

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

WP2 New accelerator designs exploiting mixed precision

D2.9 IP for low-latency internode communication links,

part 2

Ref. Ares(2023)8249580 - 02/12/2023

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

TEXTAROSSA

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

Grant Agreement No.: 956831

Deliverable: D2.9 IP for low-latency internode communication links, part 2

Project Start Date: 01/04/2021 Duration: 36 months

Coordinator: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO

SOSTENIBILE - ENEA, Italy.

Deliverable No D2.9

WP No: WP2

WP Leader: CINI-UNIPI

Due date: M30

Delivery date: 30/11/2023

Dissemination Level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

textarossa.eu D2.9 | 3

DOCUMENT SUMMARY INFORMATION

Project title:
Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw
Supercomputing Applications for exascale

Short project name: TEXTAROSSA

Project No: 956831

Call Identifier: H2020-JTI-EuroHPC-2019-1

Unit: EuroHPC

Type of Action: EuroHPC - Research and Innovation Action (RIA)

Start date of the project: 01/04/2021

Duration of the project: 36 months

Project website: textarossa.eu

WP2 New accelerator designs exploiting mixed precision
Deliverable number: D2.9

Deliverable title: IP for low-latency inter-node communication links, part 2

Due date: M30

Actual submission

date:
02/12/2023

Editor: Francesca Lo Cicero

Authors: F. Lo Cicero, A. Lonardo, C. Rossi, P. Vicini

Work package: WP2

Dissemination Level: Public

No. pages: 49

Authorized (date): 30/11/2023

Responsible person: Francesca Lo Cicero

Status: Plan Draft Working Final Submitted Approved

Revision history:

Version Date Author Comment

0.1 2023-11-03 Francesca Lo Cicero Draft structure

0.2 2023-11-03 Cristian Rossi Performance Tests

0.3 2023-11-09 Alessandro Lonardo Finalization of draft for internal rev.

0.4 2023-11-10 Piero Vicini Internal review.

0.5 2023-11-29 Francesca Lo Cicero Changes suggested by internal
review.

0.6 2023-11-30 Alessandro Lonardo

textarossa.eu D2.9 | 4

Quality Control:

Checking process Who Date

Checked by internal reviewer Cosimo Gianfreda 2023-11-22

 Ariel Oleksiak

Checked by Task Leader Francesca Lo Cicero 2023-11-30

Checked by WP Leader Sergio Saponara 2023-11-30

Checked by Project Coordinator Massimo Celino 2023-12-01

textarossa.eu D2.9 | 5

COPYRIGHT

Copyright by the TEXTAROSSA consortium, 2021-2024

This document contains material, which is the copyright of TEXTAROSSA consortium members and the

European Commission, and may not be reproduced or copied without permission, except as mandated by

the European Commission Grant Agreement No. 956831 for reviewing and dissemination purposes.

ACKNOWLEDGEMENTS

This project has received funding from the European High-Performance Computing Joint Undertaking (JU)

under grant agreement no 956831. The JU receives support from the European Union’s Horizon 2020

research and innovation programme and Italy, Germany, France, Spain, Poland.

Please see http://textarossa.eu for more information on the TEXTAROSSA project.

The partners in the project are AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO

SVILUPPO ECONOMICO SOSTENIBILE (ENEA), FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER

ANGEWANDTEN FORSCHUNG E.V. (FHG), CONSORZIO INTERUNIVERSITARIO NAZIONALE PER

L'INFORMATICA (CINI), INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),

BULL SAS (BULL), E4 COMPUTER ENGINEERING SPA (E4), BARCELONA SUPERCOMPUTING CENTER-CENTRO

NACIONAL DE SUPERCOMPUTACION (BSC), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ AKADEMII NAUK

(PSNC), ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN), CONSIGLIO NAZIONALE DELLE RICERCHE (CNR),

IN QUATTRO SRL (in4). Linked third parties of CINI are POLITECNICO DI MILANO (CINI-POLIMI), Università

di Torino (CINI-UNITO) and Università di Pisa (CINI-UNIPI); linked third party of INRIA is Université de

Bordeaux; in-kind third party of ENEA is Consorzio CINECA (CINECA); in-kind third party of BSC is Universitat

Politècnica de Catalunya (UPC).

The content of this document is the result of extensive discussions within the TEXTAROSSA © Consortium

as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily

represent the views expressed by the European Commission or its services.

The information contained in this document is provided by the copyright holders "as is" and any express or

implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for

a particular purpose are disclaimed. In no event shall the members of the TEXTAROSSA collaboration,

including the copyright holders, or the European Commission be liable for any direct, indirect, incidental,

special, exemplary, or consequential damages (including, but not limited to, procurement of substitute

goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory

of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way

out of the use of the information contained in this document, even if advised of the possibility of such

damage.

http://textarossa.eu/

textarossa.eu D2.9 | 6

Table of contents
Table of contents .. 6

List of Figures .. 6

List of Tables ... 8

List of Acronyms .. 8

Executive Summary ... 9

1 Introduction ..10

1.1 Relationship with project objectives ..10

1.2 Comparison with the state-of-the-art ..11

2 Basic design ..12

2.1 Integration of the Communication IP in the APEIRON Framework ...15

2.2 Ethernet port ..17

2.3 Ethernet port simulation and test ..23

2.4 Configuration and Status Registers ..27

3 Performance tests ..33

3.1 Latency test ..33

3.2 Bandwidth test ...36

3.3 Multi-node test: 4 Alveo U200 boards ...39

4 High Performance IP Configuration ..41

5 Resource usage ...43

6 Conclusions ...45

7 References ..46

Appendix A. Relevant source codes ...47

List of Figures
Figure 2-1: Example of intra-node (in red) and inter-node (in blue/green) data transfers between tasks. .13

Figure 2-2: Architectural partitioning of the Communication IP ..13

Figure 2-3: TEXTAROSSA packet’s header format ...14

Figure 2-4: Interface between IntraNode Port 0 and the attached HLS computing Task mediated by the

AGGREGATOR and DISPATCHER components. ...16

Figure 2-5: Ethernet port architecture ...17

Figure 2-6: Encapsulation of data descending through abstract layers. ..17

textarossa.eu D2.9 | 7

Figure 2-7: UDP header format ...18

Figure 2-8: IPV4 header format ..18

Figure 2-9: IPV4 TX FSM ..19

Figure 2-10: ARP packet (32-bit words) ..20

Figure 2-11: Ethernet type II frame ..20

Figure 2-12: Block diagram of 10G/25G High Speed Ethernet Subsystem (without GT transceivers).21

Figure 2-13: ETH register block FSM ...22

Figure 2-14: ETH port’s architecture in TEST_MAC configuration ..24

Figure 2-15: ETH port simulation in TEST_MAC configuration ...25

Figure 2-16: ILA of board in TEST_MAC configuration ..25

Figure 2-17: ETH port’s architecture in NORMAL_MODE configuration ..26

Figure 2-18: ETH port simulation in NORMAL MODE ...26

Figure 2-19: ILA of board in NORMAL MODE configuration ...27

Figure 3-1: Setup used to assess the performance of the Communication IP ..33

Figure 3-2: Latency test scheme ...34

Figure 3-3: Testbench design illustration. The arrows describe different flows of data depending on the test

performed: “Local-loop” (red arrow), “Local-trip” (green arrows), “Roundtrip” (blue arrows)34

Figure 3-4: Measured latency of HLS Kernels intra-node (localloop, localtrip) communication and inter-node

(roundtrip) communication using BRAM and DDR to allocate send/receive buffers. These results refer to

the 256-bit internal datapath width @150 MHz configuration of the Communication IP.35

Figure 3-5: Measured latency of HLS Kernels intra-node (loopback, localtrip) communication and inter-node

(roundtrip) communication using BRAM and DDR to allocate send/receive buffers. These results refer to

the 128-bit internal datapath width @150 MHz configuration of the Communication IP35

Figure 3-6:Measured latencies on the 128-bit and the 256-bit internal datapath setups. Send and receive

buffers allocated on BRAM. ..36

Figure 3-7: Bandwidth test scheme ..37

Figure 3-8: Measured bandwidth in HLS Kernels intra-node (loopback) communication and inter-node

(oneway) communication using BRAM and DDR to allocate send/receive buffers. These results refer to the

128-bit internal datapath setup. ...37

Figure 3-9: Measured bandwidth in HLS Kernels intra-node (loop-back) communication and inter-node

(one-way) communication using BRAM and DDR to allocate send/receive buffers. These results refer to

the 256-bit internal datapath setup. ..38

Figure 3-10: Comparison between measured bandwidth with the 256-bit and the 128-bit internal datapath

setups ..38

Figure 3-11: Testbed composed by 4 Xilinx U200 connected in a ring topology. ...39

Figure 3-12: Measured latency of HLS Kernels inter-node (roundtrip) communication performed between

nodes 0 and 1 (1 hop) and between nodes 0 and 2 (2 hops). These results refer to the 128-bit internal

datapath setup with a global clock of 150 MHz ...40

Figure 4-1: Measured latency of HLS Kernels intra-node (loopback, localtrip) communication and inter-node

(roundtrip) communication using BRAM and DDR to allocate send/receive buffers. These results refer to

the 256bit internal datapath setup with a global clock of 200 MHz and 4 lanes channels.41

Figure 4-2: Measured bandwidth of HLS Kernels intra-node (loopback) communication and inter-node (one-

way) communication using BRAM and DDR to allocate send/receive buffers. These results refer to the 256-

bit internal datapath setup with a global clock of 200 MHz and 4 lanes..42

Figure 5-1: Resource usage report for 4 intra-node and 2 inter-node (2 lanes) ports @128 bit for U200 card

 ..43

textarossa.eu D2.9 | 8

Figure 5-2: Resource usage report for 4 intra-node and 2 inter-node (2 lanes) ports @128 bit for U280 card

 ..44

Figure 5-3: Resource usage report for 4 intra-node and 2 inter-node (4 lanes) ports @256 bit for U200 card

 ..44

Figure 5-4: Resource usage report for 4 intra-node and 2 inter-node (4 lanes) ports @256 bit for U280 card

 ..45

List of Tables
Table 2-1: MODE_REG ..22

Table 2-2: CONFIGURATION_RX_REG1 ...22

Table 2-3: CONFIGURATION_TX_REG1 ...23

Table 2-4: RESET_REG ...23

Table 2-5: Communication_IP configuration and status registers (in green the registers related to ETH port):

 ..32

Table 4-1: End-to-end latency values for intra-node and inter-node communications using packets with

16/32B payload size. These results are referred to the 256bit internal datapath setup with a global clock of

200 MHz and 4 lanes channels. ..41

Table 4-2 Bandwidth values for intra-node and inter-node communications using packets with 4kB

payload size. These results refer to the 256-bit internal datapath setup with a global clock of 200 MHz and

4 lanes channels. ...43

List of Acronyms
Acronym Definition

IP Intellectual Property

FPGA Field Programmable Gate Array
HLS High-Level Synthesis

ASIC Application Specific Integrated Circuit

VCT Virtual Cut-Through

DOR Dimension Order Routing

FSM Finite State Machine

API Application Programming Interface

BRAM Block Random Access Memory

DDR (SDRAM) Double Data Rate (Synchronous Dynamic Random Access Memory)
UDP User Datagram Protocol

ARP Address Resolution Protocol

LFSR Linear Feedback Shift Register

NIC Network Interface Card

textarossa.eu D2.9 | 9

Executive Summary
This document reports on the activities done by TEXTAROSSA partner INFN with reference to the design of

the internode Communication IP in WP2.

The INFN Communication IP, developed in VHDL, allows data transfers between processing tasks hosted in

the same node (intra-node communications) or in different nodes (inter-node communications),

implementing a direct network for FPGA accelerators and enabling the distributed implementation of

streaming applications in the APEIRON framework.

The Communication IP was implemented as a Xilinx Vitis RTL kernel that can be automatically integrated

with HLS computing kernels by the APEIRON framework to generate the design to be deployed on a multi-

FPGA system.

Major improvements to the preliminary release of the IP have been implemented in the design to boost

performance and to add functionalities:

• A 256-bit internal data path version of the IP has been developed besides the 128-bit one.

• The clock frequency of the internal logic has been increased from 100 MHz to 150 MHz (and 200

MHz for the 256-bit version).

• The maximum number of serial lanes for the inter-node channels has been increased from 2 to 4.

• The maximum number of intra-node ports has been increased from 2 to 4.

• One network ports of the card can be configured to work as 10G/25G Ethernet port supporting

UDP/IP transport layer offloading.

We performed tests on two/four Xilinx Alveo U200 cards and on two Xilinx Alveo U280 cards connected by

QSFP+ cables in a ring topology configuration, measuring the performance in terms of end-to-end latency

and one-way bandwidth of the Communication IP.

This document is part of deliverable D2.9 along with the IP project database synthesizable both on the

Xilinx Alveo U200 and U280 platforms and is publicly available on the deliverable section of the

TEXTAROSSA project website (https://textarossa.eu/dissemination/deliverables/).

The synthesizable IP project database is also available in the APEIRON framework git repository

(https://github.com/APE-group/APEIRON).

https://textarossa.eu/dissemination/deliverables/
https://github.com/APE-group/APEIRON

textarossa.eu D2.9 | 10

1 Introduction
The INFN Communication IP implements a direct network for FPGA accelerators, allowing low-latency data
transfer between processing tasks deployed on the same FPGA (intra-node communication) and on
different FPGAs (inter-node communication) and enabling the distributed implementation of real-time
dataflow applications in the APEIRON framework.

This document describes the final version of the Communication IP in detail and shows data for its synthesis

on the two reference platforms (Xilinx Alveo U200 and U280), along with results of tests developed to

validate the newly introduced features of the design and assess its current performance.

Section 1 shows how our IP achieves TextaRossa project’s objectives and compares its performance with

some solution proposed for multi-FPGAs clusters.

Section 2 introduces the Communication IP architecture, describing in detail the Ethernet port added in

the new release, with simulation and implementation results.

Section 3 shows results of latency and bandwidth tests performed connecting two boards (Alveo U200 or

U280) and improving internal logic clock (from 100 MHZ to 150 MHz), datapath (from 128 to 256 bit) and

number of transceiver’s lanes (from 2 to 4).

Section 4 highlights the Communication IP best case implementation (256 bit @ 200 MHz).

Section 5 reports on the FPGA resource usage, for both the Alveo U200 and U280 platforms, of the

performance test design integrating two different configurations of the Communication IP (2 serial lanes

per inter-node port/128-bit internal datapath and 4 serial lanes per inter-node port/256-bit internal

datapath).

Finally, section 6 concludes the report.

1.1 Relationship with project objectives

The Communication IP is the key component enabling the deployment of real-time scalable dataflow
applications on a multi-FPGAs system via the APEIRON streaming programming model inspired by Kahn
processing networks. Starting from a simple configuration file, the APEIRON framework creates all the files
required for the FPGA bitstream generation linking the Communication IP and the application’s
computational HLS kernels, unburdening the HLS developers from the task of writing a top-level design.
Our IP design idea was motivated by the following considerations:

1. The direct communication between computing tasks deployed on FPGAs avoids the involvement
of the host CPUs and system bus resources in the data transfers, improving the energy efficiency
of the execution platform.

2. Bypassing the intervention of the host network stack, communication latency is reduced while
bandwidth for small massages is increased.

3. Since communication operations are implemented on a completely “hardware” path,
deterministic latency is achieved, in accordance with the real-time requirements.

These considerations are strictly related to the TEXTAROSSA project objectives:

• Objective 1 - Energy efficiency. APEIRON addresses this objective enabling the complete offload
of the streaming processing to FPGA devices [Qasaimeh2019, Nguyen2020, Goz2020].

textarossa.eu D2.9 | 11

Furthermore, avoiding the involvement of the CPUs and system bus resources in data transfers
improves the energy efficiency of the multi-FPGA execution platform.

• Objective 2 - Sustained application performance. The sustained applications’ performance of
distributed streaming applications, such as the RAIDER use case, are strongly affected by the
performance of the network system. Implementing a direct FPGA to FPGA interconnect and
bypassing the host network stack, allows to keep the communication latency in the sub-
microsecond range and to increase the bandwidth for small messages.

• Objective 4 - Seamless integration of reconfigurable accelerators. The APEIRON framework
leverages the Vitis HLS workflow, extending it to a multi-FPGA execution platform through a
lightweight communication library (HAPECOM) at programming level, and through a simple
configuration system for the deployment of the distributed application to the multi-FPGA
execution platform.

• Objective 5 - Development of new IPs. The INFN Communication IP is the key enabling technology
behind the APEIRON framework, allowing direct low-latency intra/inter FPGA communications
between HLS kernels.

The objectives are also related to the strategic goals of the project:

• Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic
Research Agenda (SRA) for open HW and SW architecture. The APEIRON framework software is
developed following the open-source model and is freely available in its GitHub repository
(https://github.com/APE-group/APEIRON).

• Strategic Goal #3: Opening of new usage domains. The APEIRON framework aims at offering
hardware and software support for running real-time dataflow applications on a network of
interconnected FPGAs, leveraging on the Vitis HLS tool. We believe that it has the potential to
ease the development and to support the efficient execution of a wide class of applications suited
to be executed on a multi-FPGA platform, such as but not limited to real-time HPDA ones.

1.2 Comparison with the state-of-the-art

As of today, FPGA represents one of the main accelerator architectures for HPC applications. In addition to
this, this type of accelerator is well suited to develop customized algorithms, combining the processing
capability of an Application Specific Integrated Circuit (ASIC) with the reconfigurability feature
characterizing this kind of device.
In modern development, and in dedicated networks, multiple FPGAs clusters are emplaced to map large
HPC kernels by exploiting the low-latency communication capability of these accelerators. However,
despite FPGAs high-speed transceiver links, a certain network flexibility with very large clusters could be
required to map applications’ workloads and to strategically maximize resource utilization and
performance. In this direction, many solutions of scalable switched FPGA cluster have been developed,
where, for example, the transceiver links are physically connected to ports of high-speed Ethernet switches
in an indirect network setup implementing FPGAs as Network Interface Cards (NICs), as for example in the
Corundum [1] open-source network interface, in the Virtual Circuit-Switching Network (VCSN) [2], and in
the EasyNet [3] open source networking stack.

Corundum is an open-source, high-performance FPGA-based NIC and platform for in-network compute.
Features include a high performance datapath, 10G/25G/100G Ethernet, PCI express gen 3, a custom, high
performance, tightly-integrated PCIe DMA engine, many (1000+) transmit, receive, completion, and event
queues, scatter/gather DMA, MSI interrupts, multiple interfaces, multiple ports per interface, per-port
transmit scheduling including high precision TDMA, flow hashing, RSS, checksum offloading, and native
IEEE 1588 PTP timestamping. A Linux driver is included that integrates with the Linux networking stack.
Development and debugging are facilitated by an extensive simulation framework that covers the entire

textarossa.eu D2.9 | 12

system from a simulation model of the driver and PCI express interface on one side to the Ethernet
interfaces on the other side. While being a very advanced NIC design, Corundum is a NIC for PCI express
endpoints that includes many features that are not needed or are redundant for our reference application
scenario of scalable real-time dataflow processing on FPGA.

VCSN is a design of a FPGA-based PCI express NIC targeted at achieving a higher flexibility and scalability in
HPC systems compared to those obtained using direct networks, like the one implemented by our
Communication IP, while maintaining the same level of performance in terms of latency and bandwidth.
While the project demonstrates that this objective can be achieved to a certain extent, it also shows that
this is done at the cost of additional dedicated resources in the FPGA design. So, also stripping away the
features dedicated to PCI express interfacing that are redundant in our context, the additional cost in terms
of FPGA resources, that would limit those dedicated to computing HLS kernels, and in terms of additional
hardware for external switches make this approach not effective for our design targets.

EasyNet is a design aiming at reducing the programming effort for FPGA applications on distributed
systems. In this system, a 100 Gbps open-source TCP/IP stack is integrated into Xilinx Vitis framework to
enable HLS network programming. The network stack instantiation is hidden for the user, so as in the
original design flow of a Vitis application, and a set of MPI-like communication primitives and collective
operation have been developed to hide the interaction and control management within the network layer
and to be easily invoked from an HLS C library.
Corundum and EasyNet are both FPGA-based designs of indirect networks using a 100 Gbps TCP/IP stack,
but they present a difference in what concern their implementation: in fact, Corundum FPGA NIC Verilog
HDL design doesn’t allow the integration of a user computing kernel, while EasyNet design, whose building
blocks (CMAC and Network kernels) are developed in Xilinx Vitis framework, allows implementing a HLS
user kernel connected to the Network kernel managing the intercommunication between FPGAs.
Connecting HLS kernels through the network via communication primitives callable as HLS library functions,
EasyNet is similar to the APEIRON framework. Comparing performance, with our Communication IP we
assessed a round trip time (RTT) of 1.5 us measured as a ping-pong benchmark of 64 Bytes between two
FPGAs, EasyNet report a value of 4.3 us in the same conditions.
In our reference application scenario of real-time dataflow distributed applications on FPGA, latency for
small messages (<= 4kB) is a critical feature. A comparison of direct and indirect networks for FPGA clusters
[4] shows that for small messages a higher bandwidth and a lower latency are obtained using the direct
network, confirming our architectural choice.

To conclude this section, we report on a recent proceedings paper [5] describing a very low-latency multi-
FPGA interconnection framework aimed at distributed processing applications. The proposed solution is
claimed to allow efficient communication between different processing elements distributed among the
FPGAs. To evaluate it, authors built a multi-FPGA system composed of five Zynq ZC706 FPGA boards capable
of hosting a diverse number of coprocessors distributed over our custom network. To handle high-speed
transceivers, they incorporated the LogiCORE™ IP Aurora 8b1Ob core into the physical layer working at a
clock frequency of 250 MHz. With an aggregate bandwidth of up to 25 Gbps per FPGA board, the authors
declare the interconnection framework reaches a latency of only 200.36 ns, one of the lowest reported in
Electronics Engineering literature and corresponding to roughly one third of what we measure. Although
our latency measurement also takes into account the reading of message content from BRAM memory at
source node and the writing of the message content in destination node, this is not enough to justify this
huge difference. Unfortunately, the authors do not provide a way to reproduce their results, but these
results stimulate us to improve further the performance of our Communication IP in terms of latency.

2 Basic design
The Communication IP allows data transfers between processing tasks hosted in the same node (intra-node
communications) or in different nodes (inter-node communications), as shown in Figure 2-1.
In the context of the APEIRON framework, processing tasks are implemented by HLS kernels with Xilinx

textarossa.eu D2.9 | 13

Vitis. The details of the interface between HLS kernels – the endpoints of the communication – and the
Communication IP are described in Section 2.1.

Figure 2-1: Example of intra-node (in red) and inter-node (in blue/green) data transfers between tasks.

Figure 2-2: Architectural partitioning of the Communication IP

The hardware block structure can be split into a Network_IP and a Routing_IP (Figure 2-22).

The Routing_IP defines the switching technique and routing algorithm; its main components are the
Switch_component Block, the Configuration/Status Registers and the InterNode and IntraNode Interfaces.

textarossa.eu D2.9 | 14

The Switch component dynamically interconnects all ports of the IP, implementing a communication
channel between source and destination ports.

Dynamic links are managed by routing logic together with arbitration logic: the Router configures the
proper path across the switch while the Arbiter is in charge of solving contentions between packets
requiring the same port.

For inter-node communications, the routing policy applied is the dimension-order (DOR) one: each FPGA
is uniquely identified by its coordinates in a N dimensional torus, the DOR consists in reducing the offset
along one dimension to zero before considering the offset in the next dimension in anti-lexicographic order.

The employed switching technique — i.e., when and how messages are transferred — is Virtual Cut-
Through (VCT) [6]: the router starts forwarding the packet as soon as the algorithm has picked a direction
and the buffer used to store the packet has enough space. The deadlock-avoidance of DOR routing is
guaranteed by the implementation of two virtual channels for each physical channel (with no fault-
tolerance guaranteed) [7].

The transmission is packet-based, meaning that the Communication IP sends, receives and routes packets
with a header (Figure 23), a variable size payload and a footer.

Figure 2-3: TEXTAROSSA packet’s header format

The Communication IP exposes two sets of interfaces, i.e., IntraNode and InterNode IF; the number of ports
within these interfaces (M and N) can be customized at design time.
The IntraNode IF manages data flow to (RX) and from (TX) local tasks; each port consists of two FIFOs for

textarossa.eu D2.9 | 15

each direction, so that header/footer and data use a dedicated FIFO, and a Performance_counter block
(containing an internal_generator block to generate packets and an internal_consumer block for
performances monitoring and analysis). The InterNode IF, with the Network_IP block, oversees managing
data flow over the serial links between FPGAs.

In the final release of the Communication_IP, the number of IntraNode ports can be customized at design

time between 1 and 4, while InterNode ports are set to 2 (according to TEXTAROSSA target devices - Xilinx

Alveo U200 and U280).

In the Network_IP, the physical layer blocks define the data encoding scheme for the serialization of the
messages over the cable and shape the network topology. They provide point-to-point bidirectional, full-
duplex communication channels of each node with its neighbors along the available directions.

Link_Ctrl blocks instead establish the logical link between nodes and guarantee reliable communication,
eventually performing error detection and correction.

To transfer data between each node with its neighbors we used Xilinx Aurora 64B/66B cores for the

serialization of the messages over the cable, and INFN APElink IP [8] to guarantee reliable communication,

enabling error detection and correction for critical protocol sections.

In the first release of the Communication_IP we implemented Aurora-based data link layer with 2 lanes

with the Routing_IP having a 128-bit internal datapath width.

In order to support applications requiring higher network performance, in the final release of the IP we

also support a configuration using Aurora transceivers with 4 bonded lanes associated with a Routing IP

datapath width of 256-bit.

For the same reason we increased the frequency (from 100 to 150/200 MHz) of the external RTL kernel

clock (ap_clk), used for clocking the internal logic.

2.1 Integration of the Communication IP in the

APEIRON Framework

The APEIRON framework developed by the INFN APE Lab [9] aims at offering hardware and software

support for running real-time dataflow applications on a network of interconnected FPGAs.

The main motivation for the design and development of the APEIRON framework is that the currently

available HLS tools do not natively support the development and deployment of applications over multiple

FPGA devices, which severely chokes the scalability of problems that this approach could tackle.

To overcome this limitation, we envisioned APEIRON as an extension of the Xilinx Vitis framework able to

support a network of FPGA devices interconnected by a low-latency direct network as the reference

execution platform. Developers can define scalable applications, using a streaming programming model

inspired by Kahn Process Networks, that can be efficiently deployed on a multi-FPGAs system.

In this scenario the communication IP must guarantee low-latency communication between processing

tasks deployed on FPGAs, even if they are hosted on different computing nodes. Thanks to the use of HLS

tools in the workflow, processing tasks are described in C++ as HLS kernels, while communication between

tasks is expressed through a lightweight C++ API based on non-blocking send() and blocking receive()

operations:

textarossa.eu D2.9 | 16

size_t send (msg, size, dest_node, task_id, ch_id);

size_t receive (ch_id, recv_buf);

Where:

• msg is the message to be sent and size is its size in Bytes;

• dest_node is the n-Dim coordinate of the destination node (FPGA) in the n-Dim torus network;

• task_id is the local-to-node receiving task (kernel) identifier (0-3);

• ch_id is the local-to-task receiving FIFO (channel) identifier (0-127).

• recv_buf is the receive buffer of the destination HLS kernel.

This simple API allows the HLS developer to perform communications between kernels, either deployed on

the same FPGA (intra-node communication) or on different FPGAs (inter-node communication) without

knowing the details of the underlying network stack. The software communication Library leverages AXI4-

Stream (https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces-with-Side-

Channels) Side-Channels to encode all the information needed to forge the packet header.

Two APEIRON HLS IPs defined in the software communication library manage the adaptation toward/from

IntraNode ports of the Routing IP: they are AGGREGATOR and DISPATCHER, as shown in Figure 24.

The DISPATCHER receives incoming packets from the Routing IP and forwards them to the right input

channel, according to the relevant fields of the header. The AGGREGATOR receives outgoing packets from

the task and forges the packet header, then filling the header/data FIFOs of the Routing IP IntraNode port.

Figure 2-4: Interface between IntraNode Port 0 and the attached HLS computing Task

 mediated by the AGGREGATOR and DISPATCHER components.

For more details on the APEIRON framework refer to deliverable D4.7 – HLS Flow.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces-with-Side-Channels
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces-with-Side-Channels

textarossa.eu D2.9 | 17

2.2 Ethernet port

In the final release of the Communication_IP, we also implemented a port using the Xilinx® 10G/25G High

Speed Ethernet Subsystem, which implements the 25G Ethernet Media Access Controller (MAC) with a

Physical Coding Sublayer (PCS). The main purpose of this new feature is to include a standard network port

in the Communication IP design to be used as I/O channel by APEIRON dataflow applications.

The architecture of this additional port is depicted in Figure 25.

This port, as well as each port of the Communication_IP, consists of two AXI-FIFOs for each direction

(TX/RX), so that header/footer and data use different FIFO.

Figure 2-5: Ethernet port architecture

The end-to-end communication can be organized in four abstraction layers: data are encapsulated at each
level as shown in Figure 26.

Figure 2-6: Encapsulation of data descending through abstract layers.

The transport layer performs host-to-host communication on either the local network or remote network.

The User Datagram Protocol (UDP) is a simple message-oriented transport layer protocol, which uses a

connectionless communication. It also provides a checksum for data integrity and port numbers

(source/destination) to identify the process.

Figure 27 shows its header format.

textarossa.eu D2.9 | 18

Figure 2-7: UDP header format

The UDP converter block is in charge of encapsulating transmitted TEXTAROSSA packets in UDP packets

(on TX side) and to extract TEXTAROSSA packets from received UDP payload (on RX side).

On the TX side, the UDP packets are converted into IPv4 packets by the IPV4_TX state machine in the IP

converter block; an IPv4 packet consists of a header (shown in Figure 28) and data.

Figure 2-8: IPV4 header format

Version (4 bit): For IPv4, this is always equal to 0x4.

Internet Header Length (IHL) (4 bit): The IPv4 header is variable in size due to the optional 14th field

(options). The HL field contains the size of the IPv4 header, specifying the number of 32-bit words in the

header (in our implementation 0x5).

Type of Service (TOS) (1 Byte): this field has various purposes, but in our implementation, it is ignored

(0x00)

Total Length (2 Byte): this field defines the entire packet size in bytes, including header and data. The

minimum size is 20 bytes (header without data), and the maximum is 65,535 bytes.

Identification (2 Byte): This field is primarily used for uniquely identifying the group of fragments of a single

IP datagram.

Fragment flags (3 bit): These bits are used to control or identify fragments:

• bit 0: Reserved; must be zero

• bit 1: Don't Fragment (DF)

• bit 2: More Fragments (MF)

Fragment offset (13 bit): This field specifies the offset of a particular fragment relative to the beginning of

the original unfragmented IP datagram. Fragments are specified in units of 8 bytes. Fragmentation is not

handled in this Communication_IP release (fragment fields are ignored).

textarossa.eu D2.9 | 19

Time to live (TTL) (1 Byte): This field limits a datagram's lifetime to prevent network failure in the event of

a routing loop. It is specified in seconds (in our implementation is set to 0x80).

Protocol (1 Byte): This field defines the protocol used in the data portion of the IP datagram (0x11

corresponds to UDP).

Header checksum (2 Byte): This field is used to detect corruption in the header. When a packet arrives at

a router, the router calculates the checksum of the header and compares it to the checksum field. If the

values do not match, the router discards the packet. Errors in the data field must be handled by the

encapsulated protocol. UDP has separate checksums that apply to their data.

Source address (4 Byte): IPV4 address of the sender of the packet.

Destination address (4 Byte): IPV4 address of the receiver of the packet.

Options: Not used in our implementation

The IPV4_TX FSM (Figure 29) first checks the length of UDP received packet (it has to be less of 1480,
otherwise an error arises), then it examines the destination IP address: if it is not equal to 0xFFFFFFFF
(BROADCAST ADDRESS) it needs to request the mac address to the ARPv2 TX block and to wait for ARP1
response (WAIT MAC state).

Figure 2-9: IPV4 TX FSM

After grant received from MAC_TX_ARB block (in charge of solving contentions between packets requiring
ETH port – I.e. IPV4_TX or ARPV2), IPV4_TX FSM generates IP packet and sends it to MAC_TX FSM. In
parallel, the CRC FSM computes CRC of the IPV4 header.

In case of BROADCAST packets, we do not need to look up the MAC address, so grant from MAC_TX_ARB
is enough.

The ARPv2 TX block responds to ARP requests using a cached ARP table or searching external ARP (sending

a broadcast ARP request message).

1 The Address Resolution Protocol (ARP) is a communication protocol used for discovering the link layer address,

such as a MAC address, associated with a given internet layer address, typically an IPV4 address.

textarossa.eu D2.9 | 20

In the second case, after grant received from MAC_TX_ARB, the ARPV2 TX block sends an ARP request
packet to the MAC_TX FSM specifying the destination address 0xffffffffffff (broadcast request).

Figure 210 shows ARP packet’s structure.

Hardware Type Protocol Type

Hardware length Protocol length Operation

Sender hardware address

 Sender protocol address

Target hardware address

Target protocol address

Figure 2-10: ARP packet (32-bit words)

Hardware type (HTYPE): This field specifies the network link protocol type, in our implementation Ethernet

(0x0001).

Protocol type (PTYPE): This field specifies the internetwork protocol for which the ARP request is intended.

For IPv4, this has the value 0x0800.

Hardware length (HLEN): Length (in octets) of a hardware address. Ethernet address length is 0x06.

Protocol length (PLEN): Length (in octets) of internetwork addresses. IPv4 address length is 0x04.

Operation: Specifies the operation that the sender is performing: 0x0001 for request, 0x0002 for reply.

Sender hardware address (SHA): Media address of the sender. In an ARP request this field is used to

indicate the mac address of the host sending the request. In an ARP reply this field is used to indicate the

address of the host that the request was looking for.

Sender protocol address (SPA): Internetwork address of the sender.

Target hardware address (THA): Media address of the intended receiver. In an ARP request this field is

ignored. In an ARP reply this field is used to indicate the address of the host that originated the ARP request.

Target protocol address (TPA): Internetwork address of the intended receiver.

When ARPv2 RX block receives the ARP response with its own address, it updates arp entry data with MAC

address associated to the IP address and communicate it to the IPV4_TX block.

If ARPv2 RX block receives an ARP request, it compares destination IP address with its own IP: in case of

matching, this block delivers a unicast response to the sender, filling in the target MAC address field with

its MAC address.

MAC_TX FSM is in charge of creating ETH frame, a data link layer protocol data unit with 14-byte ETH

header, payload and CRC-checksum (Figure 211).

Figure 2-11: Ethernet type II frame

Ether Type field is 0x0800 in case of IPV4 transmission and 0x0806 in case of ARP transmission.

textarossa.eu D2.9 | 21

The minimum frame size is 64 bytes, consisting of 14-Byte MAC Header, 4-Byte CRC Checksum and 46-Byte
Payload; if the actual data to be sent is less than 46 bytes, it must be padded.

The maximum payload that can be sent is instead of 1500 Bytes (therefore maximum frame size is 1518
Bytes).

On Rx side, data flow is the same: the received ETH frame is sent to IPV4 RX FSM in case of IPV4 packets
(i.e. Ether type = 0x0800) otherwise to the ARP RX block.

In the first scenario, the IPV4 packet is de-encapsulated in UDP packet and, at the end, UDP payload is

written in FIFO RX HEADER/DATA by the UDP Converter block.

In the second case, as mentioned before, the ARP RX block checks if the received packet is an ARP request

or an ARP response and behaves accordingly.

To implement the Ethernet Media Access Controller (MAC) with a Physical Coding Sublayer (PCS) we

included an AMD 10G/25G High Speed Ethernet Subsystem (ETH MAC).

The following figure shows the block diagrams of the 10G/25G High Speed Ethernet Subsystem (GT serial

transceivers are not shown).

Figure 2-12: Block diagram of 10G/25G High Speed Ethernet Subsystem (without GT transceivers).

User Interfaces available are:

- AXI4 -Stream for datapath interface (TX AXI and RX AXI)

- AXI4-Lite for control and statistics interface

and differential serial interface feature can be configured during the instantiation.

In the Communication_IP we instantiated a single core configuration @10.3125Gbps with single lane GT

transceiver inside the IP core, and a datapath interface of 64 bit.

Block ETH register config configures the IP core for our use case, accessing AXI4-Lite registers [10].

This configuration is controlled by the CONFIG FSM (Figure 213).

textarossa.eu D2.9 | 22

Figure 2-13: ETH register block FSM

Register MODE_REG (0x0008) is set to 0x40000000: bit 30 (tick_reg_mode_sel) equal to ‘1’ allows us to

read the statistics counters (which provide histograms of the classification of traffic and error counts) by

writing a 1 to the TICK_REG register, while the 0th and 1st bit set to ‘0’ suppress the reporting of slv error.

Bits Default Type Signal

0 1 RW en_wr_slverr_indication

1 1 RW en_rd_slverr_indication

30 1 RW tick_reg_mode_sel

31 0 RW ctl_local_loopback

Table 2-1: MODE_REG

Register CONFIGURATION_RX_REG1 (0x0014) is set to 0x00000033 and CONFIGURATION_TX_REG1

(0x000C) to 0x00003003.

Bits Default Type Signal

0 1 RW ctl_rx_enable

1 1 RW ctl_rx_delete_fcs

2 0 RW ctl_rx_ignore_fcs

3 0 RW ctl_rx_process_lfi

4 1 RW ctl_rx_check_sfd

5 1 RW ctl_rx_check_preamble

6 0 RW ctl_rx_force_resync

7 0 RW ctl_rx_test_pattern

8 0 RW ctl_rx_test_pattern_enable

9 0 RW ctl_rx_data_pattern_select

10 - - Reserved

11 0 RW ctl_rx_custom_preamble_enable

12 0 RW ctl_rx_prbs31_test_pattern_enable

Table 2-2: CONFIGURATION_RX_REG1

textarossa.eu D2.9 | 23

Bits Default Type Signal

0 1 RW ctl_tx_enable

1 1 RW ctl_tx_fcs_ins_enable

2 0 RW ctl_tx_ignore_fcs

3 0 RW ctl_tx_send_lfi

4 0 RW ctl_tx_send_rfi

5 0 RW ctl_tx_send_idle

13:10 12 RW ctl_tx_ipg_value

14 0 RW ctl_tx_test_pattern

15 0 RW ctl_tx_test_pattern_enable

16 0 RW ctl_tx_test_pattern_select

17 0 RW ctl_tx_data_pattern_select

18 0 RW ctl_tx_custom_preamble_enable

23 0 RW ctl_tx_prbs31_test_pattern_enable

Table 2-3: CONFIGURATION_TX_REG1

Register GT_RESET_REG (0x0000) is used to properly reset the transceiver startup Finite State Machine

(FSM). We used different timing for simulation and synthesis.

Bits Default Type Signal

0 0 RW ctl_gt_reset_all

This is a clear on write register.

1 0 RW ctl_gt_rx_reset

2 0 RW ctl_gt_tx_reset

Table 2-4: RESET_REG

After core lock (the receiver has detected and locked to the word boundaries), a first writing in the

TICK_REG register (0x0020) allows to set to 0 readable STAT_*_MSB/LSB registers (which are not

resettable).

The initialization of the core is then completed (signal channel_ok =’1’) and the FSM, in INIT_DONE state,

waits for the writing of the TICK_REG (achieved by writing Communication_IP register 70) which causes the

accumulated counts to be pushed to the readable STAT_*_MSB/LSB registers and simultaneously clear the

accumulators.

Therefore, to offer to the users the possibility to set at run time a few key features and to read status

information of the new ETH port, we added some registers to the Communication_IP.

2.3 Ethernet port simulation and test

For the ETH_port we primarily tested the UDP/MAC blocks interaction using the configuration shown in

figure 214 (this configuration can be yet implemented with VHDL parameter test_mac=’1’ in

Textarossa_switch_synt entity).

textarossa.eu D2.9 | 24

Figure 2-14: ETH port’s architecture in TEST_MAC configuration

The GEN_TX_STATE_0 FSM (enabled by parameter test_mac_gen=’1’) generates c_tx_pkt_cnt UDP

packets with constant header:

− Destination port: 0xfa62;

− Source port: 0xfa62;

− Total length in byte: 0x0040;

− Checksum: 0x0000

and pseudo-random payload generated by LFSR block (a generator based on linear feedback shift register).

Destination_IP_address is set to x"c0a80002".

The LSFR_check block flushes the RX FIFO, checking payload of received packets.

The Virtual input/output core (VIO) drives reset and tick_reg (to read statistics registers of ETH MAC) signals

in real-time.

ILA IP allows us to monitor ETH MAC statistics registers and LFSR_check block signals (received data and

identified errors).

Figure 215 shows the simulation of two connected Communication_IPs in TEST_MAC configuration:

• Textarossa 0: parameter test_mac_gen=’1’, c_tx_pkt_cnt =1 (512 Byte); MAC_ADDRESS:
d00bacc0aaaa; IP_ADDRESS: c0a80002

• Textarossa 1: parameter test_mac_gen=’0’; MAC_ADDRESS: d00dacc0aaaa; IP_ADDRESS:
c0a80002

The waveform shows that Textarossa 1 correctly receives 622 Byte (rx_good_data) - 62 Byte for ARP

request and 560 Byte for IPV4 transmission - and sends 64 Byte (rx_good_data) for ARP response.

The outputs of Textarossa 1 LFSR_check block (in orange) show that packet was received (64 words @64bit)

without errors.

textarossa.eu D2.9 | 25

Figure 2-15: ETH port simulation in TEST_MAC configuration

The design in TEST_MAC configuration was loaded into the FPGA, and the debugger internal signals were

monitored using an Integrated Logic Analyzer (ILA).

Also in this case, as shown in Figure 216, data were received (Rx_data_cnt=64) without errors

(Rx_err_cnt=0).

Figure 2-16: ILA of board in TEST_MAC configuration

In the second test setup configuration (NORMAL_MODE, Figure 2-17), on the TX side, the UDP_converter

block generates UDP packets starting from information sent by the ROUTING_IP (header+payload+footer).

textarossa.eu D2.9 | 26

Figure 2-17: ETH port’s architecture in NORMAL_MODE configuration

The GEN_TX_STATE_1 FSM generates the UDP header from information contained in FIFO TX HEADER and

encapsulating Textarossa packet header (shown in Figure 23) and footer in the UDP payload (with the

Textarossa packet payload read from FIFO TX DATA), going from 128 to 64-bit interface.

Figure 218 shows the simulation of a Communication_IPs in NORMAL_MODE configuration, connected in
loopback: we used internal_generator block to generate packets and fill the transmitting FIFOs, and an
internal_consumer block to flush the receiving FIFOs and check payload of received packets (if all packets
are received the signal test_ok arises).

Figure 2-18: ETH port simulation in NORMAL MODE

The design was also tested, and internal signals were monitored using Integrated Logic Analyzers (Figure

219).

textarossa.eu D2.9 | 27

Figure 2-19: ILA of board in NORMAL MODE configuration

This port is also used connected to a switch with an internal datapath of 256 bit width.

2.4 Configuration and Status Registers

This is the list of configuration and status registers of the Communication IP along with the associated

address (in green the registers related to ETH port):

 Offset Name Description Default value

4
0x00000010 RESET_REG

Bit 0: write ‘1’ to reset;

Self-clear (‘0’ after 200

clock’s cycle)

0x0000000 RW

5 0x00000014 REVISION_REG

Bit 15 downto 0: Revision

ID

Bit 31 downto 16: Version

ID

0x0000000 RO

6 0x00000018 COORDME_REG

3D node’s coordinates

Bit 5 downto 0: X

coordinate

0x0000000 RW

8 0x00000020 LATTICESIZE_REG

Lattice size

Bit 5 downto 0: X

direction

0xfffffff RW

12 0x00000030 PERF_INTRANODE_CF

Perf_Block configuration

register:

Bit 7 downto 0: IntraNode

Packet_Generator enable

Bit 15 downto 8: IntraNode

Consumer enable

0x0000000 RW

textarossa.eu D2.9 | 28

Bit 23 downto 16:

IntraNode BW test enable

13 0x00000034 PERF_INTERNODE_CF

Perf_Block configuration

register:

Bit 7 downto 0: InterNode

Packet_Generator enable

Bit 15 downto 8: InterNode

Consumer enable

0x00000000 RW

14 0x00000038 PKTGEN_CONFIG_0

Packet_generator

configuration register:

Bit 15 downto 0: number of

packets generated

Bit 29 downto 16: packet

length (in byte)

Bit 31: header only packet

generated

0x00000000 RW

16 0x00000040 PKTGEN_CONFIG_1

Destination of packet

Bit 5 downto 0: X

direction

Bit 10 downto 6: Y

direction

Bit 15 downto 11: Z

direction

0x00000000 RW

20 0x00000050 PERF_INTRANODE_ST

Bit 3 downto 0:

packet_generator status

(intraNode 0)

Bit 7 downto 4:

packet_checker status

(intraNode 0)

Bit 11 downto 8:

packet_generator status

(intraNode 1)

Bit 15 downto 12:

packet_checker status

(intraNode 1)

Bit 19 downto 16:

packet_generator status

(intraNode 2)

Bit 23 downto 20:

packet_checker status

(intraNode 2)

Bit 27 downto 24:

packet_generator status

(intraNode 3)

Bit 31 downto 28:

packet_checker status

(intraNode 3)

*Packet_generator status:

"0000" SM_STATE = OFF

"0001" SM_STATE = IDLE

"0010" SM_STATE =

TX_HEADER "0011" SM_STATE

= TX_PAYLOAD

"0100" SM_STATE =

TX_FOOTER

**Packet_checker status

 RO

textarossa.eu D2.9 | 29

Bit 0 = Test ok! (All

packets received with

correct payload)

Bit 3 downto 1: SM STATE

 "000" SM_STATE = OFF

 "001" SM_STATE = IDLE

 "010" SM_STATE = COUNT

21 0x00000054 PERF_INTERNODE_ST

Bit 3 downto 0:

packet_generator status

(see register

PERF_INTRANODE_STS)

Link 0

Bit 7 downto 4:

packet_checker status Link

0

Bit 11 downto 8:

packet_generator status

Link 1

Bit 15 downto 12:

packet_checker status Link

1

 RO

22 0x00000058 PERF_INTRANODE_CNT0

TxRx clock counter (first

packet written, last

packet read) IntraNode 0

 RO

23 0x0000005C PERF_INTRANODE_CNT1

TxRx clock counter (first

packet written, last

packet read) IntraNode 1

 RO

24 0x00000060 PERF_INTRANODE_CNT2

TxRx clock counter (first

packet written, last

packet read) IntraNode 2

 RO

25 0x00000064 PERF_INTRANODE_CNT3

TxRx clock counter (first

packet written, last

packet read) IntraNode 3

 RO

26
0x00000068

PERF_INTERNODE_CNT0

TxRx clock counter (first

packet written, last

packet read) InterNode 0

 RO

27 0x0000006C PERF_INTERNODE_CNT1

TxRx clock counter (first

packet written, last

packet read) InterNode 1

 RO

28
0x00000070

INTRANODE_FIFO_STS_

RX_0

Bit 31 downto 16: Fifo

IntraNode 0 Data Rx

UsedWord Bit 15 downto 0:

Fifo IntraNode 0 Header Rx

UsedWord

 RO

29
0x00000074

INTRANODE_FIFO_STS_

TX_0

Bit 31 downto 16: Fifo

IntraNode 0 Data Tx

UsedWord

Bit 15 downto 0: Fifo

IntraNode 0 Header Tx

UsedWord

 RO

30 0x00000078
INTRANODE_FIFO_CNT_

HD_TX_RD_0

Fifo IntraNode 0 Header Tx

read counter
 RO

31 0x0000007C
INTRANODE_FIFO_CNT_

HD_TX_WR_0

Fifo IntraNode 0 Header Tx

write counter
 RO

32 0x00000080
INTRANODE_FIFO_CNT_

HD_RX_RD_0

Fifo IntraNode 0 Header Rx

read counter
 RO

33 0x00000084
INTRANODE_FIFO_CNT_

HD_RX_WR_0

Fifo IntraNode 0 Header Rx

write counter
 RO

textarossa.eu D2.9 | 30

34 0x00000088
INTRANODE_FIFO_CNT_

DT_TX_RD_0

IntraNode 0 Data Tx read

counter
 RO

35 0x0000008c
INTRANODE_FIFO_CNT_

DT_TX_WR_0

IntraNode 0 Data Tx write

counter
 RO

36 0x00000090
INTRANODE_FIFO_CNT_

DT_RX_RD_0

IntraNode 0 Data Rx read

counter
 RO

37 0x00000094
INTRANODE_FIFO_CNT_

DT_RX_WR_0

IntraNode 0 Data Rx write

counter
 RO

38

47

0x00000098-

0x000000BC
INTRANODE_FIFO_*_1

Fifo counter register

IntraNode 1
 RO

48

57

0x000000C0-

0x000000E4
INTRANODE_FIFO_*_2

Fifo counter register

IntraNode 1
 RO

58

67

0x00000098-

0x0000008C
INTRANODE_FIFO_*_3

Fifo counter register

IntraNode 1
 RO

68 0x00000110 LINK_0_CONFIG_0

Bit 31 downto 28: Edac

enable InterNode 1

 "0000" NO EDAC

 "1111" EDAC

Bit 27 downto 24 = Edac

enable InterNode 0

Bit 17 = Use new

destination in InterNode 1

Bit 16 = Use new

destination in InterNode 0

Bit 15 downto 0: New

destination (15–11: Z; 10–

6: Y; 5–0:X).

0x00000000 RW

69 0x00000114 LINK_0_CONFIG_1

Bit 25 downto 16: Red data

threshold

Bit 7 downto 0: Red header

threshold

0x00000000 RW

70 0x00000118 LINK_0_CONFIG_2

Bit 6: the accumulated

counts are pushed to the

readable ETH_* registers andl

simultaneously the

accumulators are cleaned
Bit 15 downto 8: Tx new

credit cycle

Bit 7 downto 0: Tx waiting

cycle

0x00000000 RW

71 0x0000011C LINK_0_CONFIG_3 Header error gen RO

80 0x00000140 LINK_0_STATUS_0

Bit 15 downto 12: Rx

status;

Bit 11 downto 8: Tx footer

status

Bit 7 downto 4: Tx payload

status

Bit 3 downto 0: Tx header

status

 RO

81 0x00000144 LINK_0_ERROR

Bit 31 downto 16: Rx

header error counter

Bit 15 downto 0: Rx header

fatal error counter

 RO

82 0x00000148 LINK_0_TX_MAGIC Tx magic counter RO

textarossa.eu D2.9 | 31

83 0x0000014C LINK_0_TX_START Tx start counter RO

84 0x00000150 LINK_0_TX_HDR Tx header counter RO

85 0x00000154 LINK_0_TX_FTR Tx footer counter RO

86 0x00000158 LINK_0_RX_MAGIC Rx magic counter RO

87 0x0000015c LINK_0_RX_START Rx start counter RO

88 0x00000160 LINK_0_RX_HEADER Rx header counter RO

89 0x00000164 LINK_0_RX_FOOTER Rx footer counter RO

90

99

0x00000168-

0x00000185
LINK_1_REGISTERS

110 0x000001B8 LINK0_RD_WR_CNT_0
Header read counter Link

TX0
 RO

111 0x000001BC LINK0_RD_WR_CNT_1 Data read counter Link TX0 RO

112 0x000001C0 LINK0_RD_WR_CNT_2
Header write counter Link

TX0
 RO

113 0x000001C4 LINK0_RD_WR_CNT_3
Data write counter Link

TX0
 RO

114 0x000001C8 LINK0_RD_WR_CNT_4
Data write counter Link

RX0 VCH0
 RO

115 0x000001CC LINK0_RD_WR_CNT_5
Header write counter Link

RX0 VCH0
 RO

116 0x000001D0 LINK0_RD_WR_CNT_6
Data read counter Link RX0

VCH0
 RO

117 0x000001D4 LINK0_RD_WR_CNT_7
Header read counter Link

RX0 VCH0
 RO

118 0x000001D8 LINK0_RD_WR_CNT_8
Data write counter Link

RX0 VCH1
 RO

119 0x000001DC LINK0_RD_WR_CNT_9
Header write counter Link

RX0 VCH1
 RO

120 0x000001E0 LINK0_RD_WR_CNT_10
Data read counter Link RX0

VCH1
 RO

121 0x000001E4 LINK0_RD_WR_CNT_11
Header read counter Link

RX0 VCH1
 RO

122-

133

0x000001E8-

0x00000214
LINK1_RD_WR_CNT_*

 RO

150 0x00000258 FIFO_INTRANODE_EXC

Bit 7 downto 0 =

IntraNode TX HD write

exception

Bit 15 downto 8 =

IntraNode TX DT write

exception

Bit 23 downto 16 =

IntraNode RX HD write

exception

Bit 31 downto 24 =

IntraNode RX DT write

exception

 RO

textarossa.eu D2.9 | 32

151 0x00000260 FIFO_REGISTER

Bit 31 downto 24: Fifo

Header Rx exp width

Bit 23 downto 16: Fifo

Data Rx exp width

Bit 15 downto 8: Fifo

Header Tx exp width

Bit 7 downto 0: Fifo Data

Tx exp width

 RO

152 0x00000264 TRANSCEIVER_STATUS

Bit 0: InterNode 0 channel

up

Bit 1: InterNode 1 channel

up

Bit 16: InterNode 0

transceiver’s error

Bit 17: InterNode 1

transceiver’s error

 RO

200 0x00000320 IP ADDRESS ETH IP address 0xc0a80002 RW

201 0x00000324 MAC_REG_LOW MAC address low 0xacc0aaaa RW

202 0x00000328 MAC_REG_HIGH MAC address high 0x0000d00b RW

203 0x0000032C ETH_TX_GOOD_BYTE_LSB
Number of good bytes sent

(LSB)
0x00000000 RO

204 0x00000330 ETH_TX_GOOD_BYTE_MSB
Number of good bytes sent

(MSB)
0x00000000 RO

203 0x00000334 ETH_RX_GOOD_BYTE_LSB
Number of good bytes

received (LSB)
0x00000000 RO

204 0x00000338 ETH_RX_GOOD_BYTE_MS
Number of good bytes

received (MSB)
0x00000000 RO

Table 2-5: Communication_IP configuration and status registers (in green the registers related to ETH port):

textarossa.eu D2.9 | 33

3 Performance tests
Latency and bandwidth tests were conducted to validate the performance of the final version of the

Communication IP integrating the improvements described in the previous sections.

In the setup used for tests, the Communication IP is implemented as an RTL-IP Xilinx fashioned free running

kernel connected to the global system/board clock of 150 MHz (improved wrt the preliminary release

which featured a clock frequency of 100MHz). Performance tests have been reported and compared for

the two developed versions of Communication IP (128-bit internal datapath width/2 lanes inter-node

channels versus 256-bit internal datapath width/4 lanes inter-node channels).

Figure 31 shows the general test setup with Communication IP featured with four intranode ports and two

internode ports, and four couples of dispatcher/aggregator.

Figure 3-1: Setup used to assess the performance of the Communication IP

Tests described in this deliverable have been performed on two different testbench: 1) a dual server

system, integrating a single Xilinx Alveo U200 FPGA per server, interconnected via the internode ports of

the Communication IP; 2) a similar system hosting Xilinx Alveo U280 FPGAs.

The pseudocode, which describe the summary of tests’ execution, is reported in Appendix. A.

The complete code of the test setup can be accessed on the APEIRON framework github repository

(https://github.com/APE-group/APEIRON).

3.1 Latency test

Latency test is performed using an HLS kernel which reads a payload (of max 4096 Bytes) data item from

the memory (either BRAM or DDR) of the “initiator” FPGA and sends and receives it through/from the

Communication IP to/from a second interconnected FPGA. An HLS kernel, embedded in this receiver FPGA,

is in charge of getting a single packet and bouncing it back to the initiator FPGA (as shown in Figure 32),

allowing the measurement of inter-node latency.

The “send_receive” HLS kernel on the initiator FPGA is issued via host code while the “pipe” HLS kernel is

free running. In order to minimize the contribution of the host call overhead to the latency measure, one

million send_receive operations are launched and the overall time elapsed from the start of the first packet

textarossa.eu D2.9 | 34

send to the completion of the last packet receive is measured on the host. The end-to-end latency is then

obtained as the half the overall elapsed time measured divided by the number of repetitions.

Figure 3-2: Latency test scheme

Figure 3-3: Testbench design illustration. The arrows describe different flows of data depending on the test performed:

“Local-loop” (red arrow), “Local-trip” (green arrows), “Roundtrip” (blue arrows)

We conducted several kinds of latency tests, covering all the possible paths involved in the communication

within the same FPGA and on different FPGAs.

In detail, to stress and validate the performance of the intra-node communication, “local-loop” and “local-

trip” tests were performed. These two, as can be seen in Figure 33, differ for what concerns the intra-node

ports where the communication takes place. In the local-loop case, packets are sent on the port 0 and then

routed back to the same port (red line), while in the local-trip test, packets are sent to the port 1 through

the port 0, and then they are received and sent back by the kernel “pipe” connected to the port 1 (green

lines). The “roundtrip” test (blue lines) is suitable to validate performance of the inter-node communication

between 2 different FPGAs (respectively named as “node 0” and “node 1”). For all these test configurations

we report the time taken to complete a packet traversal between source and destination node, i.e. the

end-to-end communication latency.

textarossa.eu D2.9 | 35

Figure 3-4: Measured latency of HLS Kernels intra-node (localloop, localtrip) communication and inter-node (roundtrip)

communication using BRAM and DDR to allocate send/receive buffers.

These results refer to the 256-bit internal datapath width @150 MHz configuration of the Communication IP.

Figure 3-5: Measured latency of HLS Kernels intra-node (loopback, localtrip) communication and inter-node (roundtrip)

communication using BRAM and DDR to allocate send/receive buffers.

These results refer to the 128-bit internal datapath width @150 MHz configuration of the Communication IP

In Figure 3-4 and Figure 3-5, the results of latency test are reported differentiated by the specific type of

test performed and what kind of FPGA memory was used. It’s possible to notice how latency values increase

when working with the onboard DDR memory, which introduces an overhead due to its access latency and

to the time required for the data synchronization between the CPU and FPGA (what we indicate as “sync”

in the graph). Unsurprisingly, using the BRAM to store the payload on source and destination endpoints

yields the lower latency values reached by the setup in each of the of communication configurations.

textarossa.eu D2.9 | 36

In the intra-node communication (local-trip configuration, sender and receiver on different intra-node

ports) we measure the contribution of the Routing IP, of the Aggregator/Dispatcher, and of the BRAM or

DRAM access (and sync operation for the latter) to the overall end-to-end communication latency. In this

setup the latency to transfer a 16B message varies from 267 ns (BRAM) to 710 ns (DDR+sync).

In the inter-node configuration (Roundtrip setup), the latency measurement takes into account also the

delay introduced by the Network IP (mainly due to serialization/deserialization stages) and the latency

ranges between 858 ns (BRAM) and 1240 ns (DDR+sync). It is worth noticing that when using the BRAM

(yellow line), the end-to-end latency remains below 1 us for packet payload sizes up to 512B using the 256-

bit datapath version of the Communication IP.

Figure 3-6:Measured latencies on the 128-bit and the 256-bit internal datapath setups.

Send and receive buffers allocated on BRAM.

In the test setup integrating the 256-bit datapath for the Communication IP, the forwarding of packet

payload to the network occurs by sending half of the words required for the 128-bit datapath case: we can

notice from Figure 3-6 how every latency value obtained for a given message size in the 128-bit datapath

setup is comparable to the latency value obtained in the 256-bit one for a message of twice the size. This

behaviour clearly improves the performance of the 256-bit setup wrt the 128-bit one for message sizes

larger than 32B.

3.2 Bandwidth test

As shown in Figure 3-7, bandwidth test is carried out by transferring multiple data packets with fixed

payload size from a “sender” HLS kernel which reads data from the source buffer in FPGA memory (either

DDR or BRAM). The sender HLS kernel forwards them through the Communication IP to another FPGA

where a “receiver” HLS kernel writes data into the destination buffer in memory. After receiving the

number of data packets whose integrated payload adds up to the size of the receive buffer, the second

FPGA send back a single “ACK” packet with minimal payload to confirm the reception (one-way mode). In

loop-back mode sender and receiver are two tasks on the same FPGA. The total data sent through the

textarossa.eu D2.9 | 37

network is summed and then divided by the time (measured on the sender node) elapsed between the

start of the multiple packets send and the completion of the receive operation of the ACK packet.

Figure 3-7: Bandwidth test scheme

For the bandwidth, we will not dwell on commenting in detail values obtained in the DDR test cases where

it is capped by the overhead due to the memory access that also explain the lack of measured bandwidth

differences between intra-nodes and inter-node tests.

Figure 3-8: Measured bandwidth in HLS Kernels intra-node (loopback) communication and inter-node (oneway)

communication using BRAM and DDR to allocate send/receive buffers.

These results refer to the 128-bit internal datapath setup.

Referring to the BRAM case, in Figure 3-8 we notice that the bandwidth tends to saturate while increasing

the size of sent messages. For the 128-bit datapath setup, the bandwidth reaches a value of ~18.1 Gbps for

both intra-node loopback BRAM case (red line) and for the inter-node BRAM case (fuchsia line) compatible

with the maximum theoretical value of raw bandwidth, equal to 19.2 Gbps, due to the data injection rate

textarossa.eu D2.9 | 38

at the router port (128bit@150MHz). The difference is mainly due to the packet protocol overhead and to

the effect of the 64b/66b encoding on the intra-node channels.

Figure 3-9 shows the bandwidth measurements for the same test modes but for the 256-bit datapath

where, with a 150 MHz clock frequency, the maximum raw bandwidth theoretical value is 38.4 Gbps.

At the maximum payload size of 4kB and using BRAM both the intra-node loopback (red line) and the inter-

node one-way (fuchsia line), bandwidths still do not saturate, reaching 35.8 Gbps and 34.6 Gbps

respectively.

Figure 3-9: Measured bandwidth in HLS Kernels intra-node (loop-back) communication and inter-node (one-way)

communication using BRAM and DDR to allocate send/receive buffers.

These results refer to the 256-bit internal datapath setup.

Figure 3-10: Comparison between measured bandwidth with the 256-bit and the 128-bit internal datapath setups

textarossa.eu D2.9 | 39

The differences in terms of bandwidth between the two setups can be appreciated in Figure 3-10 where

tests results are shown for both used internal datapaths. As expected, the bandwidth for 256-bit setup

tends to saturate at a value equal to twice the one reached in the 128-bit setup.

3.3 Multi-node test: 4 Alveo U200 boards

To evaluate the performance of the Communication IP in a multi-node setup, we used a testbed composed

by 4 Xilinx Alveo U200, as shown in Figure 3-11, connected in a ring topology, measuring the additional

latency introduced by the presence of an intermediate node between the source (node 0) and destination

(node 2) communication endpoints.

Figure 3-11: Testbed composed by 4 Xilinx U200 connected in a ring topology.

Since the crossing of an intermediate peer of a direct network (we refer to this passage as a “hop”

operation) will result in additional operations to route packets to the destination node, we decided to

perform a latency test, similar to the one described in Section 3.1, sending packets from node 0 to node 2.

In the following we report the measured one and two hops latency.

textarossa.eu D2.9 | 40

Figure 3-12: Measured latency of HLS Kernels inter-node (roundtrip) communication performed between

nodes 0 and 1 (1 hop) and between nodes 0 and 2 (2 hops).

These results refer to the 128-bit internal datapath setup with a global clock of 150 MHz

As can be seen from Figure 3-12, inter-node communication latencies measured in the two hops case are
slightly higher with respect to the single hop one. As we expect, the differences between the values
obtained in the two configurations are mostly constant and equal to ~600 ns, the latency cost introduced
by one hop in the network.

textarossa.eu D2.9 | 41

4 High Performance IP Configuration
In this section we describe the performance of the Communication IP in the most performant configuration

we have been able to deploy in the TEXTAROSSA project. This configuration is characterized by an internal

datapath width of 256 bit and an operating frequency of 200 MHz of the IP core logic, with inter-node

channels implemented with 4 bonded serial lanes.

Referring to the performance, Figure 4-1 shows latency measurements obtained with the same test

configurations described in Section 3.1. They are coherently better (so, lower) than those obtained using

the 256-bit datapath, @150 MHz clock configuration (see Figure 3-4).

Figure 4-1: Measured latency of HLS Kernels intra-node (loopback, localtrip) communication and inter-node (roundtrip)

communication using BRAM and DDR to allocate send/receive buffers.

These results refer to the 256bit internal datapath setup with a global clock of 200 MHz and 4 lanes channels.

Table 4-1 summarizes end-to-end latency values for intra-node and inter-node communications measured

using packets with 16/32B payload size.

 DDR+Sync (ns) BRAM (ns)

Intra-node (localtrip) 533 213

Inter-node (roundtrip) 1065 768

Table 4-1: End-to-end latency values for intra-node and inter-node communications using packets with 16/32B payload

size. These results are referred to the 256bit internal datapath setup with a global clock of 200 MHz and 4 lanes channels.

In this configuration of the IP the maximum theoretical internal raw bandwidth corresponds to the 51.2

Gbps data injection rate at intra-node router port. It can be noticed from Figure 4-2Figure 4-2 that it still

has not reached saturation in the intra-node “loopback” BRAM case using packets with the maximum

packet payload size of 4kB.

textarossa.eu D2.9 | 42

In the inter-node “one-way” BRAM test, the maximum achievable one-way bandwidth is capped by that of

inter-node channel. The inter-node ports are implemented using “Gt*_serial_ports” bonded transceivers

in the Communication IP Vivado project. In this configuration the single transceiver switching frequency

was set to a value of 156 MHz, corresponding to a channel data injection rate of 256 bit@156 MHz,

coherent with a raw bandwidth of 39.9 Gbps neglecting the effect of the 64b/66b encoding. The inter-node

measured bandwidth using 4kB payload packets is 37.3 Gbps, rather close to this maximum, as shown in

Figure 4-2.

Figure 4-2: Measured bandwidth of HLS Kernels intra-node (loopback) communication and inter-node (one-way)

communication using BRAM and DDR to allocate send/receive buffers.

These results refer to the 256-bit internal datapath setup with a global clock of 200 MHz and 4 lanes.

Table 4-2 summarizes measured bandwidth values for intra-node and inter-node communications

measured using packets with 4 kB payload size.

textarossa.eu D2.9 | 43

 DDR+Sync (MB/s) BRAM (MB/s)

Intra-node (loopback) 3938 5967

Inter-node (oneway) 3938 4658

Table 4-2 Bandwidth values for intra-node and inter-node communications using packets with 4kB payload size.

These results refer to the 256-bit internal datapath setup with a global clock of 200 MHz and 4 lanes channels.

5 Resource usage
Figure 5-1 and Figure 5-2 show the usage report generated for the performance test design (represented

in Figure 3-1) implemented with Xilinx Aurora IP 2 lanes design and 128-bit internal datapath version of

the Communication IP for both Alveo U200 and Alveo U280 cards.

Figure 5-1: Resource usage report for 4 intra-node and 2 inter-node (2 lanes) ports @128 bit for U200 card

textarossa.eu D2.9 | 44

Figure 5-2: Resource usage report for 4 intra-node and 2 inter-node (2 lanes) ports @128 bit for U280 card

The usage reports were generated for the same system integrating the Communication IP configured with

4 lanes channels and internal datapath width of 256 bit (Figure 5-3 and Figure 5-4).

Figure 5-3: Resource usage report for 4 intra-node and 2 inter-node (4 lanes) ports @256 bit for U200 card

textarossa.eu D2.9 | 45

Figure 5-4: Resource usage report for 4 intra-node and 2 inter-node (4 lanes) ports @256 bit for U280 card

All the synthesis reports show that dispatchers/aggregators occupy a small percentage of the total

resources employed (indicated as Platform in the figures above).

Furthermore, comparing the results for the same cards, increasing the datapath width from 128 bit to 256

bit causes a very limited increase in resources' occupancy.

As expected, the resource’s occupancy is in percentage smaller in the U280 card, but in either cases the

occupancy is low, allowing the implementation of Communication_IP with more intra-node ports, possibly

adding new features, and much more complex HLS kernels compared to those used in the performance

test design.

6 Conclusions
In this deliverable we described the TEXTAROSSA Communication IP, showing in detail the implementation

of a new inter-node port based on the Xilinx® 10G/25G High Speed Ethernet Subsystem and able to support

the UDP transport protocol.

Simulation and test of the ethernet port demonstrated the correct behaviour of the port and of its

interconnection with the Routing_IP, both for internal datapath equal to 128 bit and 256 bit.

Furthermore, we described changes made in the new version of the Communication_IP: in order to

increase bandwidth and lower latency we increased internal datapath from 128 to 256 bit, logic clock from

100 MHz to 200 MHz, and number of channel’s lane from 2 to 4.

Synthetic tests, developed to validate the design and assess its performance, have shown significant

improvements of the new Communication_IP’s performance in terms of bandwidth and latency achieved

in both U200 and U280 cards.

textarossa.eu D2.9 | 46

7 References

[1] Corundum: An open-source 100-Gbps NIC. Forencich, A.; Snoeren, A.C.; Porter, G.; Papen, G. In
Proceedings of the 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), Fayetteville, AR, USA, 3–5 May 2020; pp. 38–46.

[2] VCSN: Virtual Circuit-Switching Network for Flexible and Simple-to-Operate Communication in HPC
FPGA Cluster. Tomohiro Ueno and Kentaro Sano. ACM Trans. Reconfigurable Technol. Syst. 16, 2, Article
25 (June 2023), 32 pages. https://doi.org/10.1145/3579848

[3] EasyNet: 100 Gbps Network for HLS. He, Z.; Korolija, D.; Alonso, G. In Proceedings of the International
Conference on Field-Programmable Logic and Applications (FPL 2021), Dresden, Germany, 30 August 30–
3 September 2021.

[4] Comparison of Direct and Indirect Networks for High-Performance FPGA Clusters. F. Rincon et al.
(Eds.): ARC 2020, LNCS 12083, pp. 314–329, 2020. https://doi.org/10.1007/978-3-030-44534-8_2

[5] A custom interconnection multi-FPGA framework for distributed processing applications.
C. Salazar-García et al., 2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and
Systems Design (SBCCI), Porto Alegre, Brazil, 2022, pp. 1-6, doi: 10.1109/SBCCI55532.2022.9893238.

[6] A New Computer Communication Switching Technique. P. Kermani and L. Kleinrock, Virtual Cut-Through:

Comput. Networks 3 (1979) 267.

[7] Deadlock-free message routing in multiprocessor interconnection. Seitz, W. J. Dally, and C. L. 1987. 5:

Computers, IEEE Transactions on, 1987, Vol. C.36, p. 547–553.

[8] APEnet+ 34 Gbps data transmission system and custom transmission logic. R. Ammendola, A. Biagioni,

O. Frezza, A. Lonardo, F. Lo Cicero, P. Paolucci, D. Rossetti, F. Simula, L. Tosoratto, P. Vicini

J. Instrum., 8 (12) (2013), p. C12022, 10.1088/1748-0221/8/12/C12022

[9] APEIRON: composing smart TDAQ systems for high energy physics experiments. R. Ammendola, A.

Biagioni, C. Chiarini, A. Ciardiello, P. Cretaro, O. Frezza, F. Lo Cicero, A. Lonardo, M. Martinelli, P. S. Paolucci,

C. Rossi, F. Simula, M. Turisini, P. Vicini, Under review in Journal of Physics: Conference Series (ACAT 2022),

arXiv:2307.01009 [cs.DC]

[10] 10G/25G High Speed Ethernet Subsystem Product Guide (PG210) https://docs.xilinx.com/r/en-

US/pg210-25g-ethernet/Product-Specification?tocId=7GkMtn4e6VqMZW3Klq7QhA.

https://doi.org/10.1145/3579848
https://arxiv.org/abs/2307.01009
https://docs.xilinx.com/r/en-US/pg210-25g-ethernet/Product-Specification?tocId=7GkMtn4e6VqMZW3Klq7QhA
https://docs.xilinx.com/r/en-US/pg210-25g-ethernet/Product-Specification?tocId=7GkMtn4e6VqMZW3Klq7QhA

textarossa.eu D2.9 | 47

Appendix A. Relevant source codes

Bandwidth test host pseudocode

device.load_xclbin(bitstream);

Allocate_recv_buffer(device, buf_size);

Allocate_send_buffer(device, packet_size);

Fill_send_buffer();

Send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE);

switch.write_register(auto-toggle reset);

kswitch.write_register(local_coord);

(only for localloop test): //kswitch.write_register(overwrite destination);

kswitch.write_register(threshold);

kswitch.write_register(credit);

If node_sender:

Run_kernel_receiver(recv_buffer, 1);

gettimeofday(&startTime,NULL); //start time measurement

run_kernel_sender (receiver_coord, npackets, packet_size, send_buffer);

ksender_run.wait();

kreceiver_run.wait();

gettimeofday(&endTime,NULL); //stoptime measurement

elapsedTime = elapsed(startTime,endTime);

BW = (npackets*packet_size)/elapsedTime);

 If node_receiver:

Run_kernel_receiver(recv_buffer, npackets);

kreceiver_run.wait();

recv_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE);

 Run_kernel_sender(sender_coord, 1, 16, send_buffer); //send back 1 packet of size 16B

ksender_run.wait();

Bandwith test “kernel sender” pseudocode (example for DDR test)

int nword = packet_size / sizeof(word_t);

Foreach (packet){

Header = Fill_header;

Hdr_fifo_out.write(Header);

 foreach (word) {

data_fifo_out.write(data_word);

}

 Footer = fill_footer()

Hdr_fifo_out.write(footer);

}

textarossa.eu D2.9 | 48

Bandwith test “kernel receiver” pseudocode (example for DDR test)

Foreach (packet){

hdr_fifo_in.read(hdr);

len = hdr.packet_size;

N_words = len/sizeof(word)

Foreach(word in N_words){

word[j] = data_fifo_in.read();

}

 header_fifo_in.read(footer)

}

 __

Latency test host pseudocode

device.load_xclbin(bitstream);

If !bram_usage:

Allocate_recv_buffer(device, buf_size);

Allocate_send_buffer(device, packet_size);

Fill_send_buffer();

Send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE);

switch.write_register(auto-toggle reset);

kswitch.write_register(local_coord);

kswitch.write_register(threshold);

kswitch.write_register(credit);

If initiator FPGA:

gettimeofday(&startTime,NULL); //start time measurement

run_kernel_sender_receiver (destination_coord, npackets, packet_size, send_buffer, recv_buffer,

 bram_usage);

ksender_receiver_run.wait();

If !bram_usage:

recv_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE);

gettimeofday(&endTime,NULL); //stoptime measurement

elapsedTime = elapsed(startTime,endTime);

Latency = (elapsedTime/2)/npackets;

Latency test “kernel sender_receiver” (krnl_sr) pseudocode

Foreach (packet){

If bram_usage:

memory_in = local_BRAM_buffer_in;

memory_out = local_BRAM_buffer_out;

textarossa.eu D2.9 | 49

send(memory_in, packet_size, coord, task_id, ch_id, data_fifo_out); //Communication Library

receive(ch_id, memory_out, data_fifo_in);

}

Latency test “kernel pipe” (krnl_pipe) pseudocode

Foreach (packet){

receive(ch_id, local_memory, data_fifo_in); //Communication Library APIs

send(local_memory, packet_size, coord, task_id, ch_id, data_fifo_out);

}

