, which is an NP-complete problem 

for which (large) constant approximation algorithms exist. In practice, the problem to be 

solved is rather to minimize the computational cost while meeting a given memory constraint. 

Indeed, limiting the search to the smallest possible memory size obviously leads to a 

significant additional computational cost.  

 

Another closely related approach is Checkmate [33] in which an Integer Linear Program is 

proposed to solve the re-materialization problem. This program can handle arbitrary graphs 

by assuming a fixed ordering of the execution, and can provide a solution of minimum 

runtime given a memory limit. However, solving this ILP is very computationally expensive 

and does not converge in a reasonable time as soon as the network exceeds a few dozen 

layers. Its rational approximation, however, can be easily found, but may push memory usage 

above memory limits. 

 

At last, other approaches finely control the tradeoff between memory and computation. In 

[37], the authors also consider a general ACG framework. Their work can be seen as a 

generalization of [16] algorithm to ACGs. More specifically, their goal is to decompose the 

ACG into groups of nodes and during the forward phase, only the boundaries between groups 

are materialized. Then, during the backward phase, to perform the gradient computations of a 

group, it is required to recompute all the activations of the group using its input saved 

boundary, and then the backward phase is performed without additional recomputing 



  

   

 

operations. On the one hand, the advantage of this approach is that it is tractable for ACGs 

using dynamic programming. On the other hand, as in [16] and [21], the search is restricted to 

single-pass re-materialization strategies.  

 

In [34], the authors proposed Dynamic Tensor Re-materialization that dynamically choose 

which activations should be discarded and then recomputed at runtime. Still, it is based on a 

heuristic approach that encourages to discard tensors that have large memory and staleness 

costs and that can be easily recomputed while allowing cheap re-computations of other 

tensors as well. This heuristic showed good results, though optimal static re-materialization 

methods remain more reliable, considering that execution times and memory costs of layers 

normally do not change much over iterations.  

 

Rotor https://gitlab.inria.fr/hiepacs/rotor is the first attempt to precisely model heterogeneity 

and more importantly the ability, offered in DNN frameworks, to combine two types of 

activation savings, by either storing only the layer inputs (as done in AD literature), or by 

recording the complete history of operations that produced the outputs (as available in 

autograd tools). For this model, a static algorithm is proposed with an optimality proof, based 

on dynamic programming. This algorithm manages to find the best schedule in polynomial 

time.  

4 Offloading 

Offloading is a potentially complementary approach to re-materialization that consists in 

offloading some of the forward activations from the memory of the GPU to the memory of 

the CPU, which is expected to be much larger [55, 6]. In [55], the authors propose a simple 

and effective mechanism of Memory Virtualization, that nevertheless introduces unnecessary 

idle time by enforcing some synchronization between data transfers and computations of later 

forward activations. This approach has been later improved in [6] by the design of techniques 

to deal with memory fragmentation. Nevertheless, in both papers, the algorithmic strategies 

to decide which activations to offload into the main memory are relatively straightforward. 

Proposed strategies consist in trying to offload either all activations or only those that 

correspond to convolutional layers. Indeed, convolutional layers are known to induce a large 

computational time with respect to their input size, which make them good candidates to 

overlap offloading and processing.  

 

Several fworks offer improvements over this first attempt. In order to reduce the overhead 

induced by communications, some authors [56] recommend to add compression to decrease 

the communication time, while others [38] design a memory-centric architecture to help with 

data transfers. Memory Virtualization was further considered in [46, 39, 30, 65]. In [46, 39, 

30], the authors implement memory virtualization by manipulating the computational graphs 

and inserting special operations called swap in and swap out that send the activations in and 

out of the device memory. Such an approach can be applied to any ACG that represent neural 

network training graphs. The authors of [39] improve the candidate selection and prefetching 

https://gitlab.inria.fr/hiepacs/rotor


  

   

 

mechanisms by introducing thresholds to filter out different possibilities. Moreover, some 

works try to combine Offloading with other memory optimizing techniques. Memory 

Swapping and Memory Pooling are implemented together in [65], where candidates for 

swapping are found by assigning priority scores to all activations. 

 

As a complement to these practical approaches, in [8] a theoretical analysis of the underlying 

optimization problem is proposed: which data to offload and how to schedule transfers. An 

extension to perform weight offloading can be found in [12]. 

5 Combination of Re-materialization and Offloading 

The works, combining both approaches, are relatively recent, though the idea comes naturally 

from the fact that they serve the same purpose, while they make use of different resources. 

The speed-centric re-materialization from [16] enhanced with memory-centric re-

materialization (discards activations of every segment all the time) was combined with the 

simple offloading approach from [55] in [62]. Then, the authors in [54] also use the re-

materialization of sheme [16] with a possibility of further offloading saved checkpoints to the 

CPU if re-materialization only is not enough to perform training under memory constraint.  

 

Another approach that combines re-computations and data offloading from GPU memory to 

CPU memory was proposed in [53]. This approach is especially useful in the case where the 

size of the activations is small compared to the size of the model, which is the case in most 

recent NLP models. In this case, the network weights are offloaded to the CPU memory [12], 

that serves as a parameter-server host.  

 

In [9], the goal is to find simultaneously optimal Re-materialization and Offloading strategies 

that could for the makespan in the case of DNNs represented by heterogeneous complex 

chains. In this context, it is assued that the model weights stay in GPU and the only 

activations can be moved to the CPU memory.  

6 Pipelined Model Parallelism 

When using Model Parallelism [17], the different layers of a network are spread over 

different resources, so that the storage of DNN weights and activations is shared between the 

resources. In Model Parallelism, only activations should be communicated and transfers take 

place just between layers assigned to different processors, which adds up to a low total 

amount of data movements with respect to other types of parallelisms. Despite that, the 

scalability of the method is poor because of chain connections in DNN computational graph 

that force a sequential execution of all the tasks.  

 



  

   

 

The execution within Model Parallelism can be accelerated if several mini-batches are 

pipelined, and thus several training iterations are active at the same time, helping to keep 

computing resources busy most part of the time. The practical use of Pipelined Model 

Parallelism is nevertheless a delicate issue and the analysis of the induced memory needs is 

complex. In [31], it is proposed to split the training batch into several mini-batches, which are 

then pipelined through the layers of the network (and the different computing resources). 

Once the forward and backward phases have been computed on all these mini-batches, the 

weights are then updated. This approach is fairly simple to implement but has the 

disadvantage of leaving the computational resources largely idle (e.g. after the first resource 

has executed its forward operations on the pipelined mini-batches, it has to wait until the 

corresponding backward operations become available to complete the iteration). The 

Pipedream approach proposed in [48] improves this training process, by only enforcing that 

the forward and backward tasks use the same model weights for a given mini-batch. Such a 

weakened constraint on the training process allows Pipedream to achieve a much better 

utilization of the processing resources, but the asynchronous updates affect badly the overall 

convergence of the training.  

 

Despite its advantages, Pipedream has a number of issues: (i) degraded convergence because 

of weight staleness that is non-uniform with respect to different stages, (ii) poor memory 

management because of redundant weight and activation copies produced by non-optimal 

schedule, (iii) inferior load balancing being restricted to contiguous allocations, (iv) not 

suitable for heterogeneous GPUs.  

 

The poor convergence of asynchronous methods has been addressed in several papers. It is 

caused by weight staleness when the delayed gradients are used to perform an update step. 

Some works [28, 15] propose to predict weights during forward and backward propagation 

using the momentum of the gradient. Performing the updates less regularly [28, 49] (in 

contrast in Pipedream they are done after each backward) helps limiting weight staleness as 

well. Alternatively, PipeMare [63] proposes to reschedule learning rate depending on the 

pipeline stage and adapt the model weights for backward so that they are defined by the most 

recent version of weights and the accumulated weighted difference between the model 

weights from successive iterations and the stage number. The last method achieves the same 

convergence rate as Gpipe, while having the same resource utilization as Pipedream without 

storing multiple copies of the weights.  

 

Another important issue related to Pipedream is the need to keep many copies of the model 

parameters, which can potentially cancel the benefit of using Model Parallelism. To address 

this issue, the same methods that help with weight staleness can be used: in [49] the updates 

are done so that it is possible to keep only two versions of the weights; in [15] two versions 

of the weights are needed too, but also one gradient and momentum should be stored. The 

inefficient memory utilization by Pipedream has been also observed in [32]. Unlike other 

works, they offer another version of pipelining different from Gpipe and Pipedream. Its 

principle of work can be described in the following way: once all forward steps on one mini-

batch are processed by all GPUs and the first backward of the last stage is done, the same 



  

   

 

GPU can proceed to the first stage of the next mini-batch by performing its forward and then 

the remaining forwards of the new mini-batch are executed on the other processors in the 

reverse order just after the backwards of the preceding mini-batch. This allows GPUs to use 

memory immediately after it is released during backward steps. In general, it uses memory 

more efficiently, though memory itself is not considered as a constraint.  

 

Contiguous allocations can be also a bottleneck that hinders a throughput. The authors of [19] 

offer a method suitable for fine-tuning large models. They obtain non-contiguous allocations, 

by coarsely building stages that have a high ratio of computation time with respect to 

communication time. These stages can be further allocated to any device, allowing more than 

one stage per processor. To find non-contiguous allocation for ACGs, the authors of [61] 

propose two Integer Linear Programs (ILPs) (one minimizes latency, the other one 

maximizes throughput for a steady state situation) and a dynamic program. The obtained 

solutions are optimal for inference and can be adapted for training, though those methods do 

not consider the pipelining nature of model parallelism and scheduling, which have a 

significant influence on the peak memory usage.  

 

Some researchers have worked on extending the results of Pipedream to heterogeneous 

computing clusters and heterogeneous communication links [64, 50, 43]. Finding the optimal 

load balance and schedule for heterogeneous settings is a difficult task, thus all of them rely 

on some simplifications and heuristics. To solve issues in the case of high communication 

costs and heterogeneous networking, the authors of [64] proposed an updated dynamic 

programming strategy that assumes no overlap between computations and communications. 

The HetPipe proposal [50] considers a different way of combining Data and Model 

Parallelism, in which nodes may contain different GPUs. The idea of HetPipe is to 

heuristically split the GPUs into virtual workers that may contain heterogeneous GPUs and 

use Data Parallelism between virtual workers. Model Parallelism is used inside the virtual 

workers, based on a simplified ILP that assumes no overlap between computation and 

communication. Pipelined Model Parallelism in [43] is done with a help of Deep 

Reinforcement Learning.  

 

Other extensions of Pipedream explore different ways of combining Model Parallelism with 

other types of parallelism [50, 20, 40, 41]. In the DAPPLE framework [20], Model 

Parallelism is implemented alongside Data Parallelism. There, the focus is on the case of 

several nodes, each equipped with several GPUs. DAPPLE extends Pipedream by allowing 

more possibilities to map a stage of the DNN to GPUs located in several nodes. The 

assignment problem is solved without taking memory constraints into account. Furthermore, 

[40] does Hybrid Parallelism, using Tensor Slicing, Data and Model Parallelism, finding job 

allocation with dynamic programming. However, this method does not consider memory 

constraints.  

 



  

   

 

Transformers offer a new dimension for pipelined parallelism. In [41], the pipelining is not 

performed through micro-batching. Instead, they pipeline the tokens in the input sequence. 

Such approach manages to significantly accelerate the training of GPT-3. Their solution is 

based on dynamic programming without memory considerations.  

 

The work in [10] carefully investigates the limitations of Pipedream. It carefully estimates the 

effect of the chosen schedule on the peak memory usage of the pipeline. It also evaluates to 

which extent non-contiguous allocations can be advantageous with respect to contiguous 

ones. Therefore, in [10] an Integer Linear Program is described that finds simultaneously the 

optimal load balance based on non-contiguous allocations and the optimal schedule, taking 

into account all sources of memory consumption.The heuristic MadPipe, proposed in [11], is 

based on dynamic programming that also combines non-contiguous allocations with 

scheduling considerations to find the best load balancing. These methods can be combined 

with [28, 15, 49, 63] to improve the training convergence. 

7 Use of Task-Based Systems for DNN Inference. 

We are now exploring the possibility of using StarPU [3] https://starpu.gitlabpages.inria.fr to 

increase the throughput obtained in inference tasks. Indeed, the new networks used for the 

most recent applications, such as GPT like networks, induce increasingly important resource 

costs. These resource costs encompass both the computational workload and the storage 

requirements. Such networks require such a large number of parameters that storing them use 

a significant amount of memory, and that even performing the inference operation requires a 

large number of computations. In this context, it is essential to perform the inference in a 

parallel way, in order to increase the throughput of the operation, defined as the number of 

inputs processed per second. 

 

This task raises both system and algorithmic challenges. At the system level, it is necessary to 

design a software architecture that allows a network (typically trained within PyTorch) to be 

exported as a task graph composed of StarPU tasks. To accomplish this task, we rely on the 

ONNX library [42] to retrieve tasks and dependencies, and on the ONNX Runtime library 

https://onnx.ai to provide efficient implementations of all computational kernels. The ONNX  

format provides a unified interface for all possible task types in a Deep Neural Network, and 

the ONNX Runtime provides implementations for a large set of computing devices. This first 

part of the work was done as part of Jean-François David’s PhD thesis and is now (almost) 

functional.  

 

The second part is more algorithmic in nature, and consists in designing optimization 

algorithms to solve the placement problem. The problem input consists of a set of tasks (with 

their internal dependencies, their associated computational costs and the volumes of input and 

output data) and a set of potentially heterogeneous computational resources (characterized by 

their memory sizes and their computational speeds for the different tasks). This set of tasks 

represents all the layers of the Deep Neural Network, and the goal is to be able to process as 

https://starpu.gitlabpages.inria.fr/
https://onnx.ai/


  

   

 

many inference operations per second as possible. This is done by assigning layers to the 

computational resources, which incurs a storage requirement for all the parameters of that 

layer. There is thus a tradeoff, where assigning layers to more computational resources allows 

to perform more operations in parallel, but is limited by the available memory on the 

resources. Additionally, the assignment needs to take into account the fact that some 

computational resources are more efficient for some computational tasks than others. The 

second part of Jean-François David’s PhD thesis will be to design and analyze new and 

efficient assignment algorithms, which lead to an optimized resource usage in a Textarossa 

node. Once validated, these algorithms will be integrated within a Textarossa node.  

8 Conclusion 
 

In the context of training, we have seen in the survey that multiple strategies can be 

envisioned to save memory, at the cost of re-computations, data transfers at the node level, or 

the use of parallel resources. From the point of view of parallelism, multiple strategies can 

also be used (data parallelism, model parallelism, kernel parallelism), and they also have an 

influence on the memory requirements and on the induced communications. It is therefore 

necessary to know how to solve the allocation problem, for a given type of neural network 

and a given description of the computational node (computation speed of each resource on 

each task, speed of the different communication resources, memory sizes). This problem is 

naturally very complex and is likely to lead to very rigid scheduling solutions, difficult to 

implement in practice and very sensitive to the slightest modeling errors of the platform. 

However, we know that the interactions between communication threads and thermal 

interactions make accurate predictions extremely difficult. In Textarossa, our goal is to 

extract from the solution of this optimization problem a set of task and data placement 

directives, and then let task-based runtimes such as StarPU or OmpSs dynamically schedule 

computations and communications to take full advantage of the heterogeneous computational 

capabilities of Textarossa's resources and communications capabilities of the nodes. This will 

be covered during the second phase of Task 4.2 and Task 4.6. 
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