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Executive Summary 
This deliverable provides initial results of task T6.4 to orchestrate evaluation of TEXTAROSSA solutions. 

The document presents an evaluation plan using a top-down approach. First, it gives a rough overview 

of the TEXTAROSSA applications and their involvement in different tasks using different approaches. 

Heterogenous resources will be used by eight applications; mixed-precision will be applied to three 

use cases; dynamic runtime systems will be evaluated by one library. Important to say, these use cases 

are coming from many different scientific domains, representing examples of AI, HDPA and HPC codes, 

which brings a broad vision of the needs to the project. As of M18, seven out of nine applications 

reached MS2 which means that the codes are well tested and ready to apply TEXTAROSSA solutions. 

Going bottom, a comprehensive list of TEXTAROSSA features (hardware, software and programming 

models) is presented to demonstrate which application is going to use these features. Going into more 

details, there is a summary of KPIs for each application, followed by their explanation and an overall 

evaluation plan for aforementioned three different application approaches. At the bottom, a detailed 

evaluation plan for each application is presented.  



  

 

 

1 Introduction 
 

Work performed in WP6 is essential to demonstrate the TEXTAROSSA outcomes in both, hardware 

and software perspective. The applications need to use these for the final evaluation of the project, 

but far more important is to come up with conclusions if and how new hardware and software 

development paradigms can improve computation and energy efficiency of applications representing 

different domains. 

In the TEXTAROSSA we focus on applications related to AI (Artificial Intelligence), HDPA (High 

Performance Data Analytics) and HPC (High Performance Computing). Provided software represents 

quite a comprehensive set of different hardware used (CPU, GPU, FPGA), programming models (MPI 

for distributed computing/data exchange, CUDA, IntelOne API, etc.) and problems to be solved (sparse 

and dense linear algebra, iterative and direct solvers, etc.). Because of that, there is a different set of 

computational and energy efficiency metrics defined (KPI – key performance indicator) for each of the 

applications, though some naturally overlaps. In order to provide a high-quality evaluation plan for 

these many different applications, we applied a top-down approach to describe it. First, we start with 

a general overview of the applications, followed by a more detailed view on the TEXTAROSSA features 

and their usage by individual applications. Next, we discuss the KPIs and overall evaluation plan to 

finalise with details of evaluation of each of the use cases. 

This document is organised as follows. Section 2 provides overview of the applications, mapping each 

to TEXTAROSSA hardware and software solutions. Section 3 details overall evaluation plan. Section 4 

describes individual evaluation plan. In Section 5 we discuss how KPIs can be extended to take the 

outcomes of the WP1 and how we will update the plan during the scope of the project if necessary. 



  

 

 

2 Applications 
 

In WP6 there are 9 main applications representing AI, HDPA and HPC classes. The mathematical 

libraries developed by CNR and INRIA can be divided into separate modules, however they are referred 

to a single mathlib to keep things simpler. A high-level overview is given in Table 1. Eight out of nine 

applications will benefit from heterogeneous hardware resources, three of them plan to introduce 

mixed-precision, and one of them will benefit from dynamic runtime systems. However, some 

heterogeneous applications will consider applying mixed-precision and/or dynamic runtime systems, 

thus the number of use cases using different approaches may change during the scope of the project. 

It is worth mentioning that seven out of nine proposed applications have already accomplished MS2 

– prototype applications are ready, albeit not yet integrated. The missing two under development and 

soon the prototypes will be available. The most important feature is that there is at least one 

application for each functionality (task) already available.  

 
 

App name Partner 
Heterogeneous 
(T6.1) 

Mixed-precision 
(T6.2) 

Dynamic 
runtime (T6.3) MS2 

Smart cities CINI 
GPU, possibly 

FPGA (for mixed 
precision) 

Yes (Posit) No Yes 

Mathlib-CNR CNR GPU (CUDA) Maybe No Yes 

RTM Fraunhofer No Yes (Posit) No Yes 

HEP INFN 
GPU, possibly 

FPGA 
No No No 

NestGPU INFN GPU (CUDA) No Not planned Yes 

RAIDER INFN FPGA Maybe Maybe Yes 

TNM INFN GPU (CUDA) No No No 

Mathlib-INRIA INRIA GPU, FPGA No Yes (StarPU) Yes 

UrbanAir PSNC GPU (CUDA) Planned No Yes 

Table 1 Overview of WP6 applications 

 

Before sketching an evaluation plan, it is of great importance to identify which use case is trying to 

benefit from proposed hardware or functionality. Table 2 provides a mapping between application 

and programming model, software/tools to be used and hardware to be exploited, which will be used 

for the final evaluation plan. 
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Application Smart Cities Mathlib-CNR RTM HEP NEST-GPU RAIDER TNM Mathlib-INRIA UrbanAir 

Programming models 

CUDA Limited Yes (MPI/CUDA 
tools for 
distributed/shared 
hybrid model) 

Very 
limited 

 Yes Yes (hybrid 
CUDA-MPI) 

 No Yes  Planned to be used Yes (MPI/CUDA) 

FPGA Yes No No No No Yes No Planned to be used No 

IntelOne API Limited No No Yes No No No No No 

streaming models No No No No No Yes No  No No 

task-based models No No No No No Maybe No Yes No 

Software/tools 

GPU power modelling Yes Planned to be 
used 

No No Planned to 
be used 

No Planned to be 
used 

Yes Planned to be used 

FGPA power modelling Yes No No No No Planned 
to be 
used 

No Yes No 

Tools for Posit Yes No Yes No No No No No No 

Tools for mixed-precision Yes No Yes No No Planned 
to be 
used 

No No Planned to be used 

inter-FPGA comm SW stack No No No No No Yes No  Maybe No 

Hardware 

IP with mixed precision for AI Yes No No No No Maybe  No  No No 

Secure Crypto IP No No No No No No No  No No 

IP with data compression Yes No No No No Maybe No No No 

IP with low latency FPGA No No No No No Yes  No No No 

IP for fast task scheduling No No No No No Maybe No No No 
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FPGA hardware counters No No No Maybe No Maybe No Yes No 

IDV-A Maybe Planned to be 
used 

No Maybe Yes No Planned to be 
used  

Planned to be used Planned to be used 

IDV-E Maybe No No Maybe Yes (CPU 
version) 

Planned 
to be 
used 

No  Planned to be used No 

Table 2 Hardware, software tools and programming models 
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3 Evaluation plans 
The evaluation will be based on benchmarking KPIs defined individually per each application. 

However, a more global approach can be applied by using a common set of indicators defined within 

WP1 and WP6. Some of the KPIs are easier to measure, such as time-to-iteration or time-to-solution, 

as they require only small integration to the code, and no external tools or access to hardware 

performance counters is required. Some of them, such as energy efficiency, need additional tools and 

sensors enabled for the underlying hardware infrastructure. 

The KPIs are related to the solved problems, and some of them are common for several applications. 

Individual KPIs are summarised in Table 3, however an update is expected with the next D6.2 

deliverable after these are liaised with WP1 outcomes.   

 

App name KPI - computational efficiency KPI - energy KPI - accuracy 

Smart cities execution time/speedup on 
GPU vs. scalability vs. accuracy 

Power model on 
target GPU and 
on FPGA 

Yes 

Mathlib-CNR execution time/speedup/strong 
and weak scalability; number of 
iterations to a fixed 
accuracy/time per iteration for 
iterative solvers 

Iterations/Watt; 
Dofs/Watt 

Yes (user’s 
parameter 
dependent) 

RTM increase memory bandwidth, 
then maybe increase Flops 

 No No 

HEP Events / s Events / Watt  No 

NestGPU Simulated ms / s SUPs/Watt No 

RAIDER MEvents / s Mevents/Watt Yes 

TNM Qubits / s  
Gate / s 

Qubits / Watt 
Gates / Watt 

No 

Mathlib-INRIA Flops/s | Interactions/s Flops/Watt, 
Iterations/Watt 

No 

UrbanAir iterations/s, simulated time/s Iterations/Watt No 

 

Table 3 Individual KPIs 

 

The KPIs for computational efficiency are: 

- Time per iteration, used by iterative solvers where performance can be judged based on how 

many seconds are needed per each iteration and number of iterations to a user’s defined 

accuracy. 

- Simulated time/s (or timesteps/s), used by the solvers which iterates through simulated time, 

the more timesteps are calculated within one second the better the performance is. 

- Interactions/s, used by n-body simulations where the number of interactions between 

particles is representative of the performance.  

- Events/s, used by trigger systems in physics experiments where we refer to “event” as the 

instantaneous physical situation or occurrence associated with a point in spacetime, 
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characterised in our systems by different information obtained through several physical 

detectors.  

- Qubits/s (and Gate/s), with an equal fixed set of convergence parameters for a quantum 

simulation with tensor networks method, e.g. fixed bond dimension, the performance can be 

evaluated looking at what is the size of the system n, in terms of number of qubits, that can 

be simulated within a second. In some other application, for a given n-qubit system, the 

performance can be evaluated looking at the number of quantum gates within a second that 

can be executed. 

- FLOP/s, a general performance KPI to indicate how many floating-point operations per second 

can application achieve. 

The KPIs for energy efficiency are similar to the computational ones, except that it is measured for 

every watt of power consumed. 

Accuracy KPI: accuracy in detection and classification for the target application (i.e. accuracy = number 

of the correct predictions divided by total number of predictions) vs. computational complexity and 

vs. used arithmetic; accuracy in iterative linear solvers (i.e., number of correct digits in the solution, 

as required by users). 

In the following subsections a common strategy for benchmarking and evaluating heterogeneous, 

mixed-precision and dynamic runtime systems applications is discussed. 

 

 

3.1 Heterogeneous applications 
 
The complexity of a heterogeneous computing platform such as the TEXTAROSSA project requires the use 
of a common methodology to perform power measurements, in order to manage a trade between 
computational power and energy consumption. For this purpose, a dedicated working group has been 
created within the project. The complete results of its activities are summarized on the technical document 
“Methodology for Power Measurement in the TEXTAROSSA Project”.  In the following we summarise the 
most relevant topics of the document. 

  

3.1.1 CPU 
 
Textarossa project will deal with two kinds of CPU architectures: x86_64 (AMD Milan/Rome, Intel Sapphire 
Rapids) and ARM V8.2 64 bit (AMPERE Altra Max).  
 

3.1.1.1 x86_64 Architectures  
 
Most modern processors, including Intel processors, provide Running Average Power Limit (RAPL) 

interfaces for reporting the accumulated energy consumption of various power domains of the CPU chip, 

attached DRAM and on-chip GPU. The update interval of the RAPL energy counters is approximately one 

millisecond. The RAPL energy reporting feature has been available for many generations on Intel SoC 

products, and energy reporting is standard practice for the industry. Intel processors utilise this energy 

information for internal SoC management purposes, such as control of SoC power limits in association with 

Intel® Turbo Boost Technology power limit settings within the SoC.  This RAPL energy data is exposed to 
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the platform via the host-software-accessible model specific registers (MSRs) such as 

MSR_PKG_Energy_Status and MSR_PP0_Energy_Status. This allows software to use the RAPL energy data 

for observation, telemetry, and/or inputs to platform-level power or thermal control algorithms [1]. The 

RAPL features described above are also available for AMD processors from family 17h on. 

RAPL readings are highly correlated with plug power, promisingly accurate enough and have negligible 

performance overhead. Experimental results suggest RAPL can be a very useful tool to measure and 

monitor the energy consumption of servers without deploying any complex power meters. [2] 

RAPL supports multiple power domains. The RAPL power domain is a physically meaningful domain (e.g., 

Processor Package, DRAM etc) for power management.  

 

Figure 1 illustrates the hierarchy of the power domains graphically.  

 

Figure 1 Power domains supported by RAPL [3] 
 

Each power domain informs the energy consumption of the domain, allows to limit the power consumption 

of that domain over a specified time window, monitors the performance impact of the power limit and 

provides other useful information, that is, energy measurement units, minimum or maximum power 

supported by the domain [3].  

RAPL provides the following power domains for both measuring and limiting energy consumption: 

 • Package: Package (PKG) domain measures the energy consumption of the entire socket. It includes the 

consumption of all the cores, integrated graphics and also the uncore components (last level caches, 

memory controller).  
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• Power Plane 0: Power Plane 0 (PP0) domain measures the energy consumption of all processor cores on the 

socket. RAPL does not support measuring the power consumption of individual CPU cores. 

• Power Plane 1: Power Plane 1 (PP1) domain measures the energy consumption of processor graphics (GPU) 

on the socket (desktop models only).  

• DRAM: DRAM domain measures the energy consumption of random-access memory (RAM) attached to the 

integrated memory controller. Deviations up to 20% from actual measurements have been reported for this 

particular domain, with a strong dependence on the specific processor architecture [4]. 

• PSys: Intel Skylake has introduced a new RAPL Domain named PSys. It monitors and controls the thermal and 

power specifications of the entire SoC and it is useful especially when the source of the power consumption is 

neither the CPU nor the GPU.  

As Figure 1 suggests, PSys includes the power consumption of the package domain, System Agent, PCH, eDRAM 

and a few more domains on a single socket SoC. For multi-socket server systems, each socket reports its own 

RAPL values (for example a 2-socket computing system has two separate PKG readings for both the packages, 

two separate PP0 readings, etc). The support for different power domains varies according to the processor 

model, as energy unit used: the Sandy Bridge uses energy units of 15.3 microjoules, whereas Haswell and Skylake 

uses units of 61 microjoules. 

RAPL measurements are accurate, the correlation coefficient between RAPL and plug AC power values has been 

measured using the Stream benchmark on a Haswell processor, resulting in a value of 0.99 [3]. 

Linux supports RAPL since from kernel 3.14, access to RAPL data is possible through several mechanisms, such 

as reading files under /sys/class/powercap/intel-rapl/intel-rapl:0, using the perf_event interface (e.g. sudo perf 

stat -a -e "power/energy-cores/” executable) or using raw-access to the underlying MSR registers provided by 

the msr kernel module.  

Several energy profiling tools using the RAPL infrastructure are currently available, we selected  

likwid-powermeter as reference power measuring tool for CPU tasks. likwid-powermeter is part of the Likwid 

toolsuite [5] of command line applications and a library for performance-oriented programmers. It works for 

Intel, AMD, ARMv8 and POWER9 processors on the Linux operating system. There is additional support for Nvidia 

GPUs. 

 

3.1.1.2 Ampere Altra Max  
 
According to the technical documentation provided by the manufacturer, this implementation of the 
ARM V8.2 64-bit architecture does not provide any RAPL-like facility for fine-grained power 
measurement.  
There four high power domains for Altra / AltraMax processors: 

• PCP power domain for CPU cores and mesh interconnects 
• SoC power domain for SoC blocks, memory and PCIe controllers 
• RCA power domain for PCIe/CCIX controllers 
• DDR4 power domain for memory IOs and DIMMs 

 
The Altra Max Processor Complex (PCP) features include:  

• 128 Arm v8.2+ 64-bit CPU cores at up to 3.00 GHz maximum  
• 64 KB L1 I-cache, 64 KB L1 D-cache per core  
• 1 MB L2 cache per core  
• 16 MB System Level Cache (SLC 
• 2x full-width (128b) SIMD  
• Coherent Mesh Interconnect (CMI): 
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Only PCP and SoC power domains are accessible using the Linux HWMON infrastructure, either 
reading the corresponding /sys/class/hwmon/hwmon0/* entries of the filesystem, or using the 
sensors command. 
An alternative method is to use the BMC infrastructure, that provides the following power data: 

• PCP power domain for CPU cores and mesh interconnects 
• SoC power domain for SoC blocks, memory and PCIe controllers 
• DDR4 power domain for memory IOs and DIMMs 

 
 

3.1.2 GPU 
 

In the context of the project only NVIDIA GPUs will be taken into account.  
To perform power monitoring on NVIDIA GPUs, a useful tool is represented by the NVIDIA 
Management Library (NVML): a C-based programmatic interface for monitoring and managing various 
states within NVIDIA GPU devices. NVML is delivered in the NVIDIA vGPU software Management SDK, 
which enables third party applications to monitor and control NVIDIA physical and virtual GPUS that 
are running on virtualisation hosts. Using the NVML APIs, we have experimented with a simple tool 
able to measure the power consumption of a CUDA kernel in specific points of the device code.  
However, the power value obtained through the NVML APIs is updated every ~20 ms. Thus, this 
sampling interval is not suited for a precise evaluation of the power consumption profile of a CUDA 
kernel with a short execution time. 
 

3.1.3 FPGA 
 
TEXTAROSSA adopts the XIlinx U280 as reference platform for the project. 
Referring to FPGAs’ power monitoring, POLIMI developed a methodology to deploy into generic 
hardware design online power monitors, capable of periodic power estimate. They evaluated 2 
possibilities of implemented power monitoring: 

− Software power monitors: applications providing online power monitoring in cases where 
platform RTL description is not accessible, at the cost of a non-negligible performance 
overhead, low accuracy and limited temporal resolution for the power estimate. 

− Hardware power monitors: dedicated hardware delivering highly accurate power estimates at 
high temporal resolution and without performance overhead at the cost of changing the RTL 
description of the computing platform. 

More information about this methodology can be found in [6]. 
 
In addition to this, Xilinx® provides a suite of software tools that can assess power supply requirements 
of the device throughout each stage of the design cycle. For example, Vivado® power analysis feature 
performs power analysis through the stages of: post-synthesis, post-placement, and post-routing. 
Also, Xilinx Runtime library (XRT) Linux kernel driver xclmgmt binds to management physical function 
and handles the access to in-band sensors (temperature, voltage, current, power etc.). In this context, 
POLIMI, UNIPI and INFN have started working together in order to characterise the power 
consumption of the IPs developed in TEXTAROSSA project. 
 
 

3.2 Mixed-precision applications 
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The increasing interest in complex AI and video applications involving large convolutional networks 

require a trade-off between the low complexity of integers and the high accuracy of floats. To this aim 

new arithmetic types, like Bfloat and Posits, will be considered. The KPIs will consider not only the 

accuracy in detection and classification for the target application (i.e. Accuracy = Number of correct 

predictions divided by Total number of predictions) but also computational complexity and power 

model.  

 

The target applications are: 

- by UNIPI-CINI, some AI and video classification applications will be used for smart cities surveillance 

services such as man-down (detection from camera acquired images of people laying down, useful for 

people rescuing in case of natural disasters, wars,…) and people detection and social distancing check 

and covered-face detection (useful for Covid-19). These applications are further described in Section 

4.1. 

- by Fraunhofer supported by UNIPI-CINI, an optimised Reverse Time Migration (RTM) algorithm that 

is used for oil and gas exploration in seismic imaging. This application is further described in Section 

4.3. 

 

These applications will be tested on GPU (e.g. NVIDIA GPU like T4 and Jetson AGX) and FPGA. The 

complexity of a heterogeneous computing platform requires the use of a common methodology to 

perform power measurements, to manage a trade between accuracy, computational power and 

energy consumption. To this aim, similarly to what described in 3.1, the following tools will be 

considered. 

 

For GPUs: To perform power monitoring on NVIDIA GPUs, a useful tool is represented by the NVIDIA 

Management Library (NVML): a C-based programmatic interface for monitoring and managing various 

states within NVIDIA GPU devices. NVML is delivered in the NVIDIA vGPU software Management SDK, 

which enables third party applications to monitor and control NVIDIA physical and virtual GPUS that 

are running on virtualisation hosts.  

 

FPGAs: Referring to FPGAs’ power monitoring, CINI-POLIMI has developed a methodology to deploy 

into generic hardware design online power monitors, capable of periodic power estimate. This 

methodology will be applied to the Posit Processing Unit designed by UNIPI-CINI to be integrated n 

FPGA technology.  

 

3.3 Dynamic runtime system applications - INRIA 
 

The performance of applications based on runtime systems is impacted by 1) the way the applications 

are parallelized, 2) the internal implementation of the runtime systems, and 3) the scheduling 

decisions taken at runtime to distribute the tasks overs the processing units. Concerning 1) the 

performance is clearly application dependent and is left aside from the current description. For 2), the 

internal implementation of a runtime system can be evaluated by measuring its overhead and its 

capacity to potentially hide data movement with computation when possible. We do not expect that 

including a new hardware device will change the quality of an existing runtime system, therefore we 
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recommend performing sanity check but do not consider it relevant to include these aspects in the 

benchmarking in TEXTAROSSA. This is why 3) is certainly the more important criterion. To evaluate 

the scheduling, we propose to study the makespan and the amount of memory data transfer. With 

this aim, we propose to benchmark runtime system-based applications with three metrics: makespan 

(duration of the execution) in seconds, amount of memory transferred in GB, and occupancy of the 

processing units in percentage. 
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4 Individual evaluation plans 

 

In Section 2 a high-level overview of applications is presented, emphasising which TEXTAROSSA 

hardware and software outcome will be demonstrated for each of the use cases. The application 

represents wide range of scientific domains and problems that are solved, and this is the reason to 

introduce individual evaluation plan. For each application it is explained briefly: i) the reason to 

improve, ii) the key performance indicators related to accuracy (if needed), computational and energy 

efficiency, and iii) the evaluation plan.  

 

4.1 Smart cities – CINI 

Why to improve 

CINI UNIPI is working on some AI and video classification applications that will be used for smart cities 

surveillance services such as: 

- man-down (detection from camera acquired images of people laying down, useful for people 

rescuing in case of natural disasters, wars,…)  

- people detection and social distancing check and covered-face detection (useful for Covid-19 

prevention).  

The need is improving the trade-off among computational complexity, frame-rate of the application, 

accuracy of the detection and classification.  

 

KPIs 

KPIs will be: 

- the achieved frame-rate,  

- accuracy of the detection and classification (i.e. Accuracy = Number of correct predictions divided by 

Total number of predictions 

- power consumption of the application implemented on the target platform 

 

Evaluation 

The evaluation will be carried out porting the algorithms in different platforms: e.g. GPU (T4 or Jetson-

AGX) and FPGA and using the tools discussed in paragraph 3.2. 

 

4.2 MathLib – CNR 

 

Why to improve 

CNR is  working on a mathematical software library for hybrid architectures, featuring NVIDIA GPUs at 

node level [7][8]. Mathematical software libraries provide a large resource for high-quality, reusable 

software components upon which applications can be rapidly constructed. They are building blocks 

for solving main mathematical problems, including radically new algorithms and methods at a low 

level, that domain scientists can transparently reuse in form of basic components with very little need 

of specific mathematical and computer science expertise. CNR is developing computational kernels 
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required in sparse matrix computations and iterative linear solvers which are widely applied in 

Scientific Computing and Data Analysis. Main focus is on node-level efficiency and scalability when 

multiple nodes are needed for computations whose dimensions largely exceed the memory resources 

of a single computing node, such as those stemming from leading-edge HPC applications.  

The kernels include:  

• Sparse matrix – vector multiplication (SpMV);  

• Sparse matrix power kernel (SpMPK);  

• Sparse matrix – matrix multiplication (SpMM);  

• Maximum Weight Matching in undirected graphs (MWM);  

• Communication Avoiding Conjugate Gradient method (CACG);  

• Algebraic MultiGrid preconditioners (AMG). 

  

KPIs 

Main objective is a sustained performance and scalability for solving problems at extreme scales. 

Therefore, main parameters will be execution times and speedup in strong and weak scalability 

regime. Concerning iterative linear solvers, specific parameters also include number of iterations to 

reach a given accuracy and execution time per iteration for increasing number of unknowns and 

parallel cores. Memory footprint is also an issue to efficiently face extreme scales, therefore key 

parameter will be also memory requirements of algorithm implementations. In the same way, 

parameters related to energy efficiency will include number of iterations per Watt and number of 

problem unknowns (dofs, degree of freedom) per Watt.  

  

Evaluation 

The plan for final evaluations on some well-known benchmarks, such as sparse linear systems coming 

from discretization of scalar partial differential equations of Poisson-type, includes the use of some 

clusters of hybrid nodes embedding Nvidia GPUs and also, when possible, the IDV based on Nvidia 

GPUs from WP5.  Main risks are related to the usage of tools, eventually proposed in the project, for 

energy consumption measurements, and the need to have access, at a reasonable stage of the project, 

to the IDV-A based on Nvidia GPUs. 

 

4.3 RTM – FRAUNHOFER 

 

Why to improve 

Reverse Time Migration (RTM) is used for oil and gas exploration in seismic. Migration algorithms 

usually need to digest input shot data up to the terabyte range to create 3D images. Days and weeks 

of cluster compute time are common. For this reason, the users of seismic algorithms are sensitive to 

compute time. Other migration algorithms approximate the wave equation to reduce the compute 

time, e.g., the Kirchhoff migration uses the high frequency ray approximation. However, these 

approximations have drawbacks, e.g. when it comes to resolve steep dips in salt domes. RTM is much 

better here in resolution but much more expensive in compute time as well. As TTI RTM algorithms 

are even more expensive than Isotropic or VTI RTM algorithms, the latter two are the most frequently 

used RTM algorithms in practice. Isotropic and VTI RTM algorithms are both quite memory bound. 
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Here calculations are done typically in 32bit floating point. Reduction of data precision (at least partial, 

so mixed precision) to 16 bits could half the consumed memory bandwidth and double the throughput 

of the kernel. So the gap in cost between RTM and cheaper migration methods is reduced. 

  

KPIs 

The drawback of using reduced or mixed precision might be a reduced image quality. As the better 

image quality of RTM versus cheaper methods is the main reason to use RTM in the first place, 

retaining an acceptable level of image quality is crucial.  

This work analyses the possibility to reduce the floating-point precision at least in parts of the RTM 

algorithm to increase the throughput of the algorithm. Important boundary conditions that need to 

be kept up are the accuracy and the stability of the numerical results.  

  

Evaluation 

Simple test examples are created. From these images are computed in different reduced floating point 

precision formats and mixed floating point precision formats. These images are compared to images 

which are computed fully in single precision.  Seismic experts will evaluate the images. 

 Further the numerical stability versus the time step size will be evaluated. Here a forward propagation 

of the wave signal and the total energy within the 3D volume for each time step will be computed. In 

the stable time step region the total energy should stay constant over simulated time. Different time 

steps will be evaluated to determine the stable time step region numerically. 

 

4.4 HEP - INFN 
Why to improve 

The need to be able to execute scientific code on heterogeneous architectures is evident in many 

domains, from High Energy Physics, genomics, astrophysics to medical physics. The extrapolated 

needs for the next decades surpass what standard CPU evolution can allow. The most promising path 

to affordable computing lies in the utilization of better performance/cost computing solutions, like 

those offered by accelerator technologies; on top of this, the same technologies are expected to be 

present in most HPC centres, and available to users only if their codes can be executed efficiently. The 

main obstacle is the difficulty to redesign algorithms in a suitable manner for each different 

architecture, due to the lack of knowledge and of manpower.  

For the TEXTAROSSA project, two high energy physics applications were identifies: 

- a track reconstruction algorithm for the CMS detector developed by the Patatrack team [9] 

- the CLUE algorithm, a cluster algorithm for high granularity calorimeters [10] 

 

KPIs 
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In the kind of above applications, the measurement of the latency as the delay between the invoking 

an operation and getting its response is not a representative metric as much as the throughput, i.e., 

the number of computing tasks per time unit. Therefore, the KPI considered for the HEP applications 

is a throughput metric: the reconstructed events per second. In particular, for the track reconstruction 

algorithm, the reconstructed events are the particle tracks in the detector; instead, for the CLUE 

algorithm, the reconstructed events are the assignment of a cluster to each point. 

 

Evaluation 

The goal is to obtain a single heterogeneous software per application that can be run in parallel on 

multiple backends, taking advantage of the characteristics of each architecture. To evaluate the 

results, the comparison of the performance obtained using the serial code running on the CPU versus 

the parallel and heterogeneous code running on multiple backends (CPU, GPU, FPGA) is of main 

interest. The performance is measured as the time spent to reconstruct N events.   

 

4.5 NEST-GPU - INFN 
Why to improve 

The main reason for developing a CUDA version of the CPU-only NEST neural simulator was to tap into 

the large floating point compute resources available on NVIDIA GPUs, in order to speed-up the 

integration of the large systems of differential equations as required by the setup and dynamics 

simulation of complex neural networks that an in-silico neurophysiology experiment implies. Any 

improvement in this regard can either push the size and the complexity of what can be achieved by 

such experiments on non-extreme scale HPC platforms. Moreover, shrinking the power envelope 

could even demonstrate the feasibility for NEST-GPU to drive an embodied agent, which would be 

useful for robotics applications. 

A more thorough description of the NEST-GPU application can be found in [11], while an up-to-date 

comparison to the CPU-only sibling application NEST running on a cluster and using MPI 

communications can be found in [12]. 

 

KPIs 

As mentioned, the KPIs are those related to the size, complexity and achievability (which usually 

means bringing down the timeframe of a simulation to a manageable level) of a neurophysiology 

experiment, therefore time-to-solution (as how long it takes to simulate e.g. 1s of a neural network of 

predefined size), the synaptic activity (the ratio of synaptic events to the actual runtime) and the 

energy-to-solution (as the energy dissipated throughout this runtime) will be considered. 

 

Evaluation 

The evaluation of the mentioned KPIs is obtained defining some average sized network that can be 

representative of a sufficiently broad set of experiments and simulating via NEST-GPU 1s of activity of 

such network (possibly a little longer if we concede some warm-up period to let the system reach a 

steady state) on the reference platform while measuring the elapsed time, the number of synaptic 

events and the power consumption throughout. 
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4.6 RAIDER – INFN 

Why to improve 
Real-time (also called “online” in the specific context) particle identification (PID), or partial particle 
identification (e.g., electron identification), is a critical task in High Energy Physics experiments: it 
enhances the suppression of background physics events, allowing to keep the bandwidth that data 
acquisition systems must forward to the analysis pipeline within a manageable level. 
In this section, we refer to “event” as the instantaneous physical situation or occurrence associated 
with a point in spacetime, characterised in our systems by different information obtained through 
several physical detectors. 
The system implementing the PID task must face two main requirements:  

1. processing latency, often bounded to a few microseconds or less; 
2. processing throughput, which can be in the order of 107 events per second.  

FPGA devices are good candidates to be used as processing nodes to implement a dedicated 
computing architecture to perform PID, as these devices allow the design of AI algorithms through HLS 
tools, and the implementation of data transport (with support for a wide set of physical and transport 
layers protocols) and processing stages characterized by a highly predictable and low latency. A low-
latency direct interconnection between FPGA nodes allows:  

+ to scale the system to meet the throughput requirements, deploying multiple dedicated 
computational units (CUs) on several boards; 

+ to gather data streams from different detectors, possibly processed according to a multi-layer 
architecture performing a distributed PID task.   

 
A desirable development of such an architecture has been identified in the CERN NA62 experiment: 
in fact, RAIDER application seems suitable for the timing requirements of the Level 0 of the NA62 
trigger, allowing a possible implementation of a PID system based on the use of neural networks 
trained for ring reconstruction over the events coming from the NA62 RICH detector.  
A more detailed description of this workflow can be found in [13]. 
 
KPIs 
Besides the processing latency per event that must be less than the experimental requirement, and 
so it should be considered more as a prerequisite rather than a KPI, relevant KPIs for the RAIDER 
application are, for given values of accuracy and purity of the (partial) PID task: 

1. the number of processed events per second, i.e., the throughput; 
2. the number of processed events per watt.  

 
Evaluation 
The measurement of the Mevents/s KPI is trivial.  
A joint activity with the POLIMI team, aimed at instrumenting the RTL code of the communication IPs 
and processing kernels in order to measure their power consumption, has just started. Since this 
methodology has already been used successfully in the past by the POLIMI team any particular risk at 
the moment for the measurement of the Mevents/W KPI is identified.  

 

4.7 TNM – INFN 

Why to improve 

Tensor network methods consist of techniques that represent the quantum state of N qubits as a 

series of tensor contractions. By trading some accuracy, this enables for example quantum circuit 
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simulators to handle circuits with many qubits that would not be feasible to be simulated with exact 

methods because of the exponential growth of the Hilbert space. However, depending on circuit 

topology and depth, this can also get prohibitively expensive. This highlights the need for tensor 

network methods to be executed on heterogeneous architectures to efficiently exploit parallel 

computing and powerful GPU computation. Before moving towards mixed-precision methods, the 

effect of running different precisions for a complete simulation are reported. 

 

KPIs 

In the kind of above applications several KPIs can be considered for estimating computational 

efficiency. For a quantum simulation with tensor network methods one can evaluate the performance 

by looking at the number of qubits that can be simulated per second with a fixed set of convergence 

parameters as the bond dimension between the link in the tensors. Another KPI is the number of gates 

per second that can be executed in a simulation of a quantum system with a given size. A possible 

direction to evaluate the KPI for energy consumption is to follow up on our previous work, which 

compares the energy consumption of a quantum circuit on a quantum processing unit against the 

same quantum circuit running with tensor networks [14]. 

 

Evaluation 

To evaluate the results, the performance of the software executed by using the serial code running on 

the CPU versus the parallel and heterogeneous code running on CPU and GPU will be compared. 

 

4.8 Chameleon (Mathlib-INRIA) 

 
Why to improve 

Chameleon is a dense linear solver based on StarPU, i.e. it is parallelised with a task-based method 

and relies on classical Blas functions in the tasks. Consequently, its performance is critically tied to the 

scheduling of the tasks and the raw performance of the Blas functions on the target processing units. 

Chameleon has been massively used on distributed heterogeneous computing nodes equipped with 

multiple GPUs. However, the study of a large-scale dense linear solver with FPGAs has never been 

done. This is why we want to use FPGA and see how this can improve performance and/or energy.    

 

KPIs 

Two main KPIs are FLOP per second and FLOP per watt because main interest is in evaluate speedup 

and energy efficiency can be obtained in running with FPGA . 

 

Evaluation 

FLOP per second can be obtained easily. The FLOPS per watt needs hardware counters. 

4.9 ScalFMM (Mathlib-INRIA) 

 

Why to improve 
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The fast multipole method is a well-known approach that allows for reducing the quadratic complexity 

when computing interactions in n-body problems. ScalFMM has been a pioneer by proving the first 

implementing FMM algorithm on top of StarPU, i.e. parallelised with a task-based method. ScalFMM 

can be executed on distributed computing nodes equipped with accelerator devices and used CPUs 

and GPUs concurrently. Said differently, when the GPUs are computing kernels for which they are 

efficient, we use CPUs at the same time for less GPU-friendly kernels. Currently, we implemented the 

two major FMM kernels with CUDA such that we can use the main common HPC architectures. 

However, we never study its energy efficiency or the use of FPGA. 

 

KPIs 

Two main KPIs are n-body interactions per second and n-body interactions per watt because main 

interest is in evaluate speedup and energy efficiency in running with FPGA. Energy efficiency will be 

also evaluated for the existing GPU version. 

 

Evaluation 

N-body interactions or FLOP per second is obvious. Whereas interactions or FLOP per watt needs 

hardware counters. Once these counters will be available, FPGA kernels for the P2P operators and 

benchmark will be evaluated. Comparisons when using GPUs or FPGAs to highlight the situations 

where one is better than the other will be carried out. 

 

4.10 UrbanAir – PSNC 

Why to improve 

In the UrbanAir we deal with weather forecasting which then influences how pollutants are transported 

and dispersed within the cities. One of the challenges is to efficiently and effectively represent complex 

building structures which affect contaminants flow. To model the problem accurately, there is a need for 

vast of computational resources. In order to be able to simulate larger domains, we need to improve. 

CPU+GPU realisation on multiple nodes is considered to shorten execution time, and to increase in energy 

efficiency. Additionally, we want to investigate whether implying mixed precision can lead to increased 

efficiency by minimising communication time.  

 

KPIs 

The main part to be adapted to heterogeneous resources is an iterative solver, with the aim of dividing it 

into smaller kernels.  Iterations/s and iterations/watt for respectively computational and energy efficiency 

will be considered.  

 

Evaluation 

The kernels will be benchmarked on currently available hardware for the baseline measurements. 

Iterations/s will be collected programmatically, while iterations/Watt need some energy measurement 

tools developed on WP4. The progress will be measured on a regular basis, on the available testbed, and 

at the end of the project it will be compared against IDV-A and project tools.  
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5 Future work 
In this deliverable we discuss general and individual evaluation plan of the Textarossa features and uses 

cases. The next step is to benchmark each application with defined KPI, which will be the baseline 

measurements to compare with at the end of the project. The outcomes of this task will be described in 

the following deliverable – D6.2 Initial application benchmarks and results. The baseline measurements 

from WP1 benchmarking task shall serve for comparison and calculation of achieved improvements. 

Moreover, remaining outcomes of WP1 shall be taken into account to extend the proposed evaluation 

metrics. It is planned to derived such discussion in the next deliverable. It may be the case that the details 

of evaluation plan may require an update, such will be provided with the next deliverables. 
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