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Executive Summary  
This document reports on the activities done by TEXTAROSSA partner INFN with reference to the design of 

the internode Communication IP in WP2. 

The INFN Communication IP, developed in VHDL, allows data transfers between processing tasks hosted in 

the same node (intra-node communications) or in different nodes (inter-node communications), 

implementing a direct network for FPGA accelerators and enabling the distributed implementation of 

streaming applications in the APEIRON framework. 

The Communication IP was implemented as a Xilinx Vitis RTL kernel that can be automatically integrated 

with HLS computing kernels by the APEIRON framework to generate the design to be deployed on a multi-

FPGA system.  

Major improvements to the preliminary release of the IP have been implemented in the design to boost 

performance and to add functionalities: 

• A 256-bit internal data path version of the IP has been developed besides the 128-bit one. 

• The clock frequency of the internal logic has been increased from 100 MHz to 150 MHz (and 200 

MHz for the 256-bit version). 

• The maximum number of serial lanes for the inter-node channels has been increased from 2 to 4. 

• The maximum number of intra-node ports has been increased from 2 to 4. 

• One network ports of the card can be configured to work as 10G/25G Ethernet port supporting 

UDP/IP transport layer offloading. 

We performed tests on two/four Xilinx Alveo U200 cards and on two Xilinx Alveo U280 cards connected by 

QSFP+ cables in a ring topology configuration, measuring the performance in terms of end-to-end latency 

and one-way bandwidth of the Communication IP. 

This document is part of deliverable D2.9 along with the IP project database synthesizable both on the 

Xilinx Alveo U200 and U280 platforms and is publicly available on the deliverable section of the 

TEXTAROSSA project website (https://textarossa.eu/dissemination/deliverables/). 

The synthesizable IP project database is also available in the APEIRON framework git repository 

(https://github.com/APE-group/APEIRON). 

https://textarossa.eu/dissemination/deliverables/
https://github.com/APE-group/APEIRON
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1 Introduction 
The INFN Communication IP implements a direct network for FPGA accelerators, allowing low-latency data 
transfer between processing tasks deployed on the same FPGA (intra-node communication) and on 
different FPGAs (inter-node communication) and enabling the distributed implementation of real-time 
dataflow applications in the APEIRON framework. 
 

This document describes the final version of the Communication IP in detail and shows data for its synthesis 

on the two reference platforms (Xilinx Alveo U200 and U280), along with results of tests developed to 

validate the newly introduced features of the design and assess its current performance. 

Section 1 shows how our IP achieves TextaRossa project’s objectives and compares its performance with 

some solution proposed for multi-FPGAs clusters. 

Section 2 introduces the Communication IP architecture, describing in detail the Ethernet port added in 

the new release, with simulation and implementation results. 

Section 3 shows results of latency and bandwidth tests performed connecting two boards (Alveo U200 or 

U280) and improving internal logic clock (from 100 MHZ to 150 MHz),  datapath (from 128 to 256 bit) and 

number of transceiver’s lanes (from 2 to 4). 

Section 4 highlights the Communication IP best case implementation (256 bit @ 200 MHz). 

Section 5 reports on the FPGA resource usage, for both the Alveo U200 and U280 platforms, of the 

performance test design integrating two different configurations of the Communication IP (2 serial lanes 

per inter-node port/128-bit internal datapath and 4 serial lanes per inter-node port/256-bit internal 

datapath). 

Finally, section 6 concludes the report. 

1.1 Relationship with project objectives 

The Communication IP is the key component enabling the deployment of real-time scalable dataflow 
applications on a multi-FPGAs system via the APEIRON streaming programming model inspired by Kahn 
processing networks.  Starting from a simple configuration file, the APEIRON framework creates all the files 
required for the FPGA bitstream generation linking the Communication IP and the application’s 
computational HLS kernels, unburdening the HLS developers from the task of writing a top-level design. 
Our IP design idea was motivated by the following considerations:  

1. The direct communication between computing tasks deployed on FPGAs avoids the involvement 
of the host CPUs and system bus resources in the data transfers, improving the energy efficiency 
of the execution platform.  

2. Bypassing the intervention of the host network stack, communication latency is reduced while 
bandwidth for small massages is increased.  

3. Since communication operations are implemented on a completely “hardware” path, 
deterministic latency is achieved, in accordance with the real-time requirements.  

These considerations are strictly related to the TEXTAROSSA project objectives:  

• Objective 1 - Energy efficiency.  APEIRON addresses this objective enabling the complete offload 
of the streaming processing to FPGA devices [Qasaimeh2019, Nguyen2020, Goz2020]. 
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Furthermore, avoiding the involvement of the CPUs and system bus resources in data transfers 
improves the energy efficiency of the multi-FPGA execution platform.   

• Objective 2 - Sustained application performance. The sustained applications’ performance of 
distributed streaming applications, such as the RAIDER use case, are strongly affected by the 
performance of the network system. Implementing a direct FPGA to FPGA interconnect and 
bypassing the host network stack, allows to keep the communication latency in the sub-
microsecond range and to increase the bandwidth for small messages.  

• Objective 4 - Seamless integration of reconfigurable accelerators. The APEIRON framework 
leverages the Vitis HLS workflow, extending it to a multi-FPGA execution platform through a 
lightweight communication library (HAPECOM) at programming level, and through a simple 
configuration system for the deployment of the distributed application to the multi-FPGA 
execution platform.   

• Objective 5 - Development of new IPs. The INFN Communication IP is the key enabling technology 
behind the APEIRON framework, allowing direct low-latency intra/inter FPGA communications 
between HLS kernels.  

The objectives are also related to the strategic goals of the project:    

• Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic 
Research Agenda (SRA) for open HW and SW architecture. The APEIRON framework software is 
developed following the open-source model and is freely available in its GitHub repository 
(https://github.com/APE-group/APEIRON).  

• Strategic Goal #3: Opening of new usage domains. The APEIRON framework aims at offering 
hardware and software support for running real-time dataflow applications on a network of 
interconnected FPGAs, leveraging on the Vitis HLS tool.  We believe that it has the potential to 
ease the development and to support the efficient execution of a wide class of applications suited 
to be executed on a multi-FPGA platform, such as but not limited to real-time HPDA ones.  

1.2 Comparison with the state-of-the-art 

As of today, FPGA represents one of the main accelerator architectures for HPC applications. In addition to 
this, this type of accelerator is well suited to develop customized algorithms, combining the processing 
capability of an Application Specific Integrated Circuit (ASIC) with the reconfigurability feature 
characterizing this kind of device.  
In modern development, and in dedicated networks, multiple FPGAs clusters are emplaced to map large 
HPC kernels by exploiting the low-latency communication capability of these accelerators. However, 
despite FPGAs high-speed transceiver links, a certain network flexibility with very large clusters could be 
required to map applications’ workloads and to strategically maximize resource utilization and 
performance. In this direction, many solutions of scalable switched FPGA cluster have been developed, 
where, for example, the transceiver links are physically connected to ports of high-speed Ethernet switches 
in an indirect network setup implementing FPGAs as Network Interface Cards (NICs), as for example in the 
Corundum [1] open-source network interface, in the Virtual Circuit-Switching Network (VCSN) [2], and in 
the EasyNet [3] open source networking stack. 

Corundum is an open-source, high-performance FPGA-based NIC and platform for in-network compute. 
Features include a high performance datapath, 10G/25G/100G Ethernet, PCI express gen 3, a custom, high 
performance, tightly-integrated PCIe DMA engine, many (1000+) transmit, receive, completion, and event 
queues, scatter/gather DMA, MSI interrupts, multiple interfaces, multiple ports per interface, per-port 
transmit scheduling including high precision TDMA, flow hashing, RSS, checksum offloading, and native 
IEEE 1588 PTP timestamping. A Linux driver is included that integrates with the Linux networking stack. 
Development and debugging are facilitated by an extensive simulation framework that covers the entire 
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system from a simulation model of the driver and PCI express interface on one side to the Ethernet 
interfaces on the other side. While being a very advanced NIC design, Corundum is a NIC for PCI express 
endpoints that includes many features that are not needed or are redundant for our reference application 
scenario of scalable real-time dataflow processing on FPGA. 

VCSN is a design of a FPGA-based PCI express NIC targeted at achieving a higher flexibility and scalability in 
HPC systems compared to those obtained using direct networks, like the one implemented by our 
Communication IP, while maintaining the same level of performance in terms of latency and bandwidth. 
While the project demonstrates that this objective can be achieved to a certain extent, it also shows that 
this is done at the cost of additional dedicated resources in the FPGA design. So, also stripping away the 
features dedicated to PCI express interfacing that are redundant in our context, the additional cost in terms 
of FPGA resources, that would limit those dedicated to computing HLS kernels, and in terms of additional 
hardware for external switches make this approach not effective for our design targets. 

EasyNet is a design aiming at reducing the programming effort for FPGA applications on distributed 
systems. In this system, a 100 Gbps open-source TCP/IP stack is integrated into Xilinx Vitis framework to 
enable HLS network programming. The network stack instantiation is hidden for the user, so as in the 
original design flow of a Vitis application, and a set of MPI-like communication primitives and collective 
operation have been developed to hide the interaction and control management within the network layer 
and to be easily invoked from an HLS C library.  
Corundum and EasyNet are both FPGA-based designs of indirect networks using a 100 Gbps TCP/IP stack, 
but they present a difference in what concern their implementation: in fact, Corundum FPGA NIC Verilog 
HDL design doesn’t allow the integration of a user computing kernel, while EasyNet design, whose building 
blocks (CMAC and Network kernels) are developed in Xilinx Vitis framework, allows implementing a HLS 
user kernel connected to the Network kernel managing the intercommunication between FPGAs. 
Connecting HLS kernels through the network via communication primitives callable as HLS library functions, 
EasyNet is similar to the APEIRON framework. Comparing performance, with our Communication IP we 
assessed a round trip time (RTT) of 1.5 us measured as a ping-pong benchmark of 64 Bytes between two 
FPGAs, EasyNet report a value of 4.3 us in the same conditions. 
In our reference application scenario of real-time dataflow distributed applications on FPGA, latency for 
small messages (<= 4kB) is a critical feature. A comparison of direct and indirect networks for FPGA clusters 
[4] shows that for small messages a higher bandwidth and a lower latency are obtained using the direct 
network, confirming our architectural choice. 

 
To conclude this section, we report on a recent proceedings paper [5] describing a very low-latency multi-
FPGA interconnection framework aimed at distributed processing applications. The proposed solution is 
claimed to allow efficient communication between different processing elements distributed among the 
FPGAs. To evaluate it, authors built a multi-FPGA system composed of five Zynq ZC706 FPGA boards capable 
of hosting a diverse number of coprocessors distributed over our custom network. To handle high-speed 
transceivers, they incorporated the LogiCORE™ IP Aurora 8b1Ob core into the physical layer working at a 
clock frequency of 250 MHz. With an aggregate bandwidth of up to 25 Gbps per FPGA board, the authors 
declare the interconnection framework reaches a latency of only 200.36 ns, one of the lowest reported in 
Electronics Engineering literature and corresponding to roughly one third of what we measure. Although 
our latency measurement also takes into account the reading of message content from BRAM memory at 
source node and the writing of the message content in destination node, this is not enough to justify this 
huge difference. Unfortunately, the authors do not provide a way to reproduce their results, but these 
results stimulate us to improve further the performance of our Communication IP in terms of latency. 

2 Basic design 
The Communication IP allows data transfers between processing tasks hosted in the same node (intra-node 
communications) or in different nodes (inter-node communications), as shown in Figure 2-1.  
In the context of the APEIRON framework, processing tasks are implemented by HLS kernels with Xilinx 
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Vitis. The details of the interface between HLS kernels – the endpoints of the communication – and the 
Communication IP are described in Section 2.1. 

 

Figure 2-1: Example of intra-node (in red) and inter-node (in blue/green) data transfers between tasks. 

 

 

 

 

Figure 2-2: Architectural partitioning of the Communication IP 

 

The hardware block structure can be split into a Network_IP and a Routing_IP (Figure 2-22). 

The Routing_IP defines the switching technique and routing algorithm; its main components are the  
Switch_component Block, the Configuration/Status Registers and the InterNode and IntraNode Interfaces. 
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The Switch component dynamically interconnects all ports of the IP, implementing a communication 
channel between source and destination ports.   

Dynamic links are managed by routing logic together with arbitration logic: the Router configures the 
proper path across the switch while the Arbiter is in charge of solving contentions between packets 
requiring the same port.  

For inter-node communications, the routing policy applied is the dimension-order (DOR) one: each FPGA 
is uniquely identified by its coordinates in a N dimensional torus, the DOR consists in reducing the offset 
along one dimension to zero before considering the offset in the next dimension in anti-lexicographic order. 

The employed switching technique — i.e., when and how messages are transferred — is Virtual Cut-
Through (VCT) [6]: the router starts forwarding the packet as soon as the algorithm has picked a direction 
and the buffer used to store the packet has enough space. The deadlock-avoidance of DOR routing is 
guaranteed by the implementation of two virtual channels for each physical channel (with no fault-
tolerance guaranteed) [7].  

The transmission is packet-based, meaning that the Communication IP sends, receives and routes packets 
with a header (Figure 23), a variable size payload and a footer.  

 

 

Figure 2-3: TEXTAROSSA packet’s header format 

 

The Communication IP exposes two sets of interfaces, i.e., IntraNode and InterNode IF; the number of ports 
within these interfaces (M and N) can be customized at design time.  
The IntraNode IF manages data flow to (RX) and from (TX) local tasks; each port consists of two FIFOs for 
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each direction, so that header/footer and data use a dedicated FIFO, and a Performance_counter block 
(containing an internal_generator block to generate packets and an internal_consumer block for 
performances monitoring and analysis). The InterNode IF, with the Network_IP block, oversees managing 
data flow over the serial links between FPGAs.  

In the final release of the Communication_IP, the number of IntraNode ports can be customized at design 

time between 1 and 4, while InterNode ports are set to 2 (according to TEXTAROSSA target devices - Xilinx 

Alveo U200 and U280). 

In the Network_IP, the physical layer blocks define the data encoding scheme for the serialization of the 
messages over the cable and shape the network topology. They provide point-to-point bidirectional, full-
duplex communication channels of each node with its neighbors along the available directions.  

Link_Ctrl blocks instead establish the logical link between nodes and guarantee reliable communication, 
eventually performing error detection and correction.   

To transfer data between each node with its neighbors we used Xilinx Aurora 64B/66B cores for the 

serialization of the messages over the cable, and INFN APElink IP [8] to guarantee reliable communication, 

enabling error detection and correction for critical protocol sections. 

In the first release of the Communication_IP we implemented Aurora-based data link layer with 2 lanes 

with the Routing_IP having a 128-bit internal datapath width. 

In order to support applications requiring higher network performance, in the final release of the IP we 

also support a configuration using Aurora transceivers with 4 bonded lanes associated with a Routing IP 

datapath width of 256-bit. 

For the same reason we increased the frequency (from 100 to 150/200 MHz) of the external RTL kernel 

clock (ap_clk), used for clocking the internal logic. 

2.1 Integration of the Communication IP in the 

APEIRON Framework 

The APEIRON framework developed by the INFN APE Lab [9] aims at offering hardware and software 

support for running real-time dataflow applications on a network of interconnected FPGAs.   

The main motivation for the design and development of the APEIRON framework is that the currently 

available HLS tools do not natively support the development and deployment of applications over multiple 

FPGA devices, which severely chokes the scalability of problems that this approach could tackle.  

To overcome this limitation, we envisioned APEIRON as an extension of the Xilinx Vitis framework able to 

support a network of FPGA devices interconnected by a low-latency direct network as the reference 

execution platform. Developers can define scalable applications, using a streaming programming model 

inspired by Kahn Process Networks, that can be efficiently deployed on a multi-FPGAs system.  

In this scenario the communication IP must guarantee low-latency communication between processing 

tasks deployed on FPGAs, even if they are hosted on different computing nodes. Thanks to the use of HLS 

tools in the workflow, processing tasks are described in C++ as HLS kernels, while communication between 

tasks is expressed through a lightweight C++ API based on non-blocking send() and blocking receive() 

operations: 
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size_t send (msg, size, dest_node, task_id, ch_id);  

size_t receive (ch_id, recv_buf);  

Where: 

• msg is the message to be sent and size is its size in Bytes;  

• dest_node is the n-Dim coordinate of the destination node (FPGA) in the n-Dim torus network;  

• task_id is the local-to-node receiving task (kernel) identifier (0-3);  

• ch_id is the local-to-task receiving FIFO (channel) identifier (0-127).  

• recv_buf is the receive buffer of the destination HLS kernel.  

This simple API allows the HLS developer to perform communications between kernels, either deployed on 

the same FPGA (intra-node communication) or on different FPGAs (inter-node communication) without 

knowing the details of the underlying network stack.  The software communication Library leverages AXI4-

Stream (https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces-with-Side-

Channels) Side-Channels to encode all the information needed to forge the packet header.  

Two APEIRON HLS IPs defined in the software communication library manage the adaptation toward/from 

IntraNode ports of the Routing IP: they are AGGREGATOR and DISPATCHER, as shown in Figure 24. 

The DISPATCHER receives incoming packets from the Routing IP and forwards them to the right input 

channel, according to the relevant fields of the header. The AGGREGATOR receives outgoing packets from 

the task and forges the packet header, then filling the header/data FIFOs of the Routing IP IntraNode port.  

 

Figure 2-4: Interface between IntraNode Port 0 and the attached HLS computing Task 

 mediated by the AGGREGATOR and DISPATCHER components. 

For more details on the APEIRON framework refer to deliverable D4.7 – HLS Flow. 

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces-with-Side-Channels
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/AXI4-Stream-Interfaces-with-Side-Channels
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2.2 Ethernet port 

In the final release of the Communication_IP, we also implemented a port using the Xilinx® 10G/25G High 

Speed Ethernet Subsystem, which implements the 25G Ethernet Media Access Controller (MAC) with a 

Physical Coding Sublayer (PCS).  The main purpose of this new feature is to include a standard network port 

in the Communication IP design to be used as I/O channel by APEIRON dataflow applications. 

The architecture of this additional port is depicted in Figure 25. 

This port, as well as each port of the Communication_IP, consists of two AXI-FIFOs for each direction 

(TX/RX), so that header/footer and data use different FIFO. 

 

Figure 2-5: Ethernet port architecture 

The end-to-end communication can be organized in four abstraction layers: data are encapsulated at each 
level as shown in Figure 26. 

 
Figure 2-6: Encapsulation of data descending through abstract layers. 

 

The transport layer performs host-to-host communication on either the local network or remote network. 

The User Datagram Protocol (UDP) is a simple message-oriented transport layer protocol, which uses a 

connectionless communication. It also provides a checksum for data integrity and port numbers 

(source/destination) to identify the process. 

Figure 27 shows its header format. 
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Figure 2-7: UDP header format 

The UDP converter block is in charge of encapsulating transmitted TEXTAROSSA packets in UDP packets 

(on TX side) and to extract TEXTAROSSA packets from received UDP payload (on RX side).  

On the TX side, the UDP packets are converted into IPv4 packets by the IPV4_TX state machine in the IP 

converter block; an IPv4 packet consists of a header (shown in Figure 28) and data. 

 

Figure 2-8: IPV4 header format 

Version (4 bit): For IPv4, this is always equal to 0x4. 

Internet Header Length (IHL) (4 bit): The IPv4 header is variable in size due to the optional 14th field 

(options). The HL field contains the size of the IPv4 header, specifying the number of 32-bit words in the 

header (in our implementation 0x5). 

Type of Service (TOS) (1 Byte): this field has various purposes, but in our implementation, it is ignored 

(0x00) 

Total Length (2 Byte): this field defines the entire packet size in bytes, including header and data. The 

minimum size is 20 bytes (header without data), and the maximum is 65,535 bytes. 

Identification (2 Byte): This field is primarily used for uniquely identifying the group of fragments of a single 

IP datagram. 

Fragment flags (3 bit): These bits are used to control or identify fragments: 

• bit 0: Reserved; must be zero 

• bit 1: Don't Fragment (DF) 

• bit 2: More Fragments (MF) 

Fragment offset (13 bit): This field specifies the offset of a particular fragment relative to the beginning of 

the original unfragmented IP datagram. Fragments are specified in units of 8 bytes. Fragmentation is not 

handled in this Communication_IP release (fragment fields are ignored). 
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Time to live (TTL) (1 Byte): This field limits a datagram's lifetime to prevent network failure in the event of 

a routing loop. It is specified in seconds (in our implementation is set to 0x80). 

Protocol (1 Byte): This field defines the protocol used in the data portion of the IP datagram (0x11 

corresponds to UDP). 

Header checksum (2 Byte): This field is used to detect corruption in the header. When a packet arrives at 

a router, the router calculates the checksum of the header and compares it to the checksum field. If the 

values do not match, the router discards the packet. Errors in the data field must be handled by the 

encapsulated protocol. UDP has separate checksums that apply to their data. 

Source address (4 Byte): IPV4 address of the sender of the packet. 

Destination address (4 Byte): IPV4 address of the receiver of the packet. 

Options: Not used in our implementation 

 

The IPV4_TX FSM (Figure 29) first checks the length of UDP received packet (it has to be less of 1480, 
otherwise an error arises), then it examines the destination IP address: if it is not equal to 0xFFFFFFFF 
(BROADCAST ADDRESS) it needs to request the mac address to the ARPv2 TX block and to wait for ARP1 
response (WAIT MAC state). 

 

Figure 2-9: IPV4 TX FSM 

After grant received from MAC_TX_ARB block (in charge of solving contentions between packets requiring 
ETH port – I.e. IPV4_TX or ARPV2), IPV4_TX FSM generates IP packet and sends it to MAC_TX FSM. In 
parallel, the CRC FSM computes CRC of the IPV4 header. 

In case of BROADCAST packets, we do not need to look up the MAC address, so grant from MAC_TX_ARB 
is enough. 

The ARPv2 TX block responds to ARP requests using a cached ARP table or searching external ARP (sending 

a broadcast ARP request message). 

 
1 The Address Resolution Protocol (ARP) is a communication protocol used for discovering the link layer address, 

such as a MAC address, associated with a given internet layer address, typically an IPV4 address. 
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In the second case, after grant received from MAC_TX_ARB, the ARPV2 TX block sends an ARP request 
packet to the MAC_TX FSM specifying the destination address 0xffffffffffff (broadcast request). 

Figure 210 shows ARP packet’s structure. 

 

 

Hardware Type Protocol Type 

Hardware length Protocol length Operation 

Sender hardware address 
 

 Sender protocol address 

 
Target hardware address 

 

Target protocol address 

Figure 2-10: ARP packet (32-bit words) 

Hardware type (HTYPE): This field specifies the network link protocol type, in our implementation Ethernet 

(0x0001). 

Protocol type (PTYPE): This field specifies the internetwork protocol for which the ARP request is intended. 

For IPv4, this has the value 0x0800. 

Hardware length (HLEN): Length (in octets) of a hardware address. Ethernet address length is 0x06. 

Protocol length (PLEN): Length (in octets) of internetwork addresses. IPv4 address length is 0x04. 

Operation: Specifies the operation that the sender is performing: 0x0001 for request, 0x0002 for reply. 

Sender hardware address (SHA): Media address of the sender. In an ARP request this field is used to 

indicate the mac address of the host sending the request. In an ARP reply this field is used to indicate the 

address of the host that the request was looking for. 

Sender protocol address (SPA): Internetwork address of the sender. 

Target hardware address (THA): Media address of the intended receiver. In an ARP request this field is 

ignored. In an ARP reply this field is used to indicate the address of the host that originated the ARP request. 

Target protocol address (TPA): Internetwork address of the intended receiver. 

 

When ARPv2 RX block receives the ARP response with its own address, it updates arp entry data with MAC 

address associated to the IP address and communicate it to the IPV4_TX block. 

If ARPv2 RX block receives an ARP request, it compares destination IP address with its own IP: in case of 

matching, this block delivers a unicast response to the sender, filling in the target MAC address field with 

its MAC address. 

 

MAC_TX FSM is in charge of creating ETH frame, a data link layer protocol data unit with 14-byte ETH 

header, payload and CRC-checksum (Figure 211). 

 

 

Figure 2-11: Ethernet type II frame 

Ether Type field is 0x0800 in case of IPV4 transmission and 0x0806 in case of ARP transmission. 
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The minimum frame size is 64 bytes, consisting of 14-Byte MAC Header, 4-Byte CRC Checksum and 46-Byte 
Payload; if the actual data to be sent is less than 46 bytes, it must be padded. 

The maximum payload that can be sent is instead of 1500 Bytes (therefore maximum frame size is 1518 
Bytes). 

On Rx side, data flow is the same: the received ETH frame is sent to IPV4 RX FSM in case of IPV4 packets 
(i.e. Ether type = 0x0800) otherwise to the ARP RX block. 

In the first scenario, the IPV4 packet is de-encapsulated in UDP packet and, at the end, UDP payload is 

written in FIFO RX HEADER/DATA by the UDP Converter block. 

In the second case, as mentioned before, the ARP RX block checks if the received packet is an ARP request 

or an ARP response and behaves accordingly. 

To implement the Ethernet Media Access Controller (MAC) with a Physical Coding Sublayer (PCS) we 

included an AMD 10G/25G High Speed Ethernet Subsystem (ETH MAC). 

The following figure shows the block diagrams of the 10G/25G High Speed Ethernet Subsystem (GT serial 

transceivers are not shown). 

 

Figure 2-12: Block diagram of 10G/25G High Speed Ethernet Subsystem (without GT transceivers). 

User Interfaces available are: 

- AXI4 -Stream for datapath interface (TX AXI and RX AXI) 

- AXI4-Lite for control and statistics interface 

and differential serial interface feature can be configured during the instantiation. 

In the Communication_IP we instantiated a single core configuration @10.3125Gbps with single lane GT 

transceiver inside the IP core, and a datapath interface of 64 bit. 

Block ETH register config configures the IP core for our use case, accessing AXI4-Lite registers [10]. 

This configuration is controlled by the CONFIG FSM (Figure 213). 
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Figure 2-13: ETH register block FSM 

Register MODE_REG (0x0008) is set to 0x40000000: bit 30 (tick_reg_mode_sel) equal to ‘1’ allows us to 

read the statistics counters (which provide histograms of the classification of traffic and error counts) by 

writing a 1 to the TICK_REG register, while the 0th and 1st bit set to ‘0’ suppress the reporting of slv error. 

Bits Default Type Signal 

0 1 RW en_wr_slverr_indication 

1 1 RW en_rd_slverr_indication 

30 1 RW tick_reg_mode_sel 

31 0 RW ctl_local_loopback 

Table 2-1: MODE_REG 

Register CONFIGURATION_RX_REG1 (0x0014) is set to 0x00000033 and CONFIGURATION_TX_REG1 

(0x000C) to 0x00003003. 

Bits Default Type Signal 

0 1 RW ctl_rx_enable  

1 1 RW ctl_rx_delete_fcs  

2 0 RW ctl_rx_ignore_fcs  

3 0 RW ctl_rx_process_lfi  

4 1 RW ctl_rx_check_sfd  

5 1 RW ctl_rx_check_preamble  

6 0 RW ctl_rx_force_resync  

7 0 RW ctl_rx_test_pattern 

8 0 RW ctl_rx_test_pattern_enable 

9 0 RW ctl_rx_data_pattern_select 

10 - - Reserved 

11 0 RW ctl_rx_custom_preamble_enable 

12 0 RW ctl_rx_prbs31_test_pattern_enable 

Table 2-2: CONFIGURATION_RX_REG1 
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Bits Default Type Signal 

0 1 RW ctl_tx_enable  

1 1 RW ctl_tx_fcs_ins_enable  

2 0 RW ctl_tx_ignore_fcs  

3 0 RW ctl_tx_send_lfi  

4 0 RW ctl_tx_send_rfi  

5 0 RW ctl_tx_send_idle 

13:10 12 RW ctl_tx_ipg_value 

14 0 RW ctl_tx_test_pattern 

15 0 RW ctl_tx_test_pattern_enable 

16 0 RW ctl_tx_test_pattern_select 

17 0 RW ctl_tx_data_pattern_select 

18 0 RW ctl_tx_custom_preamble_enable  

23 0 RW ctl_tx_prbs31_test_pattern_enable 

Table 2-3: CONFIGURATION_TX_REG1 

Register GT_RESET_REG (0x0000) is used to properly reset the transceiver startup Finite State Machine 

(FSM). We used different timing for simulation and synthesis. 

Bits Default Type Signal 

0 0 RW ctl_gt_reset_all 

This is a clear on write register. 

1 0 RW ctl_gt_rx_reset 

2 0 RW ctl_gt_tx_reset 

Table 2-4: RESET_REG 

After core lock (the receiver has detected and locked to the word boundaries), a first writing in the 

TICK_REG register (0x0020) allows to set to 0 readable STAT_*_MSB/LSB registers (which are not 

resettable). 

The initialization of the core is then completed (signal channel_ok =’1’) and the FSM, in INIT_DONE state, 

waits for the writing of the TICK_REG (achieved by writing Communication_IP register 70) which causes the 

accumulated counts to be pushed to the readable STAT_*_MSB/LSB registers and simultaneously clear the 

accumulators.  

Therefore, to offer to the users the possibility to set at run time a few key features and to read status 

information of the new ETH port, we added some registers to the Communication_IP. 

2.3 Ethernet port simulation and test 

 

For the ETH_port we primarily tested the UDP/MAC blocks interaction using the configuration shown in 

figure 214 (this configuration can be yet implemented with VHDL parameter test_mac=’1’ in 

Textarossa_switch_synt entity). 
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Figure 2-14: ETH port’s architecture in TEST_MAC configuration 

 

The GEN_TX_STATE_0 FSM (enabled by parameter test_mac_gen=’1’) generates c_tx_pkt_cnt UDP 

packets with constant header: 

− Destination port:      0xfa62;  

− Source port:               0xfa62;  

− Total length in byte: 0x0040; 

− Checksum:                  0x0000 

and pseudo-random payload generated by LFSR block (a generator based on linear feedback shift register). 

Destination_IP_address is set to x"c0a80002". 

The LSFR_check block flushes the RX FIFO, checking payload of received packets. 

The Virtual input/output core (VIO) drives reset and tick_reg (to read statistics registers of ETH MAC) signals 

in real-time. 

ILA IP allows us to monitor ETH MAC statistics registers and LFSR_check block signals (received data and 

identified errors). 

Figure 215 shows the simulation of two connected Communication_IPs in TEST_MAC configuration: 

• Textarossa 0: parameter test_mac_gen=’1’, c_tx_pkt_cnt =1  (512 Byte); MAC_ADDRESS: 
d00bacc0aaaa; IP_ADDRESS: c0a80002 

• Textarossa 1: parameter test_mac_gen=’0’; MAC_ADDRESS: d00dacc0aaaa; IP_ADDRESS: 
c0a80002 

The waveform shows that Textarossa 1 correctly receives 622 Byte (rx_good_data) - 62 Byte for ARP 

request and 560 Byte for IPV4 transmission - and sends 64 Byte (rx_good_data) for ARP response. 

The outputs of Textarossa 1 LFSR_check block (in orange) show that packet was received (64 words @64bit) 

without errors. 
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Figure 2-15: ETH port simulation in TEST_MAC configuration 

 

The design in TEST_MAC configuration was loaded into the FPGA, and the debugger internal signals were 

monitored using an Integrated Logic Analyzer (ILA). 

Also in this case, as shown in Figure 216, data were received (Rx_data_cnt=64) without errors 

(Rx_err_cnt=0). 

 

Figure 2-16: ILA of board in TEST_MAC configuration 

 

In the second test setup configuration (NORMAL_MODE, Figure 2-17), on the TX side, the UDP_converter 

block generates UDP packets starting from information sent by the ROUTING_IP (header+payload+footer). 
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Figure 2-17: ETH port’s architecture in NORMAL_MODE configuration 

The GEN_TX_STATE_1 FSM generates the UDP header from information contained in FIFO TX HEADER and 

encapsulating Textarossa packet header (shown in Figure 23) and footer in the UDP payload (with the 

Textarossa packet payload read from FIFO TX DATA), going from 128 to 64-bit interface. 

Figure 218 shows the simulation of a Communication_IPs in NORMAL_MODE configuration, connected in 
loopback: we used internal_generator block to generate packets and fill the transmitting FIFOs, and an 
internal_consumer block to flush the receiving FIFOs and check payload of received packets (if all packets 
are received the signal test_ok arises). 

 

 

 

Figure 2-18: ETH port simulation in NORMAL MODE 

The design was also tested, and internal signals were monitored using Integrated Logic Analyzers (Figure 

219). 
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Figure 2-19: ILA of board in NORMAL MODE configuration 

 

This port is also used connected to a switch with an internal datapath of 256 bit width. 

 

 

 

 

 

 

 

 

2.4 Configuration and Status Registers 

 

This is the list of configuration and status registers of the Communication IP along with the associated 

address (in green the registers related to ETH port): 

 Offset Name Description Default value  

 

4 
0x00000010 RESET_REG 

Bit 0: write ‘1’ to reset;  

Self-clear (‘0’ after 200 

clock’s cycle) 

0x0000000 RW 

5 0x00000014 REVISION_REG 

Bit 15 downto 0:  Revision 

ID 

Bit 31 downto 16: Version 

ID 

0x0000000 RO 

6 0x00000018 COORDME_REG 

3D node’s coordinates  

Bit 5 downto 0: X 

coordinate 

0x0000000 RW 

8 0x00000020 LATTICESIZE_REG 

Lattice size 

Bit 5 downto 0: X 

direction 

0xfffffff RW 

12 0x00000030 PERF_INTRANODE_CF 

Perf_Block configuration 

register: 

Bit 7 downto 0: IntraNode 

Packet_Generator enable 

Bit 15 downto 8: IntraNode 

Consumer enable 

0x0000000 RW 
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Bit 23 downto 16: 

IntraNode BW test enable 

13 0x00000034 PERF_INTERNODE_CF 

Perf_Block configuration 

register: 

Bit 7 downto 0: InterNode 

Packet_Generator enable 

Bit 15 downto 8: InterNode 

Consumer enable 

0x00000000 RW 

14 0x00000038 PKTGEN_CONFIG_0 

Packet_generator 

configuration register: 

Bit 15 downto 0: number of 

packets generated 

Bit 29 downto 16: packet 

length (in byte) 

Bit 31: header only packet 

generated 

0x00000000 RW 

16 0x00000040 PKTGEN_CONFIG_1 

Destination of packet 

Bit 5 downto 0: X 

direction 

Bit 10 downto 6: Y 

direction 

Bit 15 downto 11: Z 

direction 

0x00000000 RW 

20 0x00000050 PERF_INTRANODE_ST 

Bit 3  downto 0: 

packet_generator status 

(intraNode 0) 

Bit 7  downto 4: 

packet_checker status   

(intraNode 0) 

Bit 11 downto 8: 

packet_generator status 

(intraNode 1) 

Bit 15 downto 12: 

packet_checker status   

(intraNode 1) 

Bit 19 downto 16: 

packet_generator status 

(intraNode 2) 

Bit 23 downto 20: 

packet_checker status   

(intraNode 2) 

Bit 27 downto 24: 

packet_generator status 

(intraNode 3) 

Bit 31 downto 28: 

packet_checker status   

(intraNode 3) 

                           

*Packet_generator status: 

"0000" SM_STATE = OFF 

"0001" SM_STATE = IDLE 

"0010" SM_STATE = 

TX_HEADER "0011" SM_STATE 

= TX_PAYLOAD 

"0100" SM_STATE = 

TX_FOOTER 

                           

**Packet_checker status 

 RO 
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Bit 0 = Test ok! (All 

packets received with 

correct payload) 

Bit 3 downto 1: SM STATE  

   "000" SM_STATE = OFF  

   "001" SM_STATE = IDLE 

   "010" SM_STATE = COUNT 

21 0x00000054 PERF_INTERNODE_ST 

Bit 3  downto 0: 

packet_generator status 

(see register 

PERF_INTRANODE_STS) 

Link 0 

Bit 7  downto 4: 

packet_checker status Link 

0 

Bit 11 downto 8: 

packet_generator status 

Link 1 

Bit 15 downto 12: 

packet_checker status Link 

1 

 RO 

22 0x00000058 PERF_INTRANODE_CNT0 

TxRx clock counter (first 

packet   written, last 

packet read) IntraNode 0 

 RO 

23 0x0000005C PERF_INTRANODE_CNT1 

TxRx clock counter (first 

packet   written, last 

packet read) IntraNode 1 

 RO 

24 0x00000060 PERF_INTRANODE_CNT2 

TxRx clock counter (first 

packet   written, last 

packet read) IntraNode 2 

 RO 

25 0x00000064 PERF_INTRANODE_CNT3 

TxRx clock counter (first 

packet   written, last 

packet read) IntraNode 3 

 RO 

26 
0x00000068 

 

PERF_INTERNODE_CNT0 

 

TxRx clock counter (first 

packet   written, last 

packet read) InterNode 0 

 RO 

27 0x0000006C PERF_INTERNODE_CNT1 

TxRx clock counter (first 

packet   written, last 

packet read) InterNode 1 

 RO 

28 
0x00000070 

 

INTRANODE_FIFO_STS_ 

RX_0 

Bit 31 downto 16: Fifo 

IntraNode 0 Data Rx 

UsedWord  Bit 15 downto 0: 

Fifo IntraNode 0 Header Rx 

UsedWord 

 

 RO 

29 
0x00000074 

 

INTRANODE_FIFO_STS_ 

TX_0 

 

Bit 31 downto 16: Fifo 

IntraNode 0 Data Tx 

UsedWord 

Bit 15 downto 0: Fifo 

IntraNode 0 Header Tx 

UsedWord 

 RO 

30 0x00000078 
INTRANODE_FIFO_CNT_ 

HD_TX_RD_0 

Fifo IntraNode 0 Header Tx 

read counter 
 RO 

31 0x0000007C 
INTRANODE_FIFO_CNT_ 

HD_TX_WR_0 

Fifo IntraNode 0 Header Tx 

write counter 
 RO 

32 0x00000080 
INTRANODE_FIFO_CNT_ 

HD_RX_RD_0 

Fifo IntraNode 0 Header Rx 

read counter 
 RO 

33 0x00000084 
INTRANODE_FIFO_CNT_ 

HD_RX_WR_0 

Fifo IntraNode 0 Header Rx 

write counter 
 RO 
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34 0x00000088 
INTRANODE_FIFO_CNT_ 

DT_TX_RD_0 

IntraNode 0 Data Tx read 

counter 
 RO 

35 0x0000008c 
INTRANODE_FIFO_CNT_ 

DT_TX_WR_0 

IntraNode 0 Data Tx write 

counter 
 RO 

36 0x00000090 
INTRANODE_FIFO_CNT_ 

DT_RX_RD_0 

IntraNode 0 Data Rx read 

counter 
 RO 

37 0x00000094 
INTRANODE_FIFO_CNT_ 

DT_RX_WR_0 

IntraNode 0 Data Rx write 

counter 
 RO 

38 

47 

0x00000098-

0x000000BC 
INTRANODE_FIFO_*_1 

Fifo counter register 

IntraNode 1 
 RO 

48 

57 

0x000000C0-

0x000000E4 
INTRANODE_FIFO_*_2 

Fifo counter register 

IntraNode 1 
 RO 

58 

67 

0x00000098-

0x0000008C 
INTRANODE_FIFO_*_3 

Fifo counter register 

IntraNode 1 
 RO 

68 0x00000110 LINK_0_CONFIG_0 

Bit 31 downto 28: Edac 

enable InterNode 1 

     "0000" NO EDAC 

     "1111" EDAC 

Bit 27 downto 24 = Edac 

enable InterNode 0 

Bit 17 = Use new 

destination in InterNode 1 

Bit 16 = Use new 

destination in InterNode 0 

Bit 15 downto 0: New 

destination (15–11: Z; 10–

6: Y; 5–0:X). 

 

0x00000000 RW 

69 0x00000114 LINK_0_CONFIG_1 

Bit 25 downto 16: Red data 

threshold 

Bit 7 downto 0: Red header 

threshold 

 

0x00000000 RW 

70 0x00000118 LINK_0_CONFIG_2 

Bit 6: the accumulated 

counts are pushed to the 

readable ETH_* registers andl 

simultaneously the 

accumulators are cleaned 
Bit 15 downto 8: Tx new 

credit cycle 

Bit 7 downto 0: Tx waiting 

cycle 

0x00000000 RW 

71 0x0000011C LINK_0_CONFIG_3 Header error gen  RO 

80 0x00000140 LINK_0_STATUS_0   

Bit 15 downto 12: Rx 

status; 

Bit 11 downto 8: Tx footer 

status 

Bit 7 downto 4: Tx payload 

status 

Bit 3 downto 0: Tx header 

status 

 RO 

81 0x00000144 LINK_0_ERROR 

Bit 31 downto 16: Rx 

header error counter 

Bit 15 downto 0: Rx header 

fatal error counter 

 RO 

82 0x00000148 LINK_0_TX_MAGIC Tx magic counter  RO 
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83 0x0000014C LINK_0_TX_START Tx start counter  RO 

84 0x00000150 LINK_0_TX_HDR Tx header counter  RO 

85 0x00000154 LINK_0_TX_FTR Tx footer counter  RO 

86 0x00000158 LINK_0_RX_MAGIC Rx magic counter  RO 

87 0x0000015c LINK_0_RX_START Rx start counter  RO 

88 0x00000160 LINK_0_RX_HEADER Rx header counter  RO 

89 0x00000164 LINK_0_RX_FOOTER Rx footer counter  RO 

90 

99 

0x00000168-

0x00000185 
LINK_1_REGISTERS 

 
  

110 0x000001B8 LINK0_RD_WR_CNT_0 
Header read counter Link 

TX0 
 RO 

111 0x000001BC LINK0_RD_WR_CNT_1 Data read counter Link TX0  RO 

112 0x000001C0 LINK0_RD_WR_CNT_2 
Header write counter Link 

TX0 
 RO 

113 0x000001C4 LINK0_RD_WR_CNT_3 
Data write counter Link 

TX0 
 RO 

114 0x000001C8 LINK0_RD_WR_CNT_4 
Data write counter Link 

RX0 VCH0 
 RO 

115 0x000001CC LINK0_RD_WR_CNT_5 
Header write counter Link 

RX0 VCH0 
 RO 

116 0x000001D0 LINK0_RD_WR_CNT_6 
Data read counter Link RX0 

VCH0 
 RO 

117 0x000001D4 LINK0_RD_WR_CNT_7 
Header read counter Link 

RX0 VCH0 
 RO 

118 0x000001D8 LINK0_RD_WR_CNT_8 
Data write counter Link 

RX0 VCH1 
 RO 

119 0x000001DC LINK0_RD_WR_CNT_9 
Header write counter Link 

RX0 VCH1 
 RO 

120 0x000001E0 LINK0_RD_WR_CNT_10 
Data read counter Link RX0 

VCH1 
 RO 

121 0x000001E4 LINK0_RD_WR_CNT_11 
Header read counter Link 

RX0 VCH1 
 RO 

122-

133 

0x000001E8-

0x00000214 
LINK1_RD_WR_CNT_* 

 
 RO 

150 0x00000258 FIFO_INTRANODE_EXC 

Bit 7  downto 0   = 

IntraNode TX HD write 

exception  

Bit 15 downto 8   = 

IntraNode TX DT write 

exception 

Bit 23 downto 16 = 

IntraNode RX HD write 

exception 

Bit 31 downto 24 = 

IntraNode RX DT write 

exception    

 RO 
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151 0x00000260 FIFO_REGISTER 

Bit 31 downto 24: Fifo 

Header Rx exp width                    

Bit 23 downto 16: Fifo 

Data Rx exp width    

Bit 15 downto 8: Fifo 

Header Tx exp width 

Bit 7 downto 0: Fifo Data 

Tx exp width 

 RO 

152 0x00000264 TRANSCEIVER_STATUS 

Bit 0: InterNode 0 channel 

up 

Bit 1: InterNode 1 channel 

up 

Bit 16: InterNode 0 

transceiver’s error 

Bit 17: InterNode 1 

transceiver’s error   

 RO 

200 0x00000320 IP ADDRESS ETH IP address 0xc0a80002 RW 

201 0x00000324 MAC_REG_LOW MAC address low 0xacc0aaaa RW 

202 0x00000328 MAC_REG_HIGH MAC address high 0x0000d00b RW 

203 0x0000032C ETH_TX_GOOD_BYTE_LSB 
Number of good bytes sent 

(LSB) 
0x00000000 RO 

204 0x00000330 ETH_TX_GOOD_BYTE_MSB 
Number of good bytes sent 

(MSB) 
0x00000000 RO 

203  0x00000334 ETH_RX_GOOD_BYTE_LSB 
Number of good bytes 

received (LSB) 
0x00000000 RO 

204 0x00000338 ETH_RX_GOOD_BYTE_MS 
Number of good bytes 

received (MSB) 
0x00000000 RO 

Table 2-5: Communication_IP configuration and status registers (in green the registers related to ETH port): 
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3 Performance tests 
Latency and bandwidth tests were conducted to validate the performance of the final version of the 

Communication IP integrating the improvements described in the previous sections.  

In the setup used for tests, the Communication IP is implemented as an RTL-IP Xilinx fashioned free running 

kernel connected to the global system/board clock of 150 MHz (improved wrt the preliminary release 

which featured a clock frequency of 100MHz). Performance tests have been reported and compared for 

the two developed versions of Communication IP (128-bit internal datapath width/2 lanes inter-node 

channels versus 256-bit internal datapath width/4 lanes inter-node channels).   

Figure 31 shows the general test setup with Communication IP featured with four intranode ports and two 

internode ports, and four couples of dispatcher/aggregator. 

 

Figure 3-1: Setup used to assess the performance of the Communication IP 

Tests described in this deliverable have been performed on two different testbench: 1) a dual server 

system, integrating a single Xilinx Alveo U200 FPGA per server, interconnected via the internode ports of 

the Communication IP; 2) a similar system hosting Xilinx Alveo U280 FPGAs. 

The pseudocode, which describe the summary of tests’ execution, is reported in Appendix. A. 

The complete code of the test setup can be accessed on the APEIRON framework github repository 

(https://github.com/APE-group/APEIRON). 

3.1 Latency test 

Latency test is performed using an HLS kernel which reads a payload (of max 4096 Bytes) data item from 

the memory (either BRAM or DDR) of the “initiator” FPGA and sends and receives it through/from the 

Communication IP to/from a second interconnected FPGA. An HLS kernel, embedded in this receiver FPGA, 

is in charge of getting a single packet and bouncing it back to the initiator FPGA (as shown in Figure 32), 

allowing the measurement of inter-node latency.  

The “send_receive” HLS kernel on the initiator FPGA is issued via host code while the “pipe” HLS kernel is 

free running. In order to minimize the contribution of the host call overhead to the latency measure, one 

million send_receive operations are launched and the overall time elapsed from the start of the first packet 
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send to the completion of the last packet receive is measured on the host. The end-to-end latency is then 

obtained as the half the overall elapsed time measured divided by the number of repetitions. 

 

Figure 3-2: Latency test scheme 

 

Figure 3-3: Testbench design illustration. The arrows describe different flows of data depending on the test performed: 

“Local-loop” (red arrow), “Local-trip” (green arrows), “Roundtrip” (blue arrows) 

We conducted several kinds of latency tests, covering all the possible paths involved in the communication 

within the same FPGA and on different FPGAs. 

In detail, to stress and validate the performance of the intra-node communication, “local-loop” and “local-

trip” tests were performed. These two, as can be seen in Figure 33, differ for what concerns the intra-node 

ports where the communication takes place. In the local-loop case, packets are sent on the port 0 and then 

routed back to the same port (red line), while in the local-trip test, packets are sent to the port 1 through 

the port 0, and then they are received and sent back by the kernel “pipe” connected to the port 1 (green 

lines). The “roundtrip” test (blue lines) is suitable to validate performance of the inter-node communication 

between 2 different FPGAs (respectively named as “node 0” and “node 1”). For all these test configurations 

we report the time taken to complete a packet traversal between source and destination node, i.e. the 

end-to-end communication latency.  
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Figure 3-4: Measured latency of HLS Kernels intra-node (localloop, localtrip) communication and inter-node (roundtrip) 

communication using BRAM and DDR to allocate send/receive buffers.  

These results refer to the 256-bit internal datapath width @150 MHz configuration of the Communication IP. 

 

Figure 3-5: Measured latency of HLS Kernels intra-node (loopback, localtrip) communication and inter-node (roundtrip) 

communication using BRAM and DDR to allocate send/receive buffers.  

These results refer to the 128-bit internal datapath width @150 MHz configuration of the Communication IP 

In Figure 3-4 and Figure 3-5, the results of latency test are reported differentiated by the specific type of 

test performed and what kind of FPGA memory was used. It’s possible to notice how latency values increase 

when working with the onboard DDR memory, which introduces an overhead due to its access latency and 

to the time required for the data synchronization between the CPU and FPGA (what we indicate as “sync” 

in the graph). Unsurprisingly, using the BRAM to store the payload on source and destination endpoints 

yields the lower latency values reached by the setup in each of the of communication configurations.  
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In the intra-node communication (local-trip configuration, sender and receiver on different intra-node 

ports) we measure the contribution of the Routing IP, of the Aggregator/Dispatcher, and of the BRAM or 

DRAM access (and sync operation for the latter) to the overall end-to-end communication latency. In this 

setup the latency to transfer a 16B message varies from 267 ns (BRAM) to 710 ns (DDR+sync). 

In the inter-node configuration (Roundtrip setup), the latency measurement takes into account also the 

delay introduced by the Network IP (mainly due to serialization/deserialization stages) and the latency 

ranges between 858 ns (BRAM) and 1240 ns (DDR+sync). It is worth noticing that when using the BRAM 

(yellow line), the end-to-end latency remains below 1 us for packet payload sizes up to 512B using the 256-

bit datapath version of the Communication IP.  

 

Figure 3-6:Measured latencies on the 128-bit and the 256-bit internal datapath setups. 

Send and receive buffers allocated on BRAM. 

 

In the test setup integrating the 256-bit datapath for the Communication IP, the forwarding of packet 

payload to the network occurs by sending half of the words required for the 128-bit datapath case: we can 

notice from Figure 3-6 how every latency value obtained for a given message size in the 128-bit datapath 

setup is comparable to the latency value obtained in the 256-bit one for a message of twice the size. This 

behaviour clearly improves the performance of the 256-bit setup wrt the 128-bit one for message sizes 

larger than 32B. 

3.2 Bandwidth test 

As shown in Figure 3-7, bandwidth test is carried out by transferring multiple data packets with fixed 

payload size from a “sender” HLS kernel which reads data from the source buffer in FPGA memory (either 

DDR or BRAM). The sender HLS kernel forwards them through the Communication IP to another FPGA 

where a “receiver” HLS kernel writes data into the destination buffer in memory. After receiving the 

number of data packets whose integrated payload adds up to the size of the receive buffer, the second 

FPGA send back a single “ACK” packet with minimal payload to confirm the reception (one-way mode). In 

loop-back mode sender and receiver are two tasks on the same FPGA. The total data sent through the 
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network is summed and then divided by the time (measured on the sender node) elapsed between the 

start of the multiple packets send and the completion of the receive operation of the ACK packet. 

 

 

Figure 3-7: Bandwidth test scheme 

For the bandwidth, we will not dwell on commenting in detail values obtained in the DDR test cases where 

it is capped by the overhead due to the memory access that also explain the lack of measured bandwidth 

differences between intra-nodes and inter-node tests. 

 

Figure 3-8: Measured bandwidth in HLS Kernels intra-node (loopback) communication and inter-node (oneway) 

communication using BRAM and DDR to allocate send/receive buffers.  

These results refer to the 128-bit internal datapath setup. 

Referring to the BRAM case, in Figure 3-8 we notice that the bandwidth tends to saturate while increasing 

the size of sent messages. For the 128-bit datapath setup, the bandwidth reaches a value of ~18.1 Gbps for 

both intra-node loopback BRAM case (red line) and for the inter-node BRAM case (fuchsia line) compatible 

with the maximum theoretical value of raw bandwidth, equal to 19.2 Gbps, due to the data injection rate 
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at the router port (128bit@150MHz). The difference is mainly due to the packet protocol overhead and to 

the effect of the 64b/66b encoding on the intra-node channels. 

Figure 3-9 shows the bandwidth measurements for the same test modes but for the 256-bit datapath 

where, with a 150 MHz clock frequency, the maximum raw bandwidth theoretical value is 38.4 Gbps. 

At the maximum payload size of 4kB and using BRAM both the intra-node loopback (red line) and the inter-

node one-way (fuchsia line), bandwidths still do not saturate, reaching 35.8 Gbps and 34.6 Gbps 

respectively. 

 

Figure 3-9: Measured bandwidth in HLS Kernels intra-node (loop-back) communication and inter-node (one-way) 

communication using BRAM and DDR to allocate send/receive buffers.  

These results refer to the 256-bit internal datapath setup. 

 

Figure 3-10: Comparison between measured bandwidth with the 256-bit and the 128-bit internal datapath setups 
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The differences in terms of bandwidth between the two setups can be appreciated in  Figure 3-10 where 

tests results are shown for both used internal datapaths. As expected, the bandwidth for 256-bit setup 

tends to saturate at a value equal to twice the one reached in the 128-bit setup.  

3.3 Multi-node test: 4 Alveo U200 boards  

To evaluate the performance of the Communication IP in a multi-node setup, we used a testbed composed 

by 4 Xilinx Alveo U200, as shown in Figure 3-11, connected in a ring topology, measuring the additional 

latency introduced by the presence of an intermediate node between the source (node 0) and destination 

(node 2) communication endpoints. 

   

Figure 3-11: Testbed composed by 4 Xilinx U200 connected in a ring topology. 

 

Since the crossing of an intermediate peer of a direct network (we refer to this passage as a “hop” 

operation) will result in additional operations to route packets to the destination node, we decided to 

perform a latency test, similar to the one described in Section 3.1, sending packets from node 0 to node 2. 

In the following we report the measured one and two hops latency. 
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Figure 3-12: Measured latency of HLS Kernels inter-node (roundtrip) communication performed between  

nodes 0 and 1 (1 hop) and between nodes 0 and 2 (2 hops).  

These results refer to the 128-bit internal datapath setup with a global clock of 150 MHz 

As can be seen from Figure 3-12, inter-node communication latencies measured in the two hops case are 
slightly higher with respect to the single hop one. As we expect, the differences between the values 
obtained in the two configurations are mostly constant and equal to ~600 ns, the latency cost introduced 
by one hop in the network. 
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4 High Performance IP Configuration  
In this section we describe the performance of the Communication IP in the most performant configuration 

we have been able to deploy in the TEXTAROSSA project. This configuration is characterized by an internal 

datapath width of 256 bit and an operating frequency of 200 MHz of the IP core logic, with inter-node 

channels implemented with 4 bonded serial lanes. 

Referring to the performance, Figure 4-1 shows latency measurements obtained with the same test 

configurations described in Section 3.1. They are coherently better (so, lower) than those obtained using 

the 256-bit datapath, @150 MHz clock configuration (see Figure 3-4). 

 

Figure 4-1: Measured latency of HLS Kernels intra-node (loopback, localtrip) communication and inter-node (roundtrip) 

communication using BRAM and DDR to allocate send/receive buffers.  

These results refer to the 256bit internal datapath setup with a global clock of 200 MHz and 4 lanes channels. 

 

Table 4-1 summarizes end-to-end latency values for intra-node and inter-node communications measured 

using packets with 16/32B payload size.  

  DDR+Sync (ns)  BRAM (ns)  

Intra-node  (localtrip) 533 213  

Inter-node (roundtrip) 1065  768  

Table 4-1: End-to-end latency values for intra-node and inter-node communications using packets with 16/32B payload 

size. These results are referred to the 256bit internal datapath setup with a global clock of 200 MHz and 4 lanes channels. 

 

In this configuration of the IP the maximum theoretical internal raw bandwidth corresponds to the 51.2 

Gbps data injection rate at intra-node router port. It can be noticed from Figure 4-2Figure 4-2 that it still 

has not reached saturation in the intra-node “loopback” BRAM case using packets with the maximum 

packet payload size of 4kB. 
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In the inter-node “one-way” BRAM test, the maximum achievable one-way bandwidth is capped by that of 

inter-node channel. The inter-node ports are implemented using “Gt*_serial_ports” bonded transceivers 

in the Communication IP Vivado project. In this configuration the single transceiver switching frequency 

was set to a value of 156 MHz, corresponding to a channel data injection rate of 256 bit@156 MHz, 

coherent with a raw bandwidth of 39.9 Gbps neglecting the effect of the 64b/66b encoding. The inter-node 

measured bandwidth using 4kB payload packets is 37.3 Gbps, rather close to this maximum, as shown in 

Figure 4-2. 

 

Figure 4-2: Measured bandwidth of HLS Kernels intra-node (loopback) communication and inter-node (one-way) 

communication using BRAM and DDR to allocate send/receive buffers.  

These results refer to the 256-bit internal datapath setup with a global clock of 200 MHz and 4 lanes. 

 

Table 4-2 summarizes measured bandwidth values for intra-node and inter-node communications 

measured using packets with 4 kB payload size.  
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  DDR+Sync (MB/s)  BRAM (MB/s)  

Intra-node (loopback) 3938 5967  

Inter-node (oneway) 3938 4658  

Table 4-2  Bandwidth values for intra-node and inter-node communications using packets with 4kB payload size.  

These results refer to the 256-bit internal datapath setup with a global clock of 200 MHz and 4 lanes channels. 

 

 

5 Resource usage 
Figure 5-1 and Figure 5-2 show the usage report generated for the performance test design (represented 

in Figure 3-1 ) implemented with Xilinx Aurora IP 2 lanes design and 128-bit internal datapath version of 

the Communication IP for both Alveo U200 and Alveo U280 cards. 

 

Figure 5-1: Resource usage report for 4 intra-node and 2 inter-node (2 lanes) ports @128 bit for U200 card 
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Figure 5-2: Resource usage report for 4 intra-node and 2 inter-node (2 lanes) ports @128 bit for U280 card 

The usage reports were generated for the same system integrating the Communication IP configured with 

4 lanes channels and internal datapath width of 256 bit (Figure 5-3 and Figure 5-4). 

 

Figure 5-3: Resource usage report for 4 intra-node and 2 inter-node (4 lanes) ports @256 bit for U200 card 
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Figure 5-4: Resource usage report for 4 intra-node and 2 inter-node (4 lanes) ports @256 bit for U280 card 

All the synthesis reports show that dispatchers/aggregators occupy a small percentage of the total 

resources employed (indicated as Platform in the figures above). 

Furthermore, comparing the results for the same cards, increasing the datapath width from 128 bit to 256 

bit causes a very limited increase in resources' occupancy. 

As expected, the resource’s occupancy is in percentage smaller in the U280 card, but in either cases the 

occupancy is low, allowing the implementation of Communication_IP with more intra-node ports, possibly 

adding new features, and much more complex HLS kernels compared to those used in the performance 

test design. 

6 Conclusions 
In this deliverable we described the TEXTAROSSA Communication IP, showing in detail the implementation 

of a new inter-node port based on the Xilinx® 10G/25G High Speed Ethernet Subsystem and able to support 

the UDP transport protocol. 

Simulation and test of the ethernet port demonstrated the correct behaviour of the port and of its 

interconnection with the Routing_IP, both for internal datapath equal to 128 bit and 256 bit. 

Furthermore, we described changes made in the new version of the Communication_IP: in order to 

increase bandwidth and lower latency we increased internal datapath from 128 to 256 bit, logic clock from 

100 MHz to 200 MHz, and number of channel’s lane from 2 to 4. 

Synthetic tests, developed to validate the design and assess its performance, have shown significant 

improvements of the new Communication_IP’s performance in terms of bandwidth and latency achieved 

in both U200 and U280 cards. 
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Appendix A. Relevant source codes 

 
Bandwidth test host pseudocode 

device.load_xclbin(bitstream); 

Allocate_recv_buffer(device, buf_size);  

Allocate_send_buffer(device, packet_size); 

Fill_send_buffer(); 

Send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE); 

switch.write_register(auto-toggle reset);  

kswitch.write_register(local_coord);  

(only for localloop test): //kswitch.write_register(overwrite destination);  

kswitch.write_register(threshold);  

kswitch.write_register(credit);  

If node_sender: 

Run_kernel_receiver(recv_buffer, 1);  

gettimeofday(&startTime,NULL);  //start time measurement 

run_kernel_sender (receiver_coord, npackets, packet_size, send_buffer); 

ksender_run.wait(); 

kreceiver_run.wait();  

gettimeofday(&endTime,NULL); //stoptime measurement 

elapsedTime = elapsed(startTime,endTime); 

BW = (npackets*packet_size)/elapsedTime); 

 If node_receiver: 

Run_kernel_receiver(recv_buffer, npackets); 

kreceiver_run.wait(); 

recv_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE); 

  Run_kernel_sender(sender_coord, 1, 16, send_buffer); //send back 1 packet of size 16B 

ksender_run.wait(); 

  

Bandwith test “kernel sender” pseudocode (example for DDR test) 

int nword = packet_size / sizeof(word_t); 

Foreach (packet){ 

Header = Fill_header; 

Hdr_fifo_out.write(Header); 

  foreach (word) { 

data_fifo_out.write(data_word); 

} 

  Footer = fill_footer() 

Hdr_fifo_out.write(footer); 

} 
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Bandwith test “kernel receiver” pseudocode (example for DDR test) 

Foreach (packet){ 

hdr_fifo_in.read(hdr); 

len = hdr.packet_size; 

N_words = len/sizeof(word) 

Foreach(word in N_words){ 

word[j] = data_fifo_in.read(); 

} 

  header_fifo_in.read(footer) 

} 

 ________________________________________________________________________ 

 

Latency test host pseudocode 

device.load_xclbin(bitstream); 

If !bram_usage: 

Allocate_recv_buffer(device, buf_size);  

Allocate_send_buffer(device, packet_size); 

Fill_send_buffer(); 

Send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE); 

switch.write_register(auto-toggle reset);  

kswitch.write_register(local_coord);  

kswitch.write_register(threshold);  

kswitch.write_register(credit);  

If initiator FPGA:  

gettimeofday(&startTime,NULL);  //start time measurement 

run_kernel_sender_receiver (destination_coord, npackets, packet_size, send_buffer, recv_buffer, 

           bram_usage); 

ksender_receiver_run.wait();  

If !bram_usage: 

recv_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE); 

 

gettimeofday(&endTime,NULL); //stoptime measurement 

elapsedTime = elapsed(startTime,endTime); 

Latency = (elapsedTime/2)/npackets; 

   

 

Latency test “kernel sender_receiver” (krnl_sr) pseudocode  

Foreach (packet){ 

If bram_usage: 

memory_in = local_BRAM_buffer_in; 

memory_out = local_BRAM_buffer_out; 
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send(memory_in, packet_size, coord, task_id, ch_id, data_fifo_out);  //Communication Library 

receive(ch_id, memory_out, data_fifo_in); 

} 

 

Latency test “kernel pipe” (krnl_pipe) pseudocode  

Foreach (packet){ 

receive(ch_id, local_memory, data_fifo_in); //Communication Library APIs 

send(local_memory, packet_size, coord, task_id, ch_id, data_fifo_out); 

} 


