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Executive  Summary 

This report shows the Benchmarking Design and Planning within the WP1 of the Textarossa project. It 

provides a reference on how to measure the KPIs of the platform along some benchmark results in 

the available HPC platforms. 

   

Partner Report Activity 

Task 1.2.3 
TL: INRIA 
WP6 
TL: PSNC 

This deliverable reports the benchmarking design to obtain the Key Performance 
Indicators needed by the test activities carried out in WP6 and reported in D6.1, 
D6.2 and D6.3 

Github address The software developed and the benchmarks carried out during the activity are 
downloadable at github at the address: 

Technology BSC, E4, INFN 

Technical 
development 

The technical development is performed by BSC, INFN 

 

List of Authors 

BSC Xavier Martorell, Daniel Jiménez-González, Antonio Filgueras, Carlos Alvarez 

INFN Alessandro Lonardo, Cristian Rossi, Francesco Simula, Francesca Lo Cicero, Ottorino Frezza 
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BMC Baseboard Management Controller 

C/R Checkpointing/Restart 

CAPI Common Application Programmer's Interface 

CCXI Cache Coherent Interconnect for Accelerators 

CLB Configurable Logic Block 

CNN Convolution Neural Network 

CP Common Platform 

CPU Central Processing Unit 

CU Compute Unit 

DAG Data-flow Graphs 
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DC Direct Cooling 

DCL Data Control Language  

DDR Double Data Rate memory 

DIMMs Dual In‑line Memory Modules  

DL Deep Learning 

DLC Direct Liquid Cooling 
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FP Floating Point 

FPGA  Field Programmable Gate Array 
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GPU Graphics Processing Unit 

GPGPU General Purpose Graphics Processing Unit 
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PCIe Peripheral Component Interconnect Express 
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1 Introduction  
 In WP1 the objective is to use a co-design process for developing key technology components able to 

achieve sizable levels of energy-efficiency in heterogeneous systems for High Computing Performance, AI 

and HPDA applying using a holistic approach. Usually, a co-design centric process works on the whole stack 

from underlying HW/SW platforms to the tip of the applications with a process built around identifying 

specific high-impact applications and providing custom optimization targets. 

This deliverable covers the last part of the WP1 objectives: performing benchmarking activities including 

the design of a benchmarking tool for user applications as well as to perform initial benchmarking of 

original codes, whereas possible, on reference platforms over the HPC resources available in the project 

for scalability analysis. 

1.1 Relationship with the objectives of the project 

This deliverable is related to the following project objectives as stated in the DoA: 

• Objective 1 - Energy efficiency. This deliverable reports how to measure energy consumption for 

the IDV platforms. Energy consumption measurement is the first necessary step in order to adapt 

the runtimes and/or the applications to improve it. 

• Objective 2 - Sustained application performance. This deliverable plans how to measure the 

relevant performance KPIs of the applications. As reported in Section 5 Results, this deliverable 

also shows some applications performance results obtained with the tools developed in the 

project that are competitive with the state-of-the-art results for the same platforms. 

• Objective 3 - Fine-tuned thermal policies integrated with an innovative cooling technology. As with 

Objective 1, the energy consumption measurement methods explained in this deliverable are the 

first step to develop fine-tuned thermal policies. 

• Objective 4 - Seamless integration of reconfigurable accelerators. The results obtained for the 

FPGA platform showed in Section 5 Results are developed with reconfigurable accelerators 

seamlessly integrated in the system with the OmpSs@FPGA framework. The code of the 

benchmarks is publicly available and shown in Appendix B for convenience. 

• Objective 5 - Development of new IPs. The FPGA platform results showed have been obtained 

using the hardware IP developed in Task 2.5 and the OmpSs@FPGA framework developed in WP4 

across different tasks. 

• Objective 6 - Integrated Development Platform. As explained in section 2.2 IDV-E Platform (FPGA) 

at the moment of finishing this deliverable we have been able to run and test the benchmarks in 

the final IDV-E Platform. It is important to highlight that although most of the results shown have 

been obtained using the temporal platform that was available from the beginning of the project, 

now that the final platform is available the codes and techniques developed in the project can be 

adapted to the new IDV-E platform in a straightforward way. 

1.2 Organization 

This document is organised as follows. In Section 2, the different hardware platforms used in the project 

are presented. It also details the hardware architecture being available for testing. Section 3 briefly refers 

the metrics of interest for the project. Section 4 presents the methodology plan for benchmarking the 



  

textarossa.eu   D1.4 | 10 

applications. In Section 5, there is an example on the results of the benchmarking designed in this 

deliverable for some example applications. Finally, Section 6 brings some conclusions to the table. 
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2     Hardware Description  
In this section the different hardware platforms proposed in the project are described, as well as the 

current available platforms used to explain the benchmarking design and planning. 

2.1 IDV-A and Mitigating Platform (GPU) 

The mitigating platform used for the experiments is BullSequana XH2000 platform, accessible to Atos 

partners in several funded projects. In particular only one CRRM blade is used, and then, there is no 

connection to high-speed interconnect and the only access is a 1Gb/s link of the CPU host.  

The CRRM blade is composed of dual AMD EPYC 7402P with 24 cores and 48 threads per CPU. Main 

memory is laid out as 8 NUMA nodes, with 64GB of memory each. They add up a total of 512GB of main 

memory. This node also contains 4 nvidia A100 GPU XSM-40GB GPU. They are attached via the nvidia SXM4 

socket. This provides PCIe Gen 4 x16 connectivity to the host system as well as 4 nvlink lanes to each of the 

other GPUs. Each GPU includes 40GB HBM2 local memory. This node is currently accessible via ATOS’ 

Dibona research cluster, located at ATOS’ facilities. Figure 2.1.1 shows a high level view of this architecture.  

-  

Figure 2.1.1 GPU blade architecture with PCIe switches  

  
The architecture of final IDV-A is similar, except that the PCIe switch is embedded in the Infiniband NDR 
NIC (ConnectX 7 ou CX7), as described in the following figure: 
 

 

Figure 2.1.2 GPU blade architecture with embedded PCIe switches 
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This architecture change has no impact on the blade performance. Therefore, although the mitigating 
platform is not exactly the same as the final one, the benchmarking design and planning can be easily 
ported to the final platform, and we only expect performance improvements due to two main evolutions: 

- Nvidia GPU is the next generation Hopper H100, interconnected with Nvlink. 
- In the host node, the AMD Rome CPU is replaced with Intel Sapphire Rapids CPU, with 8 DDR5 

memory channels @4800 MT/s and 2 x16 PCIe Gen5 slots per socket. 
 
This blade will be hosted on the new BullSequana XH3000 platform. As this blade remains isolated, the 
node will also be accessed with the 1Gb/s Ethernet link of the host. 

 

2.2 IDV-E and Mitigating Platform (FPGA) 

The IDV-E platform is composed of a 2U Mt. Collins with 2 Ampere® Altra® Max Series Processor with 128 

cores per CPU plus a Xilinx Alveo U280 FPGA. Main memory is distributed among 2 NUMA nodes with 

128GB of main memory each. All hardware details are described in D5.2 ARM + FGPA node prototype. The 

platform is located at E4 premises and it is currently available. However, there has been two issues that 

have been solved at the moment of finishing and reporting this deliverable: 

1. Xilinx doesn’t support ARM host processors for its standalone (PCIe connected) family of FPGAs 

including the Alveo series. The work carried out at the project overcame this issue with a prototype 

mounted at BSC 1  (described in D4.1 Progress Report on Programming Models and Runtime 

Systems, section 3.3.1 Proof-of-concept Textarossa IDV-E Test support). This has been solved in 

the final machine thanks to the collaboration between E4 and BSC partners. 

2. There were PCIe communication issues between the ARM processor and the FPGA that had to be 

debugged to find out which were the hardware configuration problems.  

Appendix A describes the proof-of-concept experiments performed on the IDV-E platform. Therefore, as 

already mentioned, the final IDV-E prototype is now available to perform executions and measurements 

for applications using FPGAs. However, this deliverable reports the results obtained with a mitigation 

platform described below due to timing constrains on performing all the experiments again with the 

functional IDV-E platform using FPGAs. The mitigation platform has very similar characteristics to the final 

platform so that the experiments presented should be able to be ported to the final IDV-E platform. On the 

other hand, IDV-E project platform has been used to report performance results for applications only using 

CPUs.  

The mitigation FPGA platform is composed of a Xilinx Alveo U200 (XCU200-FSGD2104) using a custom 

design flow. This accelerator card is connected to a host system via a PCIe 2.0 x16 link. The host system is 

a dual Xeon CPU X5680 running at 3.33GHz, with two NUMA nodes, six cores per socket and two threads 

per core, with 72GB PC3-10600 of main memory. 

 

 

 

 
1 The specific contents of deliverable 4.1 referred have been included in the Appendix A of this deliverable for 
convenience.   
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3 Metrics of interest 
The metrics of interest of the applications used in the project are diverse as it is the aim of the project to 

elaborate solutions for a whole set of different problems. In this sense, the metrics of interest of the project 

can be grouped in three different types of KPIs: computational efficiency KPIs, energy KPIs and accuracy 

KPIs. 

In particular, the metrics we propose are KPIs against the time. This way, Flops oriented applications can 

measure GFlops/s (probably the most common KPI) while other applications can measure GPairs/s, 

GEvents/s, Qubits/s etc. A full list of selected KPIs per application can be found in D6.1 Applications and 

Use cases. For convenience, Table 3.1 reproduces the contents of D6.1 Table 3 listing the individual KPIs of 

each application. Once the baseline KPIs per second are stablished we propose to measure not absolute 

values but relative improvements (speedup measured as time improvements achieved to obtain the same 

KPIs) in order to evaluate the impact of the project in the application performance. 

App name KPI - computational efficiency KPI - energy KPI - accuracy 

Smart cities execution time/speedup on 
GPU vs. scalability vs. accuracy 

Power model on 
target GPU and on 
FPGA 

Yes 

Mathlib-CNR execution time/speedup/strong 
and weak scalability; number of 
iterations to a fixed 
accuracy/time per iteration for 
iterative solvers 

Iterations / W;  
Dofs / W 

Yes (user’s 
parameter 
dependent) 

RTM increase memory bandwidth, 
then maybe increase Flops 

 No No 

HEP Events / s Events / J No 

NestGPU Simulated ms / s SUPs / J No 

RAIDER Events / s Events / J Yes 

TNM Qubits / s  
Gate / s 

Qubits / W s 
Gates / W s 

No 

Mathlib-INRIA Flops/s | Interactions/s Flops / W, 
Interactions / W 

No 

UrbanAir iterations/s, simulated time/s Iterations / W No 

Table 3.1: Individual KPIs 

The KPIs for computational efficiency are:  

• Time per iteration, used by iterative solvers where performance can be judged based on how many 

seconds are needed per each iteration and number of iterations to a user’s defined accuracy.  

• Simulated time/s (or timesteps/s), used by the solvers which iterates through simulated time, the 

more timesteps are calculated within one second the better the performance is.  

• Interactions/s, used by n-body simulations where the number of interactions between particles is 

representative of the performance.   

• Events/s, used by trigger systems in physics experiments where we refer to “event” as the 

instantaneous physical situation or occurrence associated with a point in spacetime, characterised 

in our systems by different information obtained through several physical detectors.   
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• Qubits/s (and Gate/s), with an equal fixed set of convergence parameters for a quantum 

simulation with tensor networks method, e.g., fixed bond dimension, the performance can be 

evaluated looking at what is the size of the system n, in terms of number of qubits, that can be 

simulated within a second. In some other application, for a given n-qubit system, the performance 

can be evaluated looking at the number of quantum gates within a second that can be executed.  

• FLOP/s, a general performance KPI to indicate how many floating-point operations per second can 

application achieve. 
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4 Analisys methodology 

4.1 Performance measurements 

 

As we mentioned, one of the main problems of defining a common framework to measure performance in 

the context of the project is the wide range of different applications and computing platforms used in the 

project. In this sense, this section proposes a set of guidelines that can be followed by all the available 

applications while, at the same time, tries to be flexible enough to 0allow for each application to measure 

its own KPIs. 

As every application relies in a different KPI, measuring the exact KPI is application dependent. However, 

usually all the KPIs numerators are easily computed from the execution itself. As an example, in a Matrix 

Multiplication problem, the number of FLOPs computed is always 2xN3 where N is the size of the side of 

the (square) matrix. In an iterative solver, the number of iterations executed is also easily obtained after 

the solution is found. This fact reduces the problem at measuring the denominator (i.e., time). 

In any case, measurements should be reproducible in the sense of: 

1) If you want to measure elapsed time, try to run the application within a SLURM queue system that 

you can reserve a full node to run your application. Otherwise, be sure that you are alone when 

interactively running with no other applications running at the same time. 

2) If your application performs I/O operations and you want to measure the elapsed time dedicated 

to them, avoid NFS/CIFS file system. 

3) Be aware about the energy governors of your OS system. OnDemand or power safe governors may 

not be the best choices to look for maximum speed up in terms of execution time. 

4) Choose representative Input Data for the benchmarking and keep the output results. 

5) You may want to use a software for tracking changes. 

6) Repeat the measurements and statically analyse them (i.e., T-student). 

7) Run the original application in an in-site platform to: 

a) Compile the application with different optimization flags to obtain the best performance 

that the compiler can achieve (i.e., with gcc, -O1, -O2, -O3, -Ofast, -march=native, etc.).  

b) Obtain the execution time and KPIs of the application for representative Input Data sets 

c) Obtain golden output (if not integrated in the execution of the application) 

As already commented above, in addition to the set of different applications there is also a whole set of 

different platforms where the applications can be executed. In the next subsections, different ways of 

measuring time performance are detailed for the different targets in the project. 

4.1.1 Performance Measurement on CPUs 
Time measurement on CPUs is an already solved problem. Different solutions exist that can report the time 

consumed by a CPU while executing a program.   

An incomplete list of the most common alternatives follows. 

Shell time command (Linux) 

The easiest and less precise way of measuring time is the Linux time command. Although this method has 

some disadvantages (the main one being that specific phases inside a program cannot be measured 
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independently) it also has some strong advantages: it is very easy to use and if the program relies on close-

source libraries, may be the only alternative. Figure 4.1.1 shows the output of a very simple program 

(pi_seq) that computes constant Pi with a Monte-Carlo algorithm that increases the output precision with 

the number of iterations. The application outputs the number of iterations (in this example this would be 

the KPI), the Pi constant computed and the time in seconds measured only around the Monte-Carlo kernel. 

This number can be compared against the real time reported by the Linux time  

 

Figure 4.1.1: Shell time command usage example 

The output of Figure 4.1.1 shows the main limitation of the time command. As it can be seen, the “exact” 

time used (as reported by the more precise in-program measurement) is smaller than the “real” time 

reported by the command. In applications with large startup overheads (like reading large amounts of 

data from disk) the difference can hide the improvements done in the actual computational kernel, 

especially for small datasets used in development. 

GNU time command (/usr/bin/time) 

GNU time command provides more information about the amount of page faults and %CPU used. In 

addition, you can specify what kind of output format and information you want.  Listing 4.1.1 shows two 

examples of usage of GNU time command. First example keep timing in output.txt and second uses a 

format to process it later. 

> /usr/bin/time -o output.txt ./pi_seq 1000000000  

Number pi after 1000000000 iterations = 3.141592653589828 

Execution time (secs.): 0.685819 

> cat output.txt 

0.68user 0.00system 0:00.70elapsed 98%CPU (0avgtext+0avgdata 2296maxresident)k 

0inputs+8outputs (0major+96minor)pagefaults 0swaps 

> /usr/bin/time -f "%e %U %S %P"  -o output.txt ./pi_seq 1000000000 

Number pi after 1000000000 iterations = 3.141592653589828 

Execution time (secs.): 0.686557 

> cat output.txt 

0.69 0.68 0.00 98% 

Listing 4.1.1: Two examples of time command usage. The first one with timing and the second one formatted for later 
use. 
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Perf-stat command  

Perf is a powerful profiling tool that include stat functionality. It shows the elapsed execution time of the 

application (overall) and hardware counter information as cycles, cache misses, branches, branch-misses, 

etc.  The perf-stat tool allows the user to specify the number of runs she/he wants to perform of the 

application to do a basic statistical analysis.  Figure 4.1.2 shows the output of the perf stat when running 3 

times a “ls” command in a Linux system. The important thing here is to notice that we can see the main 

information about cycles, branches and branch-misses, cache misses in different levels and the overall 

execution time (elapsed time). In addition, the perf tool already performs a possible KPI as IPC (ins per cycle 

in the Figure). Partial results can be kept with --table option for the number of runs we want to perform (-

r option).  “-d” option is to show cache memory accesses and misses.  

 

Figure 4.1.2: Perf stat command usage example: perf stat --table -r 3 -d ls 

 

Perf profiling 

As  mentioned, Perf is profiling tool that can use the hardware counters of the processors to measure 

CPU time but also cache misses, branch miss predictions, etc. In fact, it can provide this information at 

user, library and even kernel function level. In addition, if the application is compiled with debug 

information, it also can provide information at source code (and assembly) line.  Overall, it is a powerful 

tool to detect the hot pots of the code to be optimized, parallelized or accelerated and ported to the GPU 

or FPGA.  In order to know the hardware counters are available at the machine you can run perf list 

command. Be aware that depending on the system you may need sudo permissions or ask the system 

administrator to set to 1 and 0 the follow Linux files:  

echo 1 > /proc/sys/kernel/perf_event_paranoid 
echo 0 > /proc/sys/kernel/kptr_restrict 

Listing 4.1.2 shows an example of usage of perf to profile and visualize the profiling results.  
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> perf record -e cycles -e cache-misses ./pi.O3.g > /dev/null  
[ perf record: Woken up 71 times to write data ] 
[ perf record: Captured and wrote 17.739 MB perf.data (387449 samples) ] 
 
> perf report –stdio 
# Total Lost Samples: 0 
# 
# Samples: 250K of event 'cycles' 
# Event count (approx.): 41585025326 
# 
# Overhead  Command  Shared Object      Symbol                           
# ........  .......  .................  ................................ 
# 
    31.70%  pi.O3.g  pi.O3.g            [.] __udivsi3 
    27.47%  pi.O3.g  pi.O3.g            [.] SUBTRACT 
    27.36%  pi.O3.g  pi.O3.g            [.] DIVIDE 
     9.58%  pi.O3.g  pi.O3.g            [.] LONGDIV 
     3.54%  pi.O3.g  pi.O3.g            [.] .divsi3_skip_div0_test 
     0.08%  pi.O3.g  pi.O3.g            [.] __divsi3 
     0.06%  pi.O3.g  libc-2.31.so       [.] memset 
     0.02%  pi.O3.g  libc-2.31.so       [.] putchar 
     0.01%  pi.O3.g  libc-2.31.so       [.] __vfprintf_internal 
     0.01%  pi.O3.g  [kernel.kallsyms]  [k] vfs_write 
     0.01%  pi.O3.g  [kernel.kallsyms]  [k] _raw_spin_unlock_irq 
     0.01%  pi.O3.g  libc-2.31.so       [.] _IO_file_overflow@@GLIBC_2.4 
     0.01%  pi.O3.g  libc-2.31.so       [.] _IO_file_write@@GLIBC_2.4 
… 
> perf annotate –n –stdio 
… // capture of the output of perf-annotate 

 

Listing 4.1.2: Profiling example with perf tool. 

 

However, sometimes we require to measure the CPU time, cache misses, etc. of a part of the code that 

does not corresponds to a function or even elapsed time. In this case we should do code instrumentation.  

Linux Timing API 

In order to measure the execution time (elapsed and CPU time) of a part of the code, we may need to 

instrument the code using, for instance, clock_gettime that provides ns precision.  Listing 4.1.3 shows an 

example of timing instrumentation of part of the application. 
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    #include <time.h> 
    ... 
    struct timespec start_wc, start_cpu;  // wall clock and CPU time 
    if (clock_gettime(CLOCK_MONOTONIC, &start_wc) == -1) exit(1);  
    if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start_cpu) == -1) exit(1);  
 
    // code to measure the elapse and cpu time  
    … 
     
    struct timespec end_wc, end_cpu; 
    if (clock_gettime(CLOCK_MONOTONIC, &end_wc) == -1) exit(1); 
    if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end_cpu) == -1) exit(1); 
    float elapsed_time = (end_wc.tv_sec - start_wc.tv_sec) + (end_wc.tv_nsec - start_wc.tv_nsec)*1e-9; 
    float cpu_time = (end_cpu.tv_sec - start_cpu.tv_sec) + (end_cpu.tv_nsec - start_cpu.tv_nsec)*1e-9; 

 

Listing 4.1.3: Instrumentation example with clock_gettime to obtain elapsed and CPU time of a part of a code.     

 

In case we need to measure something that requires access to the hardware counters, PAPI 

instrumentation can be used. 

 

PAPI instrumentation 

PAPI (Performance application Programming Interface) allows programmers to access the hardware 

counters through a library.  In order to know which are the hardware counters (and their names) that you 

can access you should run papi_avail command at your machine.  Listing 4.1.1 shows the output result of 

running papi_avail in a Zynq 7000 system (ARM SMP + AMD/Xilinx FPGA). 

PAPI_L1_DCM  0x80000000  Yes   No   Level 1 data cache misses 
PAPI_L1_ICM  0x80000001  Yes   No   Level 1 instruction cache misses 
PAPI_TLB_DM  0x80000014  Yes   No   Data translation lookaside buffer misses 
PAPI_TLB_IM  0x80000015  Yes   No   Instruction translation lookaside buffer misses 
PAPI_HW_INT  0x80000029  Yes   No   Hardware interrupts 
PAPI_BR_MSP  0x8000002e  Yes   No   Conditional branch instructions mispredicted 
PAPI_TOT_IIS 0x80000031  Yes   No   Instructions issued 
PAPI_TOT_INS 0x80000032  Yes   No   Instructions completed 
PAPI_FP_INS  0x80000034  Yes   No   Floating point instructions 
PAPI_LD_INS  0x80000035  Yes   No   Load instructions 
PAPI_SR_INS  0x80000036  Yes   No   Store instructions 
PAPI_BR_INS  0x80000037  Yes   No   Branch instructions 
PAPI_VEC_INS 0x80000038  Yes   No   Vector/SIMD instructions (could include integer) 
PAPI_TOT_CYC 0x8000003b  Yes   No   Total cycles 
PAPI_L1_DCA  0x80000040  Yes   No   Level 1 data cache accesses 

 

Listing 4.1.4: Output rsult of papi_avail.     

 

As it can be seen in listing 4.1.4, the list of hardware counters that are available (that should be the same 

accessible by the perf tool) allow the programmer to measure different KPIs and Floating-Point 

operations per second. 

Listing 4.1.5 shows an example of PAPI instrumentation of a code. 
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    #include <papi.h> 
    … 
 
    // start PAPI setup 
    long long counters[NUM_COUNTERS]; 
    int PAPI_events[] = { PAPI_TOT_CYC, PAPI_L1_DCM }; 
     
    PAPI_library_init(PAPI_VER_CURRENT); 
    papi_counters = PAPI_num_counters(); 
  
    if (papi_counters < NUM_COUNTERS) { 
        fprintf(stderr,"Error, only %d available counters\n", papi_counters); 
        exit(1); 
    } 
    // end PAPI setup 
   
 
    // PAPI instrumentation to indicate it should start counting the type of events indicated by PAPI events 
    status = PAPI_start_counters( PAPI_events, NUM_COUNTERS ); 
    if (status != PAPI_OK) { 
        fprintf(stderr,"Error in PAPI_start_counters (code: %d)\n", status); 
        exit(1); 
    } 
     
    …. 
    // code to be measured 
    ... 
 
    // PAPI instrumentation to indicate it should stop counting and store them into counters 
    status = PAPI_read_counters( counters, NUM_COUNTERS ); 
    if (status != PAPI_OK) { 
        fprintf(stderr,"Error in PAPI_read_counters (code: %d)\n", status); 
        exit(1); 
    } 
 
    // Print out the value of the counters counters  
    printf("\n%lld L1 data cache misses in %lld cycles\n", counters[1], counters[0] ); 

    ... 
 

Listing 4.1.5: Instrumentation example with PAPI to obtain cycles and cache misses.     

 

Likwid-perfctr tool 

This tool is a wrapper to provide an end-to-end measurement hiding previous tools. This supports different 

modes: wrapper (as the name says), stethoscope, timeline (just performing the KIP divided by time), maker 

API (instrumentation). Additional information can be found at https://github.com/RRZE-

HPC/likwid/wiki/likwid-perfctr 

 

Scalability 

When executing and measuring time performance of parallel applications, usually scalability studies are 

done executing with a different number of threads. There are two usual scenarios to evaluate the 

scalability of one application: 

1. Increase the number of threads with constant problem size: strong scaling. In this case the 

objective is to reduce the execution time. 

2. Increase the number of threads with problem size proportional to the number of threads: weak 

scaling. In this case the objective is to solver larger problems in the same amount of time. 

https://pcss.webex.com/pcss-en/url.php?frompanel=false&gourl=https%3A%2F%2Fgithub.com%2FRRZE-HPC%2Flikwid%2Fwiki%2Flikwid-perfctr
https://pcss.webex.com/pcss-en/url.php?frompanel=false&gourl=https%3A%2F%2Fgithub.com%2FRRZE-HPC%2Flikwid%2Fwiki%2Flikwid-perfctr
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Assuming the number of threads equal to the number of processors P, then, Figure 4.1.3 shows the 

relationship between the total problem size, the number of processors and the granularity of work per 

processor for weak and strong scaling. 

 

Figure 4.1.3: Strong vs Weak scaling: Total problem size and Granularity. 

 

Figure 4.1.4 shows an example of strong and weak scaling for an application (pi computation). For Strong 

scaling we show speedup and timing analysis (left and center graphs, respectively). As expected, the 

execution time is reduced when increasing the number of threads. On the other hand, if we compute the 

speedup achieved in the weak scaling as a ratio of the execution time using one thread and the execution 

time using P number of threads (each of them with the same problem size), the expected speedup is 1.  As 

notice, the scaling is not perfect and that may be due to parallelization overheads. 

 

  

Figure 4.1.4: Strong vs Weak scaling: Speedup and Time example. 

 

4.1.2 Performance Measurement on accelerators (GPUs & FPGAs) 
 

When measuring time of computations offloaded to accelerators there are two common alternatives: 

• Using the CPU time between calls 

• Using an accelerator specific method 
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Measuring accelerator time from the CPU: 

Although less precise than accelerator specific methods, measuring an accelerator kernel execution time 

from the CPU is a common practice that delivers precise-enough results.  

In the case of the FPGA acceleration, we can do timing instrumentation using clock_gettime and measure 

elapsed time, as we explained above. It is important to assure that the timing is done under completeness 

of the acceleration.  In the case of OmpSs@FPGA, where acceleration is performed using a task, this is true 

after a “#pragma omp taskwait”. Listing 4.1.6 shows an example of a OmpSs@FPGA program and timing 

instrumentation of an accelerated task called scale_task. Function scale_task is defined as a task, and in 

particular for target device FPGA. Any call to this function is transformed at compile time to a runtime 

library call to create a task with the input and output dependences specified. Indeed, at compile time, the 

toolchain will create the accelerator for this function using the proprietary tools of the FPGA vendor to 

generate a bitstream.  

In order to execute the program with acceleration, the programmer has to load the bitstream at the FPGA 

before executing the program. At runtime, this program will create a scale_task task (that should go to the 

FPGA) and a thread will take care to issue this acceleration to the FPGA accelerator. Taskwait will wait for 

completeness of the scale_task acceleration to continue. Therefore, to measure the elapsed execution time 

of this acceleration we only need to instrument our code to from just before calling the function till just 

after the taskwait.   

const int SIZE=1024; 
#pragma omp target device(fpga) copy_deps num_instances(1) 
#pragma omp task in([SIZE]c,a) out([SIZE]b)  
void scale_task(double *b, double *c, double *a) { 
#pragma HLS ARRAY_PARTITION variable=c complete dim=1 
#pragma HLS ARRAY_PARTITION variable=b complete dim=1 
   double alpha=*a; 
   for (int j=0; j < SIZE; j++) b[j] = alpha*c[j];  
} 
  
int main (int argc, char *argv[]) 
{ 
   // Start timing 
   scale_task(B,C,&alpha); 
   #pragma omp taskwait 
   // End Timing 
   ... 
} 

  Listing 4.1.6: Instrumentation example with FPGA acceleration.     

 

In any case, if the programmer wants to measure the overall execution time and not only the acceleration 

execution time, she/he also can use any of the methods described above at performance measurements 

at the CPU, and even perform profiling at the CPU part.  

In the case we want to compute any KPI that is related to the number of operations we should consider 

the CPU equivalent code in order to compute the number of operations and then, divide it by the execution 

time.  

In case we want to know the cycles (and its frequency) of the task accelerator generated the hardware High 

Level Synthesis (HLS) project can be open and analysed.  Figure 4.1.5 shows a general (top) and a detail 

(bottom) view the automatically generated Vivado HLS project for a dotproduct acceleration. At the general 

view one can see the global latency (and the estimated frequency) of the dot product acceleration and also 

the expected latency of copy in and copy out the data to be able to perform the task. 
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Figure 4.1.5: General (top) and Detail (bottom) view of the HLS project automatically created. 

 

In the case of the GPU, and in particular for CUDA programming we can measure the execution time using 

CUDA events and synchronized with them. Events are enqueued to the device and assure the correct 

measure of the kernel execution. Listing 4.1.7 shows an example of how to create the events to be able to 

measure elapsed time for CUDA programs. With this, we can measure execution time of memory transfers 

from host to device, from device to host and the kernel execution.  

cudaEvent_t E0, E1; 
...  
cudaEventCreate(&E0); 
cudaEventCreate(&E1); 
... 
cudaEventRecord(E0, 0); cudaEventSynchronize(E0); 
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... 
// Code to be measure that may include kernel calls 
//  saxpyP<<<nBlocks, nThreads>>>(N, 3.5, d_x, d_y); 
... 
cudaEventRecord(E1, 0); cudaEventSynchronize(E1); 
... 
cudaEventElapsedTime(&time_measured, E0, E1); // miliseconds 
... 

  Listing 4.1.7: Instrumentation example with GPU (CUDA) acceleration.     

 

Measuring accelerator time with CUDA profiling: 

Nvprof has been the CUDA profiling tool for years. Nowadays, with recent CUDA versions the Nsight 

Systems command lines help with transition from legacy NVIDIA nvprof tool.  Figure 4.1.6 shows the 

output results of a CUDA program when doing profiling with nvprof –print-gpu-trace [program] in legacy 

systems. On newer systems nsys nvprof --print-gpu-trace [program] must be used to get an API call trace 

and nsys profile --stats=true to display an execution summary. The output shows the API statistics, 

the kernel execution times, the memory transfers that have been done, and finally, a trace of the memory 

and kernel execution events, with information of the Grid and Block characteristics of the program.  

 

Figure 4.1.6: Profiling with nvprof a CUDA program. 
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4.2 Power measurements 

In this section we describe how to perform power measurements in the different available platforms. When 

possible different techniques are described in order for the applications to use the one that better fits their 

specific charactersitics. 

4.2.1 Power Measurement on CPUs 
As described in the Section 2 Hardware Description, Textarossa project will deal with two kinds of CPU 

architectures: x86_64 (AMD Milan/Rome, Intel Sapphire Rapids) and ARM V8.2 64 bit (AMPERE Altra Max). 

x86_64 Architectures: Running Average Power Limit (RAPL) interface. 

Most modern processors, including Intel processors, provide Running Average Power Limit (RAPL) 

interfaces for reporting the accumulated energy consumption of various power domains of the CPU chip, 

attached DRAM and on-chip GPU.  The update interval of the RAPL energy counters is approximately one 

millisecond.  

The RAPL energy reporting feature has been available for many generations on Intel SoC products, and 

energy reporting is standard practice for the industry. Intel processors utilize this energy information for 

internal SoC management purposes, such as control of SoC power limits in association with Intel® Turbo 

Boost Technology power limit settings within the SoC.   

This RAPL energy data is exposed to the platform via the host-software-accessible model specific registers 

(MSRs) such as MSR_PKG_Energy_Status and MSR_PP0_Energy_Status. This allows software to use the 

RAPL energy data for observation, telemetry, and/or inputs to platform-level power or thermal control 

algorithms [1].  

RAPL readings are highly correlated with plug power, promisingly accurate enough and have negligible 

performance overhead. Experimental results suggest RAPL can be a very useful tool to measure and 

monitor the energy consumption of servers without deploying any complex power meters [2]. In addition, 

RAPL supports multiple power domains. The RAPL power domain is a physically meaningful domain (e.g., 

Processor Package, DRAM etc) for power management. Figure 4.2.1 illustrates the hierarchy of the power 

domains graphically.  
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Figure 4.2.1: Power domains supported by RAPL [3] 

 

Each power domain informs the energy consumption of the domain, allows to limit the power 

consumption of that domain over a specified time window, monitors the performance impact of the 

power limit and provides other useful information, that is, energy measurement units, minimum or 

maximum power supported by the domain [3].  

RAPL provides the following power domains for both measuring and limiting energy consumption: 

• Package: Package (PKG) domain measures the energy consumption of the entire socket. It includes 

the consumption of all the cores, integrated graphics and also the uncore components (last level 

caches, memory controller).  

• Power Plane 0: Power Plane 0 (PP0) domain measures the energy consumption of all processor 

cores on the socket. RAPL does not support measuring the power consumption of individual CPU 

cores. 

• Power Plane 1: Power Plane 1 (PP1) domain measures the energy consumption of processor 

graphics (GPU) on the socket (desktop models only).  

• DRAM: DRAM domain measures the energy consumption of random-access memory (RAM) 

attached to the integrated memory controller. Deviations up to 20% from actual measurements 

have been reported for this domain, with a strong dependence on the specific processor 

architecture [4]. 

• PSys: Intel Skylake has introduced a new RAPL Domain named PSys. It monitors and controls the 

thermal and power specifications of the entire SoC and it is useful especially when the source of 

the power consumption is neither the CPU nor the GPU.  

As Figure 4.2.1 suggests, PSys includes the power consumption of the package domain, System Agent, PCH, 

eDRAM and a few more domains on a single socket SoC. For multi-socket server systems, each socket 

reports its own RAPL values (for example a 2-socket computing system has two separate PKG readings for 

both the packages, two separate PP0 readings, etc). The support for different power domains varies 
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according to the processor model, as energy unit used: the Sandy Bridge uses energy units of 15.3 

microjoules, whereas Haswell and Skylake uses units of 61 microjoules. 

RAPL measurements are accurate, the correlation coefficient between RAPL and plug AC power values has 

been measured using the Stream benchmark on a Haswell processor, resulting in a value of 0.99 [3]. 

The RAPL features described above are also available for AMD processors (from family 17h). 

Linux supports RAPL since from kernel 3.14, access to RAPL data is possible through several mechanisms, 

such as reading files under /sys/class/powercap/intel-rapl/intel-rapl:0, using the perf_event interface (e.g., 

sudo perf stat -a -e "power/energy-cores/” executable) or using raw-access to the underlying MSR registers 

provided by the msr kernel module.  

Several energy profiling tools using the RAPL infrastructure are currently available, we selected likwid-

powermeter as reference power measuring tool for CPU tasks. likwid-powermeter is part of the Likwid 

toolsuite [5] of command line applications and a library for performance-oriented programmers. It works 

for Intel, AMD, ARMv8 and POWER9 processors on the Linux operating system. There is additional support 

for Nvidia GPUs. 

To perform simple end-to-end measurements on a custom application, another lightweight command line 

tool in the LIKWID toolsuite: likwid-perfctr. This tool can be used as a wrapper to your application, in 

this way the power measuring can be pinned to a precise process to be profiled. A simple example of usage 

of this tool it is reported below:  

likwid-perfctr -C 0 -g ENERGY -t 0.1s -O -o out.csv ./executable  

where, via specific flags, we are requiring a power measuring (-g ENERGY) on an application bound to be 

executed on a single CPU core (-C 0), with a sampling rate of 100 ms (-t 0.1s) and with a .csv output file (-O 

-o out.csv). 

AMPERE Altra Max (ARM V8.2 64 bit)   

According to the technical documentation provided by the manufacturer, this implementation of the ARM 

V8.2 64-bit architecture does not provide any RAPL-like facility for fine-grained power measurement. 

There are four high power domains for Altra / AltraMax processors:  

• PCP power domain for CPU cores and mesh interconnects  

• SoC power domain for SoC blocks, memory and PCIe controllers  

• RCA power domain for PCIe/CCIX controllers  

• DDR4 power domain for memory IOs and DIMMs  

The Altra Max Processor Complex (PCP) features include:   

• 128 Arm v8.2+ 64-bit CPU cores at up to 3.00 GHz maximum   

• 64 KB L1 I-cache, 64 KB L1 D-cache per core   

• 1 MB L2 cache per core   

• 16 MB System Level Cache (SLC)  

• 2x full-width (128b) SIMD   

• Coherent Mesh Interconnect (CMI):  

Only PCP and SoC power domains are accessible using the Linux HWMON infrastructure, either reading the 

corresponding /sys/class/hwmon/hwmon0/* entries of the filesystem or using the sensors command.  
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An alternative method is to use the BMC infrastructure, that provides the following power data:  

• PCP power domain for CPU cores and mesh interconnects  

• SoC power domain for SoC blocks, memory and PCIe controllers  

• DDR4 power domain for memory IOs and DIMMs  

The IDV-E nodes at E4 (tcnode13 and tcnode14) premises are powered by a Managed PDU that can provide 

power measurements. Measurements can be performed on the login node only (tlnode1), using the scripts 

located in the /opt/share/scripts/powerdiscovery directory. Two scripts are available: 

./getpower.sh <HOSTNAME> <CAPTURE TIME>  

that provides a timeseries for required node with timestamp [seconds since 1970-01-01 00:00:00 UTC], 

total power [Watt] and apparent power [VA]. The output of the getpower command is shown in Listings 

4.2.1.  

[alonardo@tlnode01 powerdiscovery]$ ./getpower.sh tcnode14 60  
time,watts,va  
1670842235,179,191  
1670842236,178,190  
1670842238,178,190  
1670842239,179,192  
1670842240,178,191  
… 

Listing 4.2.1: getpower command output example 

  

And a second script reporting the instant power: 

./get_instant_power.sh <HOSTNAME> 

The output of the get_instant_power command is shown in Listings 4.2.2. 

alonardo@tlnode01 powerdiscovery]$ ./get_instant_power.sh tcnode14  
178 Watts  
191 VA 

Listing 4.2.2: get_instant_power command output example 

  

A finer grained power measurement is available using the sensors command, that report I/O and CPU 

power for each of the two processors. The output of the sensors command is shown in Listings 4.2.3. 

[alonardo@tcnode14 ~]$ sensors  
apm_xgene-isa-0000  
Adapter: ISA adapter  
SoC Temperature:  +38.0 C    
CPU power:        11.76 W    
IO power:         17.03 W    
   
i350bb-pci-20400  
Adapter: PCI adapter  
loc1:         +50.0 C  (high = +120.0 C, crit = +110.0 C)  
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apm_xgene-isa-0000  
Adapter: ISA adapter  
SoC Temperature:  +38.0 C    
CPU power:        13.08 W    
IO power:         20.03 W 
 

Listing 4.2.3: sensors command output example 

 

4.2.2 Power Measurement on GPU 
In this section we consider only NVIDIA GPU in the context of the TEXTAROSSA project.  

NVML Library  

The NVIDIA Management Library (NVML) is a C-based programmatic interface for monitoring and managing 

various states within NVIDIA GPU devices. It is the underlying library for the NVIDIA-supported nvidia-smi 

tool. NVML is thread-safe, allowing simultaneous NVML calls from multiple threads. Figure 4.2.2 shows the 

NVIDIA vGPU Software server interfaces for GPU management. 

  

Figure 4.2.2: NVIDIA vGPU Software server interfaces for GPU management [5] 

 

NVML is delivered in the NVIDIA vGPU software Management SDK, which enables third party applications 

to monitor and control NVIDIA physical and virtual GPUS that are running on virtualization hosts. INFN is 

experimenting with a simple tool, called “GPowerU” (available here: 

https://github.com/crrossi/GPowerU), able to measure the power consumption of a CUDA kernel in 

specific points of the device code. Figure 4.2.3 shows the output of the tool. Since the NVML APIs can be 

https://github.com/crrossi/GPowerU/
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called only by the host side, the idea behind the tool is to send a «message» to the CPU from the GPU to 

take the power value at specific locations of the CUDA kernel in during the execution (blue points in Figure 

4.2.3).  

 

Figure 4.2.3: Plot with NVIDIA GPU power measurements from INFN 

 

In addition to this, it is also possible to obtain (through another CPU thread) the overall profile of the power 

consumption (represented by the black points in the graph in Figure 4.2.3).  

However, the power value obtained through the NVML APIs is updated every ~20 ms. Thus, this sampling 

interval is not suited for a precise evaluation of the power consumption profile of a CUDA kernel with a 

short execution time. And even if some solution to this power monitoring problem does exist (it is possible 

to do a loop monitoring starting the data taking with a variable delay), this issue cannot be easily avoided 

in the case of the power measure in specific kernel checkpoints, since the required GPU-CPU 

communication unavoidable latency is O(10 us). 

 

4.2.3 Power Measurement on FPGA 
Referring to FPGAs’ power monitoring, two different initiatives have been developed. POLIMI 

developed a methodology to deploy online power monitors into generic hardware design, capable of 

periodic power estimate.  

They evaluated 2 possibilities for implementing power monitoring:  
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− Software power monitor: applications can provide online power monitoring if platform RTL 

description is not accessible, at the cost of a non-negligible performance overhead, low 

accuracy and limited temporal resolution for the power estimate  

− Hardware power monitor: dedicated hardware delivers highly accurate power estimates at 

high temporal resolution and without performance overhead at the cost of modifying the RTL 

description of the computing platform. 

In this context, POLIMI, UNIPI and INFN have started working together to characterize the power 

consumption of the IPs developed in TEXTAROSSA project. More information about this methodology 

can be found in Deliverable 4.4 Power modeling tool suite [6]. 

The second initiative carried out by BSC integrates FPGA power monitoring into the OmpSs@FPGA 

environment and it’s available in its GitHub public page [12]. This power monitoring tool measures 

OmpSs@FPGA design power usage in real time while being the first step into managing power usage 

by the runtime. Its implementation is described in more detail in the OmpSs@FPGA Power Monitoring 

subsection that follows. 

Finally, Xilinx power monitoring tools could be used to obtain an estimation of the power consumed 

by a design. Although the precision of the estimation is not as high as in the previous methods, it is a 

good first indicator of the design efficiency and can be used to drive the accelerator design or even to 

improve its efficiency using Xilinx built-in tools. This approach is described in the next Xilinx Power 

Monitoring Tools subsection. 

OmpSs@FPGA Power Monitoring 

OmpSs@FPGA provides a set of software tools and hardware infrastructure to allow users to get real 

time power usage and temperature statistics. More information can also be found on D4.4 Power 

modeling tool suite. 

In the hardware side, a Card Management Subsystem is integrated along with OmpSs shell static logic 

and user accelerators. This module communicates with a satellite controller in the FPGA card and 

makes power readings available via a homogeneous memory mapped interface. Communication with 

satellite controller is done via UART and GPIO interfaces, which may be different across different FPGA 

boards. 

A diagram of the power related hardware infrastructure is shown in Figure 4.2.4. 

 

Figure 4.2.4: FPGA power related hardware infrastructure diagram 



  

textarossa.eu   D1.4 | 32 

Software power monitoring tools access CMS power statistics by accessing a known memory mapped 

I/O region inside the PCIe management BAR. 

Concurrently to user requests, CMS module polls the satellite controller using UART and GPIO 

interfaces in order to keep statistics updated. Finally, the satellite controller directly interfaces power 

delivery components and sensors upon request. 

Software wise, we developed a set of applications and libraries that allow users to programmatically 

query energy measurements either by using an API in the target application or by getting real time 

power measurements using an independent application. 

Listing 4.2.4 shows a sample output from the standalone application. 

time,12V_PEX_iv,12V_PEX_ii,12V_PEX_cip,12V_PEX_av,12V_PEX_ai,12V_PEX_cap
,3V3_PEX_iv,3V3_PEX_ii,3V3_PEX_cip,3V3_PEX_av,3V3_PEX_ai,3V3_PEX_cap,12V
_AUX_iv,12V_AUX_ii,12V_AUX_cip,12V_AUX_av,12V_AUX_ai,12V_AUX_cap,3V3_AUX
_iv,3V3_AUX_ii,3V3_AUX_cip,3V3_AUX_av,3V3_AUX_ai,3V3_AUX_cap,cap_total,c
ip_total,12V_PEX_ap,12V_PEX_ip,3V3_PEX_ap,3V3_PEX_ip,VCCINT_ap,VCCIN_ip 
1678277530.387455,12147,1538,18.682087,12172,1471,17.905012,3364,0,0.000
000,3369,0,0.000000,12176,1427,17.375153,12199,1432,17.468967,3330,0,0.0
00000,3322,0,0.000000,35.373978,36.057240,0,0,0,0,0,0 
1678277530.637653,12172,1345,16.371340,12170,1467,17.853390,3361,0,0.000
000,3366,0,0.000000,12211,1497,18.279867,12201,1451,17.703651,3331,0,0.0
00000,3339,0,0.000000,35.557041,34.651207,0,0,0,0,0,0 
1678277530.887843,12180,1388,16.905840,12174,1451,17.664474,3366,0,0.000
000,3367,0,0.000000,12207,1449,17.687943,12203,1451,17.706553,3329,0,0.0
00000,3312,0,0.000000,35.371025,34.593781,0,0,0,0,0,0 
... 

Listing 4.2.4: Sample power output from a standalone application 

This contains the raw readings from all power related sensors in an easy to parse format, which allows 

data to be easily analyzed and shown using off-the-shelf data analysis tools. This includes 

instantaneous, immediate and peak voltage, current and power for the different power delivery rails. 

Note that some of them are 0 as they may not be used in current board, but current infrastructure 

supports reding power information from different boards. 

Figure 4.2.5 shows a plot of the different power supply rails during the execution of an application 

executing a small matrix multiplication design (only 6 256x256 accelerators performing each 64 

multiplications per cycle). 
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Figure 4.2.5: Plot from different power supply rails from Alveo U200 board 

It shows instantaneous power over time. More precisely, it shows 12_PEX, and 12_AUX, which are the 

two power inputs of the board being tested, which is an Alveo u200 accelerator card. 

Application execution can clearly be seen. Around second 5, a matrix multiplication starts. This 

increases power consumption due to the increase of switching activity in the FPGA needed to perform 

computations. 

The same data shown by the application output shown in Listing 4.2.4 and Figure 4.2.4 is accessible 

through a C API so users can carry custom measurements tailored to a particular application. This 

allows users to read power related data in strategic places or reset average and peak counters and 

read them after the application has completed a particular phase. 

Listing 4.2.5 specifies the API defined to use power monitoring tools. 

cms_start_power_monitor(uintptr_t cms_address) 

Sets up communications with Card Management Subsystem and resets it to a known state. 
cms_address is the address in which CMS register file is mapped inside PCIe BAR. 
 
cms_stop_power_monitor() 

Stops CMS and frees all resources associated with power measurement. 

 

cms_reset_power_monitor() 

Resets average and peak voltage, redings. 

 

cms_power_monitor_read_values(power_info_t *info) 
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Reads all power related hardware counters. 

Listing 4.2.5: OmpSs@FPGA power monitoring API 

A power_info_t struct is passed by reference. It contains instant and average voltage, current, and power 

for each of the power inputs as well as total power.  

The different rails are: 12V_AUX, 12V_PEX, 3V3_AUX, 3V3_PEX 

The structure is defined as shown in Listing 4.2.6. 

typedef struct power_info_t { 

    // Total Power = 12V_AUX Power + 12V_ 
    float computed_instant_power_total; 
    float computed_average_power_total; 
  
    float computed_instant_power_12V_AUX; 
    float computed_average_power_12V_AUX; 
    uint32_t instant_voltage_12V_AUX; 
    uint32_t instant_current_12V_AUX; 
    uint32_t average_voltage_12V_AUX; 
    uint32_t average_current_12V_AUX; 
    … 
}     

Listing 4.2.6: OmpSs@FPGA power information API data structure 

 

In addition to power measurements provided by OmpSs@FPGA, Xilinx power estimation tools can be used 

to estimate design power in early design stages. 

Detailed example use case  

Energy measurement methodology proposes two different use cases or workflows. One of them being a 

power monitor style application and the other one being an API so a given application can get detailed 

power statistics. 

Power monitor dumps power statistics, this includes power, current and voltage for every power delivery 

rail in the card, and various health statistics such as temperatures of the various components of the card 

(FPGA, Memory, QSFP transceivers) and fan speed. This allows easy setup of a system monitoring daemon, 

which can be a useful log and analyze statistics of an FPGA cluster or implement health monitoring and 

alert tools. Also provides a user to easily monitor health and energy usage when device is idle and no 

application is running and analyze how executing a workload affects overall statistics. 

Power monitor usage is summarized as shown in listing 4.2.7: 

power_monitor CMS_address [update_interval] 

Listing 4.2.7: Power monitor usage 

CMS_address is the address in which the power monitoring subsystem is mapped. In future releases, this 

will be automatically determined without user intervention. Update_interval specifies the polling interval 

between measurements. Note that the internal management subsystem updates statistics every 140ms 
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approximately [cms manual ref], therefore, specifying an interval below this may result in repeated 

readings. This is in line with behavior shown by other power and sensor monitoring tools such as NVidia's 

nvml or Linux's sensors. 

Once launched, the application outputs readings for all available sensors in a machine-readable format so 

that further processing and analysis can be carried out by a user. 

Listing 4.2.8 shows a complete usage example of the power monitor tool. 

$ power_monitor 0x40000 0.250 
Starting power monitor 
device open /sys/bus/pci/devices//0000:02:00.0/resource2 
mapping memory 
Software profile: 0x0 
Enabling CMS... 
Using _baseAddr=40000 
Power monitor started 
time,12V_PEX_iv,12V_PEX_ii,12V_PEX_cip,12V_PEX_av,12V_PEX_ai,12V_PEX_cap,3V3_PEX
_iv,3V3_PEX_ii,3V3_PEX_cip,3V3_PEX_av,3V3_PEX_ai,3V3_PEX_cap,12V_AUX_iv,12V_AUX_
ii,12V_AUX_cip,12V_AUX_av,12V_AUX_ai,12V_AUX_cap,3V3_AUX_iv,3V3_AUX_ii,3V3_AUX_c
ip,3V3_AUX_av,3V3_AUX_ai,3V3_AUX_cap,cap_total,cip_total,12V_PEX_ap,12V_PEX_ip,3
V3_PEX_ap,3V3_PEX_ip,VCCINT_ap,VCCIN_ip 
1679577462.404118,12168,1451,17.655767,12157,1473,17.907261,3362,0,0.000000,3363
,0,0.000000,12218,1778,21.723604,12212,1764,21.541967,3324,0,0.000000,3329,0,0.0
00000,39.449226,39.379372,0,0,0,0,0,0 
1679577462.654288,12178,1508,18.364424,12167,1495,18.189665,3366,0,0.000000,3362
,0,0.000000,12197,1760,21.466721,12209,1767,21.573303,3321,0,0.000000,3326,0,0.0
00000,39.762970,39.831146,0,0,0,0,0,0 
1679577462.904479,12206,1487,18.150322,12179,1494,18.195427,3362,0,0.000000,3363
,0,0.000000,12206,1771,21.616825,12208,1768,21.583744,3324,0,0.000000,3338,0,0.0
00000,39.779171,39.767147,0,0,0,0,0,0 
1679577463.154675,12191,1482,18.067062,12181,1473,17.942614,3359,0,0.000000,3362
,0,0.000000,12207,1752,21.386663,12210,1759,21.477390,3327,0,0.000000,3334,0,0.0
00000,39.420006,39.453728,0,0,0,0,0,0 
 

Listing 4.2.8: Power monitor usage example 

Also, a simple plotting tool has been developed along with the power monitor one in order to visualize 

output data. This tool allows a user to plot readings from a selected sensor list. 

Embedded usage instructions are shown un Listing 4.2.9. 

usage: plot_power [-h] input_file [fields [fields ...]] 
  
Plot power measurements 
  
positional arguments: 
  input_file  Power readings file to plot 
  fields      Fields to plot 
  
optional arguments: 
  -h, --help  show this help message and exit 
 

Listing 4.2.9: Plot usage instructions 

Listing 4.2.10 shows a usage example of the plotting tool. It shows how to plot aggregated inmediate 

(cip_total) and average (cap_total) from matmul_power_data.csv file. 
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plot_power matmul_power_data.csv cip_total cap_total 

Listing 4.2.10: Plot tool usage example 

Resulting plot is shown in Figure 4.2.6, which shows results for command specified in Listing 4.1.10. 

 

Figure 4.2.6: Power inmediate and average power plot example 

 

Along with the power monitoring tool described above, a C API has been developed in order to 

programmatically access power statistics and obtain fine grained power statistics. API calls are described 

in Listing 4.2.5.  

One of the use cases of the API is to query average power consumed by an accelerated part of an 

application. Listing 4.2.11 shows an example that illustrates this use case. 

power_info_t powerInfo; 
cms_start_power_monitor(0x40000); 
cms_reset_power_monitor(); 
  
application_kernel(); 
  
cms_power_monitor_read_values(&powerInfo); 
printf("Average power %f\n", powerInfo.computed_average_power_total); 

Listing 4.2.11: Example usage of the power monitoring API 

In this example, the power monitoring subsystem is initialized, then, average values are reset. After that, 

the application kernel is executed, and power statistics are read and printed. power_info_t data structure 
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contains data for all available statistics. Therefore, this flow remains the same regardles of the value to be 

measured. 

Xilinx Power Monitoring Tools 

In addition to this, Xilinx®provides a suite of software tools capable of evaluating power supply 

requirements of the device throughout each stage of the design cycle. Some of the tools are 

standalone while others are integrated into the implementation software, to align with the 

environment and information available to you at each stage. 

The available tools are: 

• Xilinx Power Estimator (XPE): is a power estimation tool typically used in the pre-design and 

pre-implementation phases of a project. The XPE interface lets you specify design resource 

usage, activity rates, I/O loading, and many other factors which XPE then combines with the 

device models to calculate the estimated power distribution. XPE is also commonly used later 

in the design cycle during implementation and power closure to, for example, evaluate power 

implications of engineering change orders (ECO) 

• Vivado Power Analysis: this feature performs power analysis through the stages of: post-

synthesis, post-placement, and post-routing. It is most accurate at post-route because it can 

read the exact logic and routing resources from the implemented design 

• Vivado Power Optimization: Vivado® design tools offer a variety of power optimizations to 

minimize dynamic power consumption by up to 30% in your design. These optimizations use 

the equivalent techniques of a complex ASIC clock gating to minimize switching activity 

without affecting the design functionality 

Also, Xilinx Runtime library (XRT) Linux kernel driver xclmgmt binds to management physical function 

and handles the access to in-band sensors (temperature, voltage, current, power etc.). In fact, it is 

possible to enable profiling and capturing event trace data during the execution of a custom 

application, consuming additional device resources to track the host and kernel execution steps. 

However, this process requires modifying the host application and HLS kernels code, and, most 

important, it requires configuring the xrt.ini File to capture data at runtime.  

In detail, specifying the power profiling using the power_profile option in the xrt.ini file, it is possible 

to generate the power_profile_<device>.csv report [7].  

As an example, listing 4.2.12 reports the content of one power profile report, where all the data fields 

are reported (timestamp is in ms, currents in mA and voltages in mV).  

Target device: xilinx_u200_gen3x16_xdma_base_1 

timestamp,12v_aux_curr,12v_aux_vol,12v_pex_curr,12v_pex_vol,vccint_curr,vcci

nt_vol,3v3_pex_curr,3v3_pex_vol,cage_temp0,cage_temp1,cage_temp2,cage_temp3,

dimm_temp0,dimm_temp1,dimm_temp2,dimm_temp3,fan_temp,fpga_temp,hbm_temp,se98

_temp0,se98_temp1,se98_temp2,vccint_temp,fan_rpm 

141.921,1055,12260,1175,12142,10644,851,0,3334,0,0,0,0,26,29,31,28,35,36,0,3

4,28,34,39,1083, 

162.441,1055,12260,1175,12142,10644,851,0,3334,0,0,0,0,26,29,31,28,35,36,0,3

4,28,34,39,1083, 
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… 

 

Listing 4.2.12: Xilinx power profile contents 

The vitis_analyzer tools can be used to plot power measurements (in Watts) for 3 different available 

domains (Internal, 12V PCIe, 12V Auxiliary) reading the profile reported data as shown in Figure 4.2.7. 

To assess power consumption in µW given the above-described information, the following expression 

is evaluated: 
P = (12v_aux_vol*12v_aux_curr+12v_pex_vol*12v_pex_curr+3v3_pex_vol*3v3_pex_curr) 

 

 

Figure 4.2.7: Xilinx power plot measurements 

 

4.3 Accuracy measurements 

Accuracy measurements are one of the Key Performance Indicators selected in D6.1 Evaluation Plan. 

Accuracy measurements can refer either to accuracy in detection and classification for the target 

application (i.e. accuracy = number of the correct predictions divided by total number of predictions) vs. 

computational complexity and vs. used arithmetic; or accuracy in iterative linear solvers (i.e., number of 

correct digits in the solution, as required by users). In some applications of the latter case when using mixed 

precision, the accuracy in the method doesn’t affect the accuracy of the final solution but the number of 

iterations needed to reach this final solution.  

As a highly application-dependent measurement, we think that it is not practical to provide a common 

framework to measure accuracy influence on each application. In order to obtain accuracy and mixed 

precision results, however, it would be worth to define different accuracies that are useful for the program 

specific domain and measure the other different KPIs (i.e., performance and power KPIs) and relate them 

to a specific final accuracy obtained. D6.2 Initial Application Benchmarks and Results will report for each 

application the specific results obtained.   
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5 Benchmarking example 
To evaluate how our benchmarking design works out we have performed the evaluation over 4 different 

applications in the different platforms available for the project. This section described the results obtained. 

5.1 Applications 

This section describes briefly the applications used to show the usefulness of this deliverable. Additional 

descriptions can be found elsewhere in the literature [7, 8]. 

5.1.1 Matrix multiplication 
Matrix multiplication is a well-known embarrassingly parallel application. The application computes C = C 

+ A × B, being A, B and C matrices of size N × N . We have chosen a matrix multiplication as it is both well-

known application and serves as a building block for a wide range of applications. In order to accelerate 

execution, matrices are divided into square blocks of size BS × BS. This block multiplication is implemented 

as a task that will be offloaded to an accelerator (either in SMP, GPU or FPGA). Therefore, the multiplication 

of a large matrix results in several block multiplications. Multiplications in this block accelerator are 

parallelized to perform multiple parallel multiplications and additions per cycle. The KPI of the matrix 

multiplication algorithm is (billion) floating point operations per second or GFlops/s. The number of 

operations performed being 𝑛  the length of the square matrix side is defined by the following expression: 

2𝑛3.  

5.1.2 N- Body 
The N-body simulation computes how a group of particles with different masses interact with each other 

due to gravitational forces over a period of time. Algorithm input is a set of particles, each of one consisting 

of an initial position, mass and initial velocity. Position and velocity are 3-dimensional single precision 

floating point vectors, while mass is a scalar value. The output of the algorithm is the set of particles with 

their positions updated due to gravitational interactions after a given amount of time steps. Each time step 

consists of two different phases. First, force acting on each particle is calculated. This implies calculating 

the forces for each pair of particles, which has a cost proportional to n2 being n the number of particles in 

the system. Then, the position and velocity of each particle is updated using the calculated forces during 

the time interval that each time step represents using the Euler method. This phase has a cost proportional 

to n, where n is the number of particles. The KPI of the N-Body algorithm is the number of particle pairs 

computed in a given unit of time, also referred as billions of pairs per seconf ot GPairs/s. Given a problem 

consisting of a simulation of  𝑝 particles during 𝑠 steps, the number of performed pair computations is 

defined by the following expression. 𝑝2 ⋅ 𝑠 

5.1.3 Spectra  
The Spectra application [8] computes a histogram of electronic weights between particles versus distance 

for a given set of particles. To do so, it needs to compute the distance between each pair of particles and 

then add their electronic weight to the histogram. The histogram is afterwards used to compute the X-ray 

spectra of the physical material being analysed. The input of the algorithm is a set of particles consisting in 

3-dimensional particle position and electric charge stored as single precision floating point numbers. The 

output is a histogram of the electronic weight according to the distance of the particles with a given number 

of buckets. As with the N-Body algorithm, the KPI of the Spectra algorithm is the number of particle pairs 

computed per unit of time or GPairs/s, although the main reason is that a Particle-to-Particle operation 
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(Pair) doesn’t involve exactly the same operations as in the N-Body case. Given a problem consisting of 

𝑝 particles, the total amount of operations computed is defined by the following expression: 
𝑝(𝑝−1)

2
 

5.1.4 Cholesky decomposition 
This benchmark performs the Cholesky decomposition of a real Hermian positive definite matrix A into a 

lower triangular matrix L. Multiplying L by its transpose, results in the original matrix A = L × LT . In the same 

fashion as the matrix multiplication kernel, the input matrix A is distributed in square blocks of size BS × BS 

elements. This application is composed of four different kernels: gemm, trsm, syrk, and potrf. The gemm 

kernel is in fact a matrix-matrix multiplication. trsm and syrk have a data access pattern like the gemm. 

Potrf kernel in fact performs the sequential cholesky decomposition over the block. In the case of the 

Choleskiy decomposition, the KPI is number of floating point operations per second or GFlops/s. Given a 

problem with matrix sidel of length 𝑛 , the number of operations needed to compute a solution is defined 

in the following expression: 
𝑛3

3
. Due to the different behaviour of the algorithm a smaller number of 

GFlops/s than in the case of the Matrix Multiplication algorithm is expected. 

5.2 Results 

5.2.1 SMP Results 

AMD (IDV-A) 

Table 5.2.1 Shows the IDV-A SMP performance across applications described in section 5.1. For each 

application KPI, average power and performance per watt are shown. All these applications perform 

computations using exclusively main system processor, no accelerators are used in this case. Also, it is 

worth noting that all available cores are used in these measurements. Execution time is computed using 

linux timing API, as described in section 4.1.1. Consumed power is measured using likwid in order to 

query RAPL interface, as described in section 4.2.1. 

 

Application Performance Average power (W) Performance per watt 

Matrix Multiplication 
(single precision) 

1547 GFlops/s 331 4.6 GFlops/W 

Matrix Multiplication 
(double precision) 

924 GFlops/s 353 2.6 GFlops/W 

N-body 9.04 GPairs/s 424 0.021 GPairs/W 

Spectra 1.7 GPairs/s 253 0.0067 GPairs/W 

Cholesky 684 GFlops/s 168 4.0 GFlops/W 

Table 5.2.1: IDV-A SMP Performance & Power measurements 

 

Figure 5.2.1 shows a strong scalability study of the Matrix Multiplication application on the AMD node of 

Dibona. It can be seen that the performance improvements plateau at approximately 24 threads. This may 

be caused by two main reasons. First of all, this CPU runs two threads per core. However, performance is 

not expected to scale with the number of threads, and is expected to scale with the number of cores. This 

is due to the CPU having a fixed number of computational resources per core (not per thread) and different 

threads running in the same core end up sharing computational resources. This may help in certain 
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workloads, but in this example, as we can efficiently use all computational resources in each core, 

performance is not expected to grow once we use all the cores, even if more threads are used. 

Furthermore, memory layout can impact performance as the system is composed of different NUMA 

nodes, and accessing data that is not directly attached to a given set of cores is slower. In this particular 

CPU, each socket is divided into four different NUMA nodes. This may explain why performance starts to 

grow at a slower than ideal pace well before all available cores are used. This may be caused due to problem 

data being initialized by a single core, which affects how data is physically laid out across physical memory. 

 

 

Figure 5.2.1: AMD Processor Matrix Multiplication Strong Scalability Measurements 

 

ARM (IDV-E) 

Table 5.2.2 shows performance and power consumption for benchmarks described in section 5.1. They are 

run using CPU of the IDV-E prototype. Execution time is measured by using Linux timing API, described in 

section 4.1.1, in the same fashion as how time is measured in the case of the AMD CPU. However, power 

measurements are done by reading power consumption through sysfs sensors interface 

(/sys/class/hwmon/hwmon*). This is needed because the Ampere Altra Max CPU does not support RAPL 

interface. As we can see results for dense Algebra problems (Matrix Multiplication and Cholesky) are fairly 

good but all-to-all problems (N-Body and Spectra) obtain very poor performance when compared against 

the other computing alternatives. 

Application Performance Average power (W) Performance per watt 

Matrix Multiplication 
(single precision) 

1895.3 GFlops/s 272.77 6.95 GFlops/W 

Matrix Multiplication 
(double precision) 

500.02 GFlops/s 237.52 2.11  GFlops/W 

N-body 1.88 GPairs/s 150.32 0.0125 GPairs/W 

Spectra 2.78 GPairs/s 148.32 0.01875 GPairs/W 

Cholesky 1106.7 GFlops/s 212.68 
 

5.20 GFlops/W 
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Table 5.2.2: IDV-E ARM SMP performance & Power measurements. 

Figure 5.2.2 shows a strong scalability study using the matrix multiplication benchmark, running in the Arm 

CPU of the IDV-E prototype. In this case performance improvements plateau at around 128 cores, which is 

one full socket. This behaviour is in line with the one seen for the AMD processor in previous section. In 

this case, however, there is no multithreading and therefore, performance should ideally scale linearly with 

the number of threads used until all available threads are used. In this case performance seems to be 

constrained on one side by available bandwidth, which may be limiting performance scalability before two 

sockets and cores from different NUMA nodes are used. On the other side, when using both sockets, we 

may be running causing all cores from one of the socket to access data from the neighbour NUMA node, 

which will have a negative impact in performance. It is also worth noting that difference in performance 

between single and double precision floating point is much larger than the difference shown in the AMD 

processor. 

 

Figure 5.2.2: IDV-E ARM Processor Matrix Multiplication Strong Scalability Measurements 

 

5.2.2 GPU Platform Results 
Table 5.2.3 shows the performance and power results obtained when executing a simple CUDA porting of 

the applications described over the Dibona node. The results report for each application it’s performance, 

average power and performance per Watt KPIs. 

Application Performance 
Average 

Power (W) 

Performace 

per Watt 

Matrix Multiplication 18710 GFlops/s 266 70 GFlops/W 

N-Body 195 GPairs/s 194 1.0 GPair/W 

Spectra 543 GPairs/s 313 1.7 Gpair/W 

Cholesky 17095 GFlops/s 301 57 GFlops/W 

Table 5.2.3: CUDA Implementations Performance & Power Measurements 

Listing 5.2.1 shows a profiling summary corresponding to the matrix multiplication execution shown in 

table 5.2.3. It shows how much time is spent in all API calls, cuda kernel statistics and and data movements 

between host and device. 
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CUDA API Statistics: 
 
Time (%)  Total Time (ns)  Num Calls    Avg (ns)       Med (ns)      Min (ns)     Max (ns)     StdDev (ns)             Name           
--------  ---------------  ---------  -------------  -------------  -----------  -----------  -------------  ----------------------- 
    42,0      903.565.896          8  112.945.737,0    1.699.253,0       88.750  554.518.201  214.897.970,0  cudaFree 
    34,0      729.759.659          4  182.439.914,0  169.130.801,0  166.329.230  225.168.827   28.524.523,0  cudaMemcpy 
    22,0      479.584.999          5   95.916.999,0        4.130,0        2.690  479.566.769  214.466.740,0  cudaDeviceSynchronize      
0,0        7.736.237          6    1.289.372,0    1.033.202,0        4.770    3.758.478    1.455.238,0  cudaMalloc 
     0,0          230.920        756          305,0          280,0          160        3.370          187,0  cuGetProcAddress 
     0,0           50.590          1       50.590,0       50.590,0       50.590       50.590            0,0  cudaLaunchKernel 
     0,0           23.361         18        1.297,0          710,0          440        8.101        1.756,0  cudaEventDestroy 
     0,0           21.490         18        1.193,0          510,0          470       12.260        2.763,0  cudaEventCreateWithFla 
     0,0            3.751          2        1.875,0        1.875,0        1.800        1.951          106,0  cuInit 
     0,0            1.750          3          583,0          180,0          170        1.400          707,0  cuModuleGetLoadingMode 
 
CUDA Kernel Statistics: 
 
Time (%)  Total Time (ns)  Instances    Avg (ns)       Med (ns)      Min (ns)     Max (ns)    StdDev (ns)       Name 
--------  ---------------  ---------  -------------  -------------  -----------  -----------  -----------  ------------------------ 
   100,0      479.566.167          1  479.566.167,0  479.566.167,0  479.566.167  479.566.167          0,0  cutlass::Kernel<…> (...) 
 
CUDA Memory Operation Statistics (by size): 
  
Total (MB)  Count  Avg (MB)  Med (MB)  Min (MB)  Max (MB)  StdDev (MB)      Operation 
----------  -----  --------  --------  --------  --------  -----------  ------------------ 
6442,451        3  2147,484  2147,484  2147,484  2147,484  0,000        [CUDA memcpy HtoD] 
2147,484        1  2147,484  2147,484  2147,484  2147,484  0,000        [CUDA memcpy DtoH] 
 

 Listing 5.2.1: GPU profiling summary output 

Listing 5.2.2 shows a summarized trace of the operations that are carried during the application. It includes 

various statistics for data movements as well as kernel executions performed during application execution. 

CUDA Kernel & Memory Operations Trace: 

  Start (ns)    Duration (ns)  CorrId  GrdX   GrdY  GrdZ  BlkX  BlkY  BlkZ  Reg/Trd  StcSMem (MB)  DymSMem (MB)  Bytes (MB)  Throughput 
(MBps)  SrcMemKd  DstMemKd           Device            Ctx  Strm                                         Name 

-------------  -------------  ------  -----  ----  ----  ----  ----  ----  -------  ------------  ------------  ----------  ---------
--------  --------  --------  -------------------------  ---  ----  -----------------------------------------------------------------
------------------ 

3.549.319.778    167.851.982   2.035                                                                            2147,484    10737,418          
Pageable  Device    NVIDIA A100-SXM4-40GB (0)    1     7  [CUDA memcpy HtoD] 

3.717.254.992    166.098.772   2.036                                                                            2147,484    12884,902          
Pageable  Device    NVIDIA A100-SXM4-40GB (0)    1     7  [CUDA memcpy HtoD] 

3.883.435.076    165.906.805   2.037                                                                            2147,484    12884,902          
Pageable  Device    NVIDIA A100-SXM4-40GB (0)    1     7  [CUDA memcpy HtoD] 

4.100.804.282    478.604.564   2.041  2.048    32     1   128     1     1      126  0,000         0,066                                                            
NVIDIA A100-SXM4-40GB (0)    1     7  void cutlass::Kernel<cutlass_80_tensorop_d884gemm_64x64_16x4_nn_align1>(T1::Params) 

4.587.263.345    225.384.638   2.044                                                                            2147,484    8589,935           
Device    Pageable  NVIDIA A100-SXM4-40GB (0)    1     7  [CUDA memcpy DtoH] 

Listing 5.2.2: Cuda execution trace 

5.2.3 FPGA Platform Results 
In this section we report the results obtained with the method described in this deliverable with the FPGA 

platform. Part of the results reported here have been used to submit a research article that has been 

accepted at the 31st IEEE International Symposium on Field-Programmable Custom Computing Machines 

[9] and is currently pending publication. Even though the purpose of this section is not to show results that 

are competitive with the state-of-the-art, but rather the viability of the measurement methods, we want 

to highlight that the results reported for this section improve said state-of-the-art. 

Performance Results 

Table 5.2.4 shows the baseline results of the applications described in section 5.1 in the FPGA platform. 

Each result is measured in the application’s corresponding KPI. It is worth to highlight that the baseline 

results reported are obtained using the software developed inside the Textarossa project and, to the best 

of our knowledge, are in line (Matrix Multiplication) or better (all the remaining applications) than the best 

results reported for these applications over the analysed platform in the available scientific literature.  
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Application Blocking Size Frequency (MHz) Performance 

Matrix Multiplication 384 300 353 GFlops/s 

N-Body 2048 300 37 GPairs/s 

Spectra 2232 300 51 GPairs/s 

Cholesky 256 300 242 GFlops/s 

Table 5.2.4: Baseline Implementations FPGA Performance Measurements 

Figure 5.2.3 shows the performance results obtained in the FPGA platform when executing the selected 

benchmarks. In order to better show a real evaluation result, the different implementation features 

developed in Tasks 4.2 Task-based Models and 4.6 SW integration & Optimization are compared between 

them (as reported in D4.1 TEXTAROSSA Progress Report on Programming Models and Runtime Systems, 

Section 3.3.3 Performance Improvements). The baseline column reflects the basic OmpSs@FPGA 

implementation of the benchmark. The Placement column reports the performance improvement 

obtained by managing the accelerators placement inside the FPGA area. Over that, the Priorities column 

reports the performance obtained by setting memory access priorities between the accelerators and the 

Interleave column adds to the previous features the distribution of the data among all the memories of the 

FPGA. 

 

Figure 5.2.3: FPGA Performance Measurements 

Power Results 

Table 5.2.5 shows the power results obtained in the IDV-E mitigation prototype using the measurement 

system integrated in the OmpSs@FPGA framework developed for the project as described in section 

4.2.3. As it can be observed in Table 5.2.5, FPGA performance per Watt is competitive with a processor in 

dense linear algebra problems (Matrix Multiplication and Cholesky) and much higher for all-to-all 

problems (N-Body and Spectra) which is a common pattern in molecular dynamic applications.  

If we compare performance per Watt with GPGPU accelerators (as reported in section 5.2.2), we can see 

that GPGPUs have higher performance per Watt. However, we can attribute this difference to two main 

factors. On the one hand the FPGA board used here (Alveo U200) is based in a 16 nm technology while 

the GPU reported in section 5.2.2 is based on a 7nm technology. That is approximately 5 years of 

technology difference. On the other hand, the numbers showed here refer to the consumption of the 
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accelerator alone. In a production environment, the accelerators should be scaled and connected to 

other components (like regular CPUs) in order to work and/or communicate between them. In this 

context, FPGAs hold an intrinsic advantage over GPUs as they can operate and communicate in a 

standalone model [13] while GPUs cannot. This implies that scaling the FPGA system is going to have 

significant performance gains and consumption reductions over scaling the GPU system. 

Application Performance 
Average 

Power (W) 

Performace 

per Watt 

Matrix Multiplication 472.8 GFlops/s 95.3 5.0 GFlops/W 

N-Body 37.7 GPairs/s 105.1 0.36 GPair/W 

Spectra 51.5 GPairs/s 90.6 0.57 Gpair/W 

Cholesky 319.4 GFlops/s 85.9 3.7 GFlops/W 

Table 5.2.5: OmpSs@FPGA Power Measurements 

Results with different Accuracies 

Figure 5.2.4 shows the performance obtained when using the Matrix Multiplication kernel with different 

accuracies and the same OmpSs@FPGA features as described in Figure 5.2.3.  

 

Figure 5.2.4: Matrix Multiplication with Different Accuracies Performance Measurements 
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6 Conclusions 
This deliverable presents a complete and comprehensive design for benchmarking the project applications 

over the IDV platforms. Although due to supply chain issues the final platforms were not fully available in 

time to be presented in this report, alternate mitigation platforms of similar characteristics have been 

selected and used to elaborate the benchmarking plan and test its reliability and feasibility. 

The benchmarking design presented includes a complete set of measurement techniques that can be used 

for all the project selected KPIs (as presented in D6.1 Applications and Use cases) for Performance, Energy 

and Accuracy across both project IDV platforms. Also, an example of how some HPC applications could be 

benchmarked has been carried out. 

The results of the example benchmarking are also showed in this report. The example presents results from 

the project developments that are currently accepted for conference publication in the 31st IEEE 

International Symposium on Field-Programmable Custom Computing Machines. In addition, these first 

example tests also show some architectural aspects of the IDV systems that will help in exploiting their 

available resources. This allows us to conclude that the methodology elaborated could be followed by the 

project applications to obtain the project final results in the last year.  
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Appendix A. IDV-E Prototype proof-of-concept 
In order to support OmpSs@FPGA for the Textarossa IDV-E, support for running in ARM 

processors is required. OmpSs and OmpSs-2 already support ARM architecture. In fact, both 

OmpSs support a wide range of processor architectures, including x86-64, ARM, or RISC-V 

among many others. However, ARM is not officially supported by Xilinx as host processor 

(apart from Zynq Family with shared memory between programmable logic and the SMP with 

ARM cores). This means that device drivers are not guaranteed to work on an ARM CPU as a 

host to be connected to Xilinx FPGA board. 

 

Before testing on actual hardware, a proof-of-concept test was done to check the feasibility of 

building system software in the target platform.  

 

On one hand, we have tested the custom flow, which relies on QDMA device drivers and user 

space low level access to PCIe resources. At the beginning, this first test setup consisted of a 

virtualized ARMv8 system on an intel host. Then, PCIe resources were forwarded from the 

host to the guest operating system in order to provide PCIe low level access to the host system. 

As soon as this test was successful and a minimal set of features was verified, we carried on 

testing to an actual ARMv8 based system to perform functionality tests as well as early 

performance tests. 

 

Issues found in the virtualized environment were also found to be in line with experiments 

carried out on actual hardware. Even though device drivers should make use of Linux PCIe 

subsystem, which abstracts the device driver from the underlying architecture, this seems not 

to be completely true for Xilinx’s QDMA device drivers. In particular, device drivers contain 

x86-64 inline assembly, which is not legal in ARM architecture as shown in the excerpt of code 

of listing A.1. 

 
asm volatile("rdtscp" : "=a" (low), "=d" (high)); 
return low | ((u64)high) << 32; 

Listing A.1: Erroneous driver code 

 

However, the erroneous code can be safely deleted, as it is only used for internal driver statistics 

that do not interfere with driver functionality. After these issues are resolved, we were able to 

verify that all software works as expected for the OmpSs flow, which does not use Xilinx’s 

Vitis flow and XRT runtime libraries. Listing A.2 shows the bitstream information uploaded 

in the FPGA connected to the ARM host. This can be read from the ARM host command line 

and provides information about the frequency of the accelerators, number of accelerators, the 

accelerators names, etc. 

 
Bitstream info version: 9 
Number of acc: 8 
Base freq: 156 MHz 
AIT version: 5.24 
Wrapper version 12 
Features: 
0x184 
[ ] Instrumentation 
[ ] Hardware counter 
[x] Performance interconnect 
[x] Extended HW runtime 
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[x] SOM 
[ ] POM 
xtasks accelerator config: 
type #ins name freq 
0000000006708694863 001 matmulFPGA                      300 
0000000004353056269 007 matmulBlock                     300 
ait command line: 
main.py --name=matmul -b=alveo_u200 -c=300 --hwruntime=som --
interconnect_opt=performance --interconnect_regslice all --verbose --
slr_slices=all --floorplanning_constr=all --
placement_file=u200_placement_7x256.json --wrapper_version=12 
  
Hardware runtime VLNV: 
bsc:ompss:smartompssmanager:4.7 

Listing A.2: Accelerator information 

 

Also, some performance tests have been carried out to ensure that there are no unexpected 

performance differences when comparing with x86-64.  

 

On the other hand, Xilinx’s Vitis flow is based on XRT for runtime support, and device drivers. 

This is the expected path from the point of view of Vitis programming flow.  For XRT we also 

found some incompatibilities. Xilinx states that ARM is supported, but this is only true for the 

ZynqMP device drivers. These are different from the PCIe ones, as the FPGA in ZynqMP 

devices is not attached via PCIe. In fact, zocl drivers fail to natively build as they expect to be 

cross compiled using a petalinux kernel tree. In this case, incompatibilities have been found 

only in the build system itself. If the target system is an ARM CPU, it’s assumed that we’re 

cross compiling for a Zynq device. Once the build system is modified to allow native ARM 

builds, all device drivers and runtime libraries, build and work as expected. 

 

In the same fashion as the QDMA software, built-in tests have been executed to verify the 

correct behavior of system software as shown in listing A.3. 

 
Compiled kernel = xilinx_u200_xdma_201830_2/test/verify.xclbin 
Original string = [b'\x00\x00\...'] 
Original string = [b'\x00\x00\...'] 
Issue kernel start requests 
Now wait for the kernels to finish using xrtRunWait() 
Get the output data produced by the 2 kernel runs from the device 
Result string = [b'Hello World'] 
Result string = [b'Hello World'] 
PASSED TEST 

Listing A.3: Vitis flow test output 

System verification results 

In this project we have worked over the results of our previous European projects to further 

develop the OmpSs@FPGA ecosystem [11]. In the EuroEXA project [10] we developed the 

OmpSs@FPGA support for CRDB. CRDB was a heterogeneous system composed of a 

ZynqMP SoC and a Virtex UltraScale XCVU9P. In Textarossa project we have designed and 

developed new extensions of OmpSs toolchain to support the new IDV-E platform. Indeed, we 

have improved our previous performance results [7] that are now used as the baseline. 
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On the one hand, we have done some sanity checks on the new IDV-E platform to verify that 

the setup is working properly.  Some performance tests have also been performed in order to 

check that reasonable performance is obtained and we’re not running into any software 

compatibility issue in our setup. 

 

Figure A.1 shows performance (in GFLOPS, the higher the better) across different test 

environments and accelerator configurations. It shows performance across 3 different systems:  

 

• An intel-based Xeon X5680 CPU with an Alveo u200 FPGA 

• An ARM-based Cavium CN8890 with an Alveo u200 FPGA 

• An ARM-based CRDB containing a ZynqMP SoC and a Virtex UltraScale XCVU9P 

 

For each test environment, different configurations are tested. One with 4 small 64x64 matrix 

multiplication accelerators (4x64 in the Figure) and a larger one with 7 256x256 accelerators 

(7x256 in the Figure). For each accelerator configuration, task creation and spawn can be done 

by the main CPU (cHost in the Figure) or by the FPGA accelerators (cFPGA in the Figure). 

Figure does not show results for the large configuration and the CRDB machine since it doesn’t 

fit in the FPGA.  

 

 

 

Figure A.1: Performance comparison between ARM and Intel systems 

 

For small accelerators, where the cost of creating tasks on main CPU is the limiting factor, IDV 

prototype performance is similar to CRDB. This is expected as the single core performance of 

both CPUs is similar. When tasks are created from inside the FPGA CRDB shows less 

performance. This is due to this machine having slower memory attached to the FPGA. For 

larger accelerators, SMP performance is not relevant anymore as performance is limited by the 

computing resources of the accelerators themselves. There’s no test data for CRDB in this 

configuration because it would not fit available FPGA resources in the system. 

 

As a result of this first test, we can conclude that the first objective of the project has been 

accomplished with the OmpSs@FPGA framework properly working over the IDV-E platform. 
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Appendix B. Benchmark codes example 
 

All the benchmarks shown in this deliverable (except Spectra [8] that doesn’t belong to BSC) can be 

obtained in the OmpSs@FPGA githup page [12]. Here we show a snippet of the Matrix Multiplication FPGA 

code to show the seamless integration of the reconfigurable accelerator code in the main program code. 

Listing B.1 shows the accelerator code that executes a Matrix Multiplication Block in the FPGA.  

 

#pragma omp target device(fpga) num_instances(MBLOCK_NUM_ACCS) 

#pragma omp task in([BSIZE*BSIZE]a, [BSIZE*BSIZE]b) inout([BSIZE*BSIZE]c) 

void matmulBlock(const elem_t *a, const elem_t *b, elem_t *c) 

{ 

   #pragma HLS INLINE // off 

   #pragma HLS array_partition variable=a cyclic factor=MBLOCK_FPGA_PWIDTH/64 

   #pragma HLS array_partition variable=b cyclic factor=BSIZE/(MBLOCK_II*2) 

   #pragma HLS array_partition variable=c cyclic factor=BSIZE/MBLOCK_II 

#ifdef USE_URAM 

   #pragma HLS RESOURCE variable=b core=XPM_MEMORY uram 

   #pragma HLS RESOURCE variable=a core=XPM_MEMORY uram 

#endif 
  

   for (int k = 0; k < BSIZE; ++k) { 

      for (int i = 0; i < BSIZE; ++i) { 

         #pragma HLS pipeline II=MBLOCK_II 

         for (int j = 0; j < BSIZE; ++j) { 

            c[i*BSIZE + j] += a[i*BSIZE + k] * b[k*BSIZE + j]; 

         } 

      } 

   } 

} 

Listing B.1: FPGA Matrix Multiplication Block Accelerator Code 

 

Listing B.2 shows the main code using the accelerator from the SMP host. As it can be seen 

from Listing B.2, the invocation of the accelerator is as simple as calling the function annotated 

with the device(fpga) clause. The OmpSs@FPGA framework takes care of the data transfers 

between the SMP and the accelerator memory and transforms both the host and accelerator 

code so they can communicate across the platform communication channel [7]. Although the 

OmpSs@FPGA system was already developed for other platforms, in the context of Textarossa 

the framework has been extended to address the IDV-E platform, being, to the best of our 

knowledge the first system able to operate in a system composed of an ARM host processor 

and a PCIe connected FPGA. At the moment of writing this deliverable the framework has 

been tested in the IDV-E final platform in E4 (just the first operational tests) allowing seamless 

integration of the accelerators in the platform.  

 

void matmulSMP(const elem_t *a, const elem_t *b, elem_t *c, const unsigned int msize) { 

   const unsigned int b2size = BSIZE*BSIZE; 

   for (unsigned int i = 0; i < msize/BSIZE; i++) { 
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      for (unsigned int k = 0; k < msize/BSIZE; k++) { 

         unsigned int const ai = k*b2size + i*BSIZE*msize; 

         for (unsigned int j = 0; j < msize/BSIZE; j++) { 

            unsigned int const bi = j*b2size + k*BSIZE*msize; 

            unsigned int const ci = j*b2size + i*BSIZE*msize; 

            matmulBlock(a + ai, b + bi, c + ci); 

         } 

      } 

   } 

} 

Listing B.2: Main code invoking the FPGA Matrix Multiplication Block Accelerator Code 

 

 


