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Executive Summary 
This document describes the APEIRON software stack, consisting in: 1) the host code needed to 

configure, control and monitor the execution of distributed Vitis HLS applications deployed on 

multiple FPGAs interconnected through the INFN Communication IP, 2) an HLS library implementing 

the communication primitives and the interfacing between the Communication IP and the HLS 

computing kernels, and 3) the software tool that generates the target design, linking automatically 

the Communication IP and the HLS computing kernels, to allow the generation of the FPGA bitstreams. 

In section 2 we describe the architecture of the runtime software stack and introduce the Supervisor 
component in charge of monitoring the status of the nodes and the execution of the distributed HLS 
applications. 
 
In the APEIRON framework the communication between HLS kernels is expressed through HAPECOM: 

a header-only lightweight C++ library based on non-blocking send() and blocking receive() 

communication primitives; the library is described in section 3. 

 

Instead of using the standard Vitis flow to generate the final integrated design, users must just prepare 

a YAML configuration file describing the attributes of each HLS computational kernel with APEIRON. 

Starting from this, the framework links the Communication IP and the HLS kernels that are connected 

to it and generates the bitstream for the overall design, as outlined in section 4. 

Finally, in section 5 we describe the implementation of a distributed HLS application to show the 
capabilities of the software stack enabling the scaling of performance with respect to the number of 
interconnected FPGAs.   
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1. Introduction 
The APEIRON system software consists of three main components: a host software stack providing 
runtime support for the multi-FPGA execution platform, a lightweight C++ HLS communication library 
(HAPECOM) based on non-blocking send() and blocking receive() operations, and of a tool for the 
automatic linking of computational tasks and Communication IP for FPGA bitstream generation. The 
APEIRON framework mainly offers hardware and software support to execute real-time dataflow 
applications on a network of interconnected FPGAs.  Developers can deploy scalable applications on 
a multi-FPGAs system via a simple dataflow programming model inspired by Kahn processing 
networks, and can run these applications on multiple devices, monitoring the whole execution from a 
single node.  

1.1. Relationship with Project Objectives 
The foundational ideas motivating the APEIRON framework, and thus driving  its software stack 

design and development, are the  following: 

1. The direct communication between computing tasks deployed on FPGAs avoids the 

involvement of the CPUs and system bus resources in the data transfers, improving the 

energy efficiency of the execution platform. 

2. Bypassing the intervention of the host network stack, communication latency is reduced 

while bandwidth for small massages is increased. 

3. Since communication operations are implemented on a completely “hardware” path, 

deterministic latency is achieved, in accordance with the real-time requirements. 

 

These considerations are strictly related to the TEXTAROSSA project objectives: 

• Objective 1 - Energy efficiency.  APEIRON addresses this objective enabling the complete 

offload of the streaming processing to FPGA devices. Furthermore, avoiding the involvement 

of the CPUs and system bus resources in data transfers improves the energy efficiency of the 

multi-FPGA execution platform.  

• Objective 2 - Sustained application performance. The sustained application performance of 

distributed streaming applications, such as the RAIDER use case, are strongly affected by the 

performance of the network system. Implementing a direct FPGA to FPGA interconnect and 

bypassing the host network stack, allows to keep the communication latency in the sub-

microsecond range and to increase the bandwidth for small messages. 

• Objective 4 - Seamless integration of reconfigurable accelerators. The APEIRON framework 

leverages the Vitis HLS workflow, extending it to a multi-FPGA execution platform through a 

lightweight HLS communication library (HAPECOM) at programming level, and through a 

simple configuration system for the deployment of the distributed application to the multi-

FPGA execution platform.  

• Objective 5 - Development of new IPs. The INFN Communication IP is the key enabling 

technology behind the APEIRON framework, allowing direct low-latency intra/inter FPGA 

communications between HLS kernels. 
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• Objective 6 - Integrated Development Platform. The ARMv8 based IDV-E represents the 

reference execution platform for the APEIRON runtime in the TEXTAROSSA project. 

Nevertheless, the framework has been developed and extensively tested on a X86_64 based 

small scale cluster in our lab, demonstrating the portability of the software stack to different 

host ISAs.  

The objectives are also related to the strategic goals of the project:   

• Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic 

Research Agenda (SRA) for open HW and SW architecture. The APEIRON framework 

software is developed following the open-source model and is freely available in its GitHub 

repository (https://github.com/APE-group/APEIRON). 

• Strategic Goal #3: Opening of new usage domains. The APEIRON frameworks aims at 

offering hardware and software support for running real-time dataflow applications on a 

network of interconnected FPGAs, leveraging on the Vitis HLS tool.  We believe that it has 

the potential to ease the development and to support the efficient execution of a wide class 

of applications suited to be executed on a multi-FPGA platform, such as but not limited to 

real-time HPDA ones. 

 

2. Host Software Stack 
The software stack architecture was already presented in deliverable D4.1, we report it in Figure 2.1 

for convenience. 

 

 
Figure 2.1 APEIRON Software Stack scheme 

 
 
XOCL and XCLMGMT modules are developed by Xilinx. The first (XOCL, PCIe User Physical Function 
Driver Interfaces) defines IOCTL system call command codes and associated structures for interacting 
with FPGA platforms, while the latter (XCLMGMT, PCIe Management Physical Function) is the PCIe 
Kernel Driver for Management Physical Function. Xilinx Runtime library (XRT) is an open-source easy 
to use software stack that facilitates management and usage of FPGA/ACAP devices built by Xilinx [1].  
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The problem using the XRT core lib and XRT runtime lib (which interacts directly with XOCL and 
XCLMGMT exposed APIs) is that some functions (i.e. register read and register write) require a 
“handler” returned during the bitstream board flashing. This implies that only one process is allowed 
to “read” or “write” hardware registers and the board must be re-initialized (and then the execution 
restarted) for every new or concurrent process. This is obviously not compatible with a library, which 
needs to allow different processes to operate on the same board concurrently.  

 

2.1. Apeironlib 

This module has two main objectives: wrapping the XRT functions and implementing a 
standard output redirect to have a circular buffer to be used as log.  
 

1. wrapper of the XRT functions, allowing the host user code to acquire a handler over the 
physical hardware. This partially solves the problem of having a single process allowed to use 
the hardware without re-flashing the board to handle the kernels.  
With respect to the deliverable D4.1, the library was extended by adding more functions, the 
complete list is described in Table 2.1. 

2. a logging circular buffer, very useful when used in conjunction with the Supervisor (see section 
2.4). This buffer is automatically filled when the user log information. An apeiron::cout is 
provided to be used as a normal std::cout object, which is in charge of simultaneously 
printing the information on the screen and storing it in the circular buffer.  

 

Function name return Description 

device_open error_t Open the device saving the “pointer” 

to the hardware inside the private 

attributes of the handler class 

device_dump void Used to print hardware attributes, 

mainly for debug purposes 

device_reset error_t Uses XRT core library functions to 

reset the FPGA 

xclbin_load(std::string xclbin_fnm) error_t Loads a xclb files into the FPGA 

board 

 read_register(const xrt::ip& kernel, 

uint32_t reg) 

uint32_t Read an IP-exposed register 

write_register(xrt::ip kernel, 

uint32_t reg, uint32_t val) 

error_t  

 

Write a certain value to a IP-exposed 

register 
report_power_consumption float Measure the current power 

consumption (XRT API used) 
report_fpga_thermal float Measure the current thermal status 

(XRT API used) 

report_kernel_state state Current kernel status (e.g. running, 

waiting, syncing...) 
get_current_xclbin string Return the current XCLBIN file used 

to flash the board 
get_current_deviceID int In systems where multiple boards are 

installed, this functions returns the ID 

associated with the current FPGAs. 

Table 2.1 The APEIRON lib API 
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2.2. Apeirond 
Apeirond is a persistent daemon / server used to manage multiple access requests from user apps to 
the board. It uses the apeironlib exposed APIs to operate on the physical hardware. 
Apeirond component has a persistent handler (an instance of the apeironlib) over the FPGA board, 
which is used to perform the actions exposed by the library. 
Note that it’s possible to have multiple boards installed on the same host, in this case one handler is 
created for each board during the initialization phase. The user application then specifies the ID of the 
board to use when connecting. 
 
The principle of functioning is a standard server/client model: the server is always waiting for new 
connections from clients on a specific port. At the arrival of a new client connection, a thread is 
generated to handle the request. This allows the server to answer multiple requests (from the same 
client or from different clients) at the same time. For example, during the execution of one kernel it is 
still possible to read registers in real time.  
Every client connection is handled by a different file descriptor, used to keep track of the connected 
clients. Periodically the file descriptors are monitored to assure the connection persistency and clean 
data structures in case of disconnection. 
A “connectionHandler” object is used to keep track of the connection status, basically reading requests 
from the client and sending back the responses.  

 

2.3. Apeirons 
The component responsible for the connection handling and the request parsing is called apeirons. 
This module receives commands from through the network via apeirons socket, exposing the 
apeironlib APIs to users over the network. The available commands are the same discussed for 
apeironlib, but exposed over the network. 
The protocol used is based on a TCP/IP socket and the messages are serialized and deserialized in JSON 

format to simplify the parsing phase. 

For example, a “read register” command from a client is serialized as follows (request for the value of 

register “9” of the default IP): 

{"register":"9","request":"read_reg"} 

A possible apeirond answer would be (register 0 contains value 0xe): 

{"register":"0","response":"read_reg","value":"0xe"} 

 

2.4. Supervisor 
This is the component used to monitor the status of the nodes in the network. 
The idea is to have a supervisor to manage multiple instances of the software stack distributed over 
the network, as it is represented in Figure 2.2. 
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Figure 2.2: Supervisor working scheme on different host executions 

 

Host names (and board id, if multiple FPGAs are available in the remote system) are passed as 
command line parameters to the script in charge of creating the GUI and handling the user inputs. 
 
In the current implementation, the supervisor is written in Python language, using TKinter package  
[2] to generate the Graphical User Interface.  
 
The user interface is represented in Figure 2.3. 

 

 
Figure 2.3: Supervisor user interface 
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The internal registers (on each node where apeirond daemon is running) can be monitored, and the 
register content can be set by using the “Set reg” input text area. 
 
The LOG section is used to monitor the standard output of the remote machine: using a circular buffer 
the output is saved by the remote host and sent to the supervisor periodically, together with the 
“kernel status”, “power consumption” and “thermal” information for each node. Power consumption 
and thermal status are also plotted in real time. 
 
In the “file” menu the user can flash a bitstream on each of the remote hosts using the dedicated GUI, 
selecting the right bitstream file. 
 
In the “run” menu the user can select the “kernel” file to run on a specific host or on all the remote 
hosts (more details in the next section). 
 
It’s important to note that both the bitstream file and the XRT host program must be in a filesystem 
shared by the supervisor and the remote host. 
 

2.5. Running host application remotely 
The mechanism used for running the host application controlling the HLS kernels is the dynamic linking 
loader. In the apeirond server, the function dlopen() loads the dynamic library file specified by the 
user, running the function named “run_kernel” by using the dlsym() standard call. 
 
The user application controlling the HLS kernels  will be compiled as dynamic library (usually a .so file) 
and then the file is used to run the application through the apeirond server.  
 
From the user perspective, the only argument passed to the “run_kernel” function is the 
“fpga_handler”, which is an instance of the apeiron_handler object, to be used to call the function 
inside the user kernel using the functions list reported in the apeironlib section. 
 
In the following pseudocode we report an example of a simple “send/receive” host application to be 
compiled as dynamic library: 
 
extern "C" void run_kernel (apeiron::Handler *fpga_handler) {  

   

/* in this moment fpga_handler is already initialized by the upper level*/  

  

fpga_handler->set_state_initializing();  

   

// create the kernel handle  

 xrt::kernel user_kernel(fpga_handler->get_device(), fpga_handler->get_uuid(), 

"krnl_usr:{krnl_user_1}");   

  

//Receive buffer intialization  

xrt::bo recv_buffer(fpga_handler->get_device(), buf_size, user_kernel.group_id(6));  

stream_data_t *recv_buffer_map = recv_buffer.map<stream_data_t*>();  

   

//Send buffer initialization  

xrt::bo send_buffer(fpga_handler->get_device(), packet_size, user_kernel.group_id(5));  

stream_data_t *send_buffer_map = send_buffer.map<stream_data_t*>();  

memset(send_buffer_map, 0, packet_size);  

  

//set some application-specific registers  

fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),4, 0x1);  

fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),6, 0);   

  

//write some LOG messages  

apeiron::cout << "CHANNEL_UP: " << std::to_string(fpga_handler->read_register(fpga_handler-

>get_ip("TextaRossa_switch"),67)) ;  
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apeiron::cout << "Running receiver kernel ...\n";  

  

//start send test  

gettimeofday(&startTime,NULL);  

send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE);  

xrt::run  krnl_usr_run = user_kernel(npackets, npackets, packet_size, send_buffer, 

recv_buffer);  

  

//start receiver   

apeiron::cout << "Waiting for receiver kernel to complete ...";  

fpga_handler->set_state_waiting();  

krnl_usr_run.wait();  

gettimeofday(&endTime,NULL);  

   

//LOG the results  

double elapsedTime = elapsed(startTime,endTime);  

apeiron::cout <<  std::to_string(packet_size) << " \t "<< 

std::to_string(elapsedTime/(2*npackets));  

} 

Listing 2.1: Supervised host application example  

 

3. Communication API: HAPECOM 
The communication between kernels is expressed through HAPECOM: a lightweight C++ 

API based on non-blocking send() and blocking receive() operations. This simple API allows 

the HLS developer to perform communications between kernels, either deployed on the same 

FPGA (intra-node communication) or on different FPGAs (inter-node communication), as represented 

in Figure 3.1, without knowing the details of the underlying packet communication protocol.  

 

 

 Figure 3.1: HLS kernels performing intra-node (red line) and  

inter-node (green line – receive, blue line– send) communications 

 

 

The HAPECOM Communication API can be represented with the following pseudo-code: 

 
size_t send (msg, size, dest_node, task_id, ch_id);  
size_t receive (ch_id, recv_buf); 

 

where: 
 



 

textarossa.eu   D4.5 | 15 

• msg is the message to be sent and size is its size in Bytes;  

• dest_node is the n-Dim coordinate of the destination node (FPGA) in the n-Dim torus 

network; 

• task_id is the local-to-node receiving task (kernel) identifier (0-3); 

• ch_id is the local-to-task receiving FIFO (channel) identifier (0-127); 

• recv_buf is the receive buffer of the destination HLS kernel. 

 

 
Figure 3.2: Interface between Intranode Port 0 and the corresponding HLS Task mediated by 

Aggregator and Dispatcher 

 

The Communication Library leverages AXI4-Stream Side-Channels to encode all the information 

needed to forge the packet header. Two APEIRON HLS IPs manage the adaptation toward/from 

IntraNode ports of the Routing IP: they are called Aggregator and Dispatcher, see Figure 3.2. 

The Dispatcher receives incoming packets from the Routing IP and forwards them to the destination 

receive channel, according to the relevant fields of the header. The Aggregator receives outgoing 

packets from the task and forges the packet header, then filling the header/data FIFOs of the Routing 

IP IntraNode port. 

 

Diving into the HAPECOM library code, Listing 3.1 shows the data structure representing the header 

and footer apenet protocol packet adopted in TEXTAROSSA [3]. 

 

typedef union { 

        struct __attribute__((packed)) { 

 

                unsigned long virt_chan      :  5; 

                unsigned long proc_id        : 16; 

                unsigned long dest_x         :  6; 

                unsigned long dest_y         :  5; 

                unsigned long dest_z         :  5; 

                unsigned long intra_dest     :  4; 

                unsigned long reserved       :  1; 

                unsigned long out_of_lattice :  1; 
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                unsigned long packet_type    :  5; 

                unsigned long packet_size    : 14; 

                unsigned long dest_addr      : 48; 

                unsigned long num_of_hops    : 10; 

                unsigned long edac           :  8; 

 

        } s; 

        uint32_t l[8]; 

        uint64_t u[4]; 

} apenet_header_t; 

 

typedef union { 

        uint32_t l[8]; 

        uint64_t u[4]; 

} apenet_footer_t; 

Listing 3.1: apenet protocol packet header and footer. 

 

The usage of the various fields of the header is shown in Listing 3.2 where the implementation of the 

send() and receive() functions is reported. The main part of each of these functions is to manage the 

apenet protocol header and footer: in the send() function, we can see how the header is forged by 

filling each of its significant fields with the parameters of given at the function code; while in the 

receive() function, the header bit address relative to the packet size (hd.s.packet_size, bounded by 

size_start_bitpos and size_end_bitpos enumerations) is read to complete the reception. 

Since the words composing the packets, sent from the HLS task to the dispatcher travel on the same 

streaming channels (defined as an hls::stream<ap_uint<256>>), in send() operations we must manage 

in a univocal way header, payload and footer words while filling the FIFOs. For this purpose, the 

apenet_2_word() function has the task of converting the apenet protocol packet header and footer 

data structure to a plain representation as a 256 bit unsigned word (defined in HAPECOM as  word_t). 

 
typedef ap_uint<256> word_t; 

typedef hls::stream<word_t> message_stream_t; 

typedef hls::stream<apenet_header_t> header_stream_t; 

typedef short channel_id_t; 

typedef short task_id_t; 

 

int receive(channel_id_t ch_id, word_t *buff, 

            message_stream_t message_data_in[N_INPUT_CHANNELS]){ 

 

        word_t hdr = message_data_in[ch_id].read(); 

 

        unsigned size = hdr.range(size_start_bitpos, size_end_bitpos); 

 

        unsigned nwords = (size & (sizeof(word_t)-1)) ? (size/sizeof(word_t)+1) : 

size/sizeof(word_t); 

 

        for (unsigned i = 0; i < nwords; ++i){ 

        #pragma HLS pipeline 

                buff[i] = message_data_in[ch_id].read(); 

        } 

 

        word_t ftr = message_data_in[ch_id].read(); 

 

        return size; 

 

} 

 

size_t send(word_t *buff, size_t size, int coord, 

            task_id_t task_id, channel_id_t ch_id, 

            message_stream_t message_data_out[N_OUTPUT_CHANNELS]) 
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{ 

 

  //create and write hdr + data + footer                                                                    

  if(size>0){ 

        apenet_header_t tmp_hd = {0}; 

        tmp_hd.s.dest_x = coord & 0b111111; 

        tmp_hd.s.dest_y = (coord>>6) & 0b11111;                                                                                                                                                                                                                 

        tmp_hd.s.dest_z = (coord>>11) & 0b11111;                                                                                                                                                                                                                

        tmp_hd.s.intra_dest = task_id; 

        tmp_hd.s.packet_size = size; //packet_size                           

        tmp_hd.s.dest_addr = 0xfafbfcfd; 

        tmp_hd.s.proc_id = ch_id; 

        word_t tmp_header = apenet_2_word(tmp_hd); 

 

        message_data_out[ch_id].write(tmp_header); //header 

 

        unsigned nwords = (size & (sizeof(word_t)-1)) ? (size/sizeof(word_t)+1) : 

size/sizeof(word_t); 

 

        for (unsigned i = 0; i < nwords; ++i){ 

           #pragma HLS pipeline 

           #pragma HLS LOOP_TRIPCOUNT min=1 max=128 

           message_data_out[ch_id].write(buff[i]); //payload 

        } 

 

        apenet_header_t tmp_ftr = {0}; 

        tmp_ftr.s.dest_addr = 0xaaaeabac; 

        tmp_ftr.s.edac = 0x99; 

 

        word_t tmp_footer = apenet_2_word(tmp_ftr); 

        message_data_out[ch_id].write(tmp_footer); //footer                                                                                                                                                                                                            

  } 

} 

 

Listing 3.2: HAPECOM send/receive implementation. 

 

To conclude this section, we report the implementation of the Aggregator (Listing 3.3) and of the 

Dispatcher (Listing 3.4) HLS IPs managing the interface between the HLS computing kernels and the 

Routing IP, as shown in Figure 3.2. 

template <unsigned NCHAN> 

void aggregator_template( 

                message_stream_t fifo_data_in[NCHAN], 

                header_stream_t &fifo_hdr_out, 

                message_stream_t &fifo_data_out) 

{ 

  #pragma HLS INLINE 

 

  for(unsigned ch=0; ch<NCHAN; ch++){ 

  #pragma HLS LOOP_TRIPCOUNT min=1 max=NCHAN 

  #pragma HLS unroll 

 

    if(!fifo_data_in[ch].empty()){  

  

      //Send header                                                                                                                                            

      apenet_header_t hdr = {0}; 

      auto tmp = fifo_data_in[ch].read(); 

      hdr = word_2_apenet(tmp); 

      fifo_hdr_out.write(hdr); 

  

      unsigned size = hdr.s.packet_size; 
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      unsigned nwords = (size & (sizeof(word_t)-1)) ? (size/sizeof(word_t)+1) : 

size/sizeof(word_t); 

  

      for(unsigned i=0; i<nwords; i++){ 

      #pragma HLS LOOP_TRIPCOUNT min=1 max=128 

        fifo_data_out.write(fifo_data_in[ch].read()); 

      } 

  

      apenet_header_t ftr = {0}; 

      auto tmp2 = fifo_data_in[ch].read(); 

 

      ftr = word_2_apenet(tmp2); 

  

      fifo_hdr_out.write(ftr); 

    } 

  } 

} 
Listing 3.3: Implementation of the Aggregator HLS IP 

 

The Aggregator collects data from all the output channels of an HLS kernel and forwards them to the 

attached port of the Routing IP, while the Dispatcher collects packets from the connected Routing IP 

port and streams them to the input channel of the HLS kernel.  

Similarly to what has been described for the apenet_2_word() function, the 

word_2_apenet() function is used to convert apenet protocol header and footer, arriving to the 

Aggregator as 256 bit unsigned words, back to their proper data structure (Listing 3.1) which can be 

streamed to the connected Routing IP port. This is because each intranode Communication IP port has 

two separate channels: one for header and footer stream (hls::stream<apenet_header_t> 

or header_stream_t), and a second one for payload stream (hls::stream<word_t> or 

message_stream_t). 

 

 

  template <unsigned NCHAN> 

  void reader( 

              header_stream_t &fifo_hdr_in, 

              message_stream_t &fifo_data_in, 

              message_stream_t fifo_data_out[NCHAN]) 

  { 

    apenet_header_t hdr = fifo_hdr_in.read(); 

    unsigned input_channel = hdr.s.proc_id; 

    unsigned size = hdr.s.packet_size; 

    word_t tmp_header = apenet_2_word(hdr); 

    fifo_data_out[input_channel].write(tmp_header); 

 

    unsigned nwords = (size & (sizeof(word_t)-1)) ? (size/sizeof(word_t)+1) : 

size/sizeof(word_t); 

 

    for (unsigned i = 0; i < nwords; ++i) { 

      #pragma HLS PIPELINE II=1 

      #pragma HLS LOOP_TRIPCOUNT min=1 max=256 

      fifo_data_out[input_channel].write(fifo_data_in.read()); 

    } 

 

    apenet_header_t ftr = fifo_hdr_in.read(); 

    word_t tmp_footer = apenet_2_word(ftr); 

    fifo_data_out[input_channel].write(tmp_footer); //footer                                                                                                   

 

  } 
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template <unsigned NCHAN, unsigned HD_DEPTH, unsigned DT_DEPTH> 

void dispatcher_template( 

                header_stream_t &fifo_hdr_in, 

                message_stream_t &fifo_data_in, 

                message_stream_t fifo_data_out[NCHAN]) 

{ 

  #pragma HLS INLINE 

  reader<NCHAN>(fifo_hdr_in, fifo_data_in, fifo_data_out); 

} 

Listing 3.4: Implementation of the Dispatcher HLS IP 

 

4. FPGA bitstream generation 
APEIRON framework links the Communication IP and the HLS kernels of the system design requested  

by using a YAML configuration file describing the attributes of each HLS kernel, namely: 

• Number of input and output channels. 

• IntraNode port of the Communication IP to which the kernel is connected to. 

• Global clock frequency of the system. 

An example of this configuration file is reported in Listing 4.1, for a design integrating the 

Communication IP and a single HLS task (named example_apeiron_task_1) connected to 

intra-node port 0 of the Routing IP through an Aggregator/Dispatcher having four input/output 

channels; furthermore, the design sports two inter-node channels and its target operating clock 

frequency is 150 MHz. 

kernels: 

 -name: example_apeiron_task_1 

    input_channels: 4 

    output_channels: 4 

    switch_port: 0  

  

config: 

  freq: 150 

  links: 2 

 

Listing 4.1: Example of APEIRON YAML configuration file 

 

From this YAML description, the APEIRON framework links the Communication IP and the HLS 

kernels that are connected to it and generates the bitstream for the overall design. HLS kernels 

written by the user to be linked to the Communication IP must implement a prototype of this form: 

void example_apeiron_task(  
                          [optional kernel-specific list of parameters]  
                          message_stream_t message_data_in[N_INPUT_CHANNELS],  
                          message_stream_t message_data_out[N_OUTPUT_CHANNELS])  
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In this way, the HLS kernel implements a generic stream interface for each communication channel 

based on the AXI4-Stream protocol that is properly connected to its corresponding Communication 

IP intranode port through the Aggregator and Dispatcher components in the final design. 

If the instantiation interval on the receiving side must be kept low to maximize the design 

throughput, it is not advisable to use the blocking receive()function, and the direct access to the 

message_data_in stream through the read()method should be used instead, parallelizing 

data reads and processing, as shown in Listing 5.3. 

5. The APEIRON software stack in action 
We describe a preliminary version of the INFN RAIDER application as a demonstration of the use of 

the APEIRON software stack to develop, run and monitor a distributed multi-FPGA Vitis HLS 

application. 

RAIDERS’s task is to perform particle identification (PID) on the stream of events generated by the 

RICH (Ring Imaging CHerenkov) detector in the CERN NA62 experiment [4] at a rate of about 10 MHz, 

using neural networks.  

 

Figure 5.1: Examples of events belonging to class 2 and 3 (2 or >=3 charged particles) as detected by 

the array of RICH photomultipliers (blu dots are the hit photomultipliers, red circles are the tracks 

reconstructed offline by the NA62 experiment offline analysis software framework)   

 

The inference task consists in providing an estimate for the number of charged particles (0, 1, 2, >=3) 

for any RICH detector event, that corresponds to the number of ring tracks that can be reconstructed 

from the pattern of photomultipliers that have been illuminated (hit) by the Cherenkov light cone 

emitted by a charged particle traversing the detector, as shown in Figure 5.1. The inference task is 

implemented with a preprocessing stage (Imagifier) followed by a Convolutional Neural Network 

(CNN). The CNN model has been developed using Tensorflow/Keras and deployed on FPGA with the 

HLS4ML [5] software package, refer to deliverable D4.8 - Framework for efficient CNNs inference on 

a TEXTAROSSA node for a complete description of this workflow.  The CNN receives in input the output 
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of the Imagifier kernel, a 16x16 image of the hit photomultipliers (PMTs) map for each physics event 

and produces an estimate for the number of charged particles it contains. Considering the high event 

rate of the experiment, sustaining an adequate processing throughput is the main challenge for such 

a system.  

In deliverable D6.2 – Initial Application Benchmarks and Results we reported results obtained on two 

single-FPGA implementations of the application, including one and two inference pipelines 

respectively. Here we scale the number of Xilinx Alveo U200 FPGAs from 2 to 4, in order to increase 

further the reconstruction throughput, deploying the HLS processing tasks according to what is shown 

in Figure 5.2. 

 

 

Figure 5.2: RAIDER HLS processing tasks deployed on the 4 FPGAs execution platform. 

 

As shown in Figure 5.2, there are two kinds of nodes (and hence the overall Multi-FPGA design includes 

two different bistreams): 

1. I/O and Preprocessing node: data are loaded from Host memory and sent through the 

network via an HLS kernel (“sender”). Data are then processed by the Imagifier HLS kernel 

which turns the PMT hitlist information into a 256bit word (16x16 B&W image) that is sent to 

the Computing node through the external links. As a second task, this node is in charge of 

receiving the output of the CNN computation and storing it on Host memory via an HLS kernel 

(“receiver”). The processing time, from the first packet sent to the last received, is measured 

on this node host. 
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2. Computing node: images coming from external links are taken as input and dispatched to one 

or both the CNN HLS kernels (depending on the configuration) to compute the predictions. 

Results are then sent back to the I/O and preprocessing node. 

Since for each type of node we need a different bitstream, two different YAML configuration files are 

needed for APEIRON framework to generate the firmware to be flashed on each kind of node. These 

two files are reported below (note that since this version of the application is based on the preliminary 

version of the Communication IP, described in deliverable D2.8 - IP for low-latency inter-node 

communication links, part 1, the clock frequency of the overall design to be synthesized is set to 100 

MHz). 

 

kernels: 

 -name: sender 

    input_channels: 0 

    output_channels: 1 

    switch_port: 0  

 

 -name: receiver 

    input_channels: 1 

    output_channels: 0 

    switch_port: 0 

 

  -name: imagifier 

    input_channels: 1 

    output_channels: 1 

    switch_port: 1 

 

config: 

  freq: 100 

  links: 2 

 

Listing 5.1: “Preprocessing node" YAML configuration file 

The generated Aggregator and Dispatcher connected to Port 0 will have one input and one output 

channels respectively, as the ones connected to Port 1. 

kernels: 

 -name: cnn_kernel 

    input_channels: 1 

    output_channels: 1 

    switch_port: 0  
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 -name: cnn_kernel 

    input_channels: 1 

    output_channels: 1 

    switch_port: 1 

 

config: 

  freq: 100 

  links: 2 

Listing 5.2: “Computing node" YAML configuration file 

As in the Preprocessing Node case, the generated Aggregator and Dispatcher connected to Port 0 will 

have one input and one output channels respectively, as the ones connected to Port 1. 

 

extern "C" void imagifier (unsigned int nports, unsigned int nboards, 

                           message_stream_t  message_data_out[N_INPUT_CHANNELS], 

                           message_stream_t  message_data_in[N_OUTPUT_CHANNELS]) { 

#pragma HLS interface ap_ctrl_none port=return 

#pragma HLS interface axis port=message_data_in 

#pragma HLS interface axis port=message_data_out         

        static unsigned ch_id = 0; 

        word_t word; 

        word_t buff_out[5]; 

        ap_uint<IMAGE_SIZE*IMAGE_SIZE> image = 0; 

        size_t size=0; 

        for (int i=0; i<MAX_WORD; i++) { 

         //Streaming events reception ==> reading of HAPECOM and event headers 

            if(size==0){ 

                   auto hd = message_data_in[ch_id].read();  //HAPECOM header 

 

                   size = hd.range(size_start_bitpos,size_end_bitpos)/sizeof(word_t); 

                   buff_out[0] = message_data_in[ch_id].read(); //event header 

                   size--; 

            } 

            if(size>0) word = message_data_in[ch_id].read(); 

  

            for (int j=0; j<MAX_HIT_PER_WORD; j++) { 

#pragma HLS pipeline 

                if (size==0) continue; 

                unsigned short pmt = word.range((j+1)*16-1, j*16); 

                if (pmt==0) continue; 

                auto x = x_bin[pmt]; 

                auto y = y_bin[pmt]; 

                if (x>=0 && y>=0)  image.set (x+IMAGE_SIZE*y); 

            } 

            if(size>0) size--; 

            if (size==0){ 

                auto ftr = message_data_in[ch_id].read(); 

                break; 

            } 

        } 

 

        if(size>0){ 

            while(size>0){ 

                auto flush = message_data_in[ch_id].read(); 
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                size--; 

            } 

            auto ftr = message_data_in[ch_id].read(); 

        } 

  

        buff_out[1] = image.range(127,0); 

        buff_out[2] = image.range(255,128); 

  

        static unsigned task_id = 0; 

        static unsigned dest_coord = 1; 

 

        send(buff_out, 3*sizeof(word_t), dest_coord, task_id, ch_id, message_data_out); 

   

        ch_id = (ch_id + 1) % N_OUTPUT_CHANNELS; 

        if (ch_id >= N_OUTPUT_CHANNELS-1)  task_id++;  

        if(task_id >= nports){ 

                task_id = 0; 

                dest_coord++; 

                if(dest_coord >= nboards) dest_coord=1; 

        } 

} 

} 

Listing 5.3: Imagifier HLS Kernel implementation  

 

Starting from the I/O and Preprocessing node, the “imagifier” HLS kernel is reported in Listing 5.3. 

From interfaces defined with Vitis pragmas (in particular “#pragma HLS interface 

ap_ctrl_none port=return”), we can notice that this is defined as a free-running kernel: a 

kernel which starts with the bitstream loading on the device, without any call by the CPU host (which 

is required by “sender” and “receiver”, instead).  

The “imagifier” works on packets of data coming from the network with the HAPECOM 

communication protocol, each of them corresponding to a single physics event. To increase the overall 

design throughput, and so to work in streaming mode, we decided to not use the HAPECOM receive() 

API by reading directly data from input channels with the Vitis read() function. However, in this way, 

to have the packet size information, we must access to a certain bit address of the HAPECOM header 

bounded by size_start_bitpos and size_end_bitpos variables. After that, we proceed 

with the reception of the single event header, which has the information relative to the number of 

words composing the event and the event timestamp, and then we work on each event word to obtain 

the PMT hitlist and to convert it to a 16x16 image. As last step of the preprocessing, this image (and 

the event timestamp) is sent via HAPECOM send() API to one of the Computing nodes in a “round 

robin” way, choosing each task of each node as possible destination. 

 

Extern "C" void cnn_kernel(message_stream_t message_data_in[N_INPUT_CHANNELS], 

message_stream_t message_data_out[N_OUTPUT_CHANNELS]) 

{ 

#pragma HLS interface ap_ctrl_none port=return 

#pragma HLS interface axis port=message_data_in 

#pragma HLS interface axis port=message_data_out 

#pragma HLS dataflow     

  

    hls::stream<input_t> nnet_input; 

    hls::stream<result_t> nnet_output; 

    hls::stream<ap_axis<128,0,0,0>> stream_timestamp; 



 

textarossa.eu   D4.5 | 25 

 

    read_from(message_data_in, stream_in, stream_timestamp); 

    hwfunc(nnet_input, nnet_output); 

    get_class(nnet_output, message_data_out, stream_timestamp); 

} 

 

Listing 5.4: “cnn_kernel" HLS code 

As the main component of Computing nodes of the setup, the HLS code of “cnn_kernel” is reported 

in Listing 5.4. From interfaces, we can notice that this is defined as a free-running kernel (as for 

“imagifier” one) and it is composed by different task functions pipelined via HLS dataflow Vitis 

pragma. This allows functions to overlap in their operation, increasing the overall throughput of 

design by increasing concurrency of the RTL tasks implementation. In detail: 

• “read_from” receives packets from the networks, obtaining information to be streamed as 

CNN input (256 bit image) or to be streamed to label the event processed (event timestamp) 

• “hwfunc” is the task in which the FPGA implemented CNN (obtained from the HLS4ML 

framework) processes streaming input images 

• “get_class” receives CNN output and obtains the predicted ring class. This is then sent 

through the network via the HAPECOM send() function. 

 

Considering the requirement of a multiple-FPGAs execution platform for this application, we decided 

to use RAIDER setup to stress out and to validate the correct behavior of the APEIRON host software 

stack. In order to work on 4 boards, we need to start on each of nodes an “apeirond” daemon able 

to receive requests from the client on which we execute the supervisor (this can be any of the 

network nodes). To connect the “supervisor” to each of the daemons, we start the “supervisor” by 

passing from command line the hostnames of each execution node: 

$ ./supervisor.py -H apequad01-1, apequad02-1, apequad03-0, apequad04-0 

Listing 5.5: “supervisor" Python script command line example 

As can be seen from Listing 5.5, it is possible to specify for each host the device id on which we want 

to load the bitstream for the application, this is useful in case there are more the one Alveo board 

connected on the PCIe bus (in particular, we worked on device with ID 1 on apequad01/02 and on 

device with ID 0 on apequad03/04).  

 



 

textarossa.eu   D4.5 | 26 

 

Figure 5.3:  Monitoring execution on one computing node with the APEIRON Supervisor display  

The Python script execution opens a GUI as the one displayed in Figure 5.3. Selecting the tab 

corresponding to the desired node, it is possible to open the “Run” drop-down box and select the 

“Run” command to load the specified host application, compiled as dynamic library (.so file). Two 

different host applications have been used respectively for the Preprocessing and the Computing 

nodes: 

 

// **** PREPROCESSING NODE **** // 

 

extern "C" void run_kernel (apeiron::Handler *fpga_handler) 

{ 

      unsigned npackets = NPACKETS; 

      unsigned xdest = XDEST; 

      unsigned local_coord = LOCAL_COORD; 

  

  

      fpga_handler->device_open(get_device_id()); 

      fpga_handler->device_dump(); 

      fpga_handler->xclbin_load("preprocessing_node.xclbin"); 

  

      fpga_handler->set_state_initializing(); 

  

      xrt::kernel kreceiver; 

      xrt::kernel ksender; 

      xrt::kernel kimage_sender;  

 

      kreceiver = xrt::kernel(fpga_handler->get_device(),fpga_handler->get_uuid(), 

"krnl_receiver:{krnl_receiver_1}"); 

      ksender = xrt::kernel(fpga_handler->get_device(),fpga_handler->get_uuid(), 

"krnl_sender:{krnl_sender_1}"); 
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      kimage_sender = xrt::kernel(fpga_handler->get_device(),fpga_handler->get_uuid(), 

"image_sender:{image_sender_1}"); 

  

std::vector<stream_data_t> m2egp; 

unsigned m2egp_count = 0; 

m2egp_count += read_m2egp_file("clop_flow/dataset.dat", m2egp, npackets);  
if (!m2egp_count) exit(EXIT_FAILURE); 

  

size_t outbuf_size = m2egp_count * sizeof(stream_data_t); 

size_t inbuf_size = m2egp.size() * sizeof(m2egp[0]); 

  

xrt::bo recv_buffer(fpga_handler->get_device(), outbuf_size, kreceiver.group_id(0)); 

stream_data_t *recv_buffer_map = recv_buffer.map<stream_data_t*>(); 

memset(recv_buffer_map, 0, outbuf_size); 

 

xrt::bo send_buffer(fpga_handler->get_device(), inbuf_size, ksender.group_id(2)); 

stream_data_t *send_buffer_map = send_buffer.map<stream_data_t*>(); 

memset(send_buffer_map, 0, inbuf_size); 

  

for (unsigned i=0; i < m2egp.size(); ++i) { 

      send_buffer_map[i].high = m2egp[i].high; 

      send_buffer_map[i].low = m2egp[i].low; 

       } 

apeiron::cout<<"LOAD DATA ON FPGA\n"; 

send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE); 

 

apeiron::cout<<"Resetting switch\n"; 

fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),4, 0x1); 

       // auto-toggle reset 

sleep(1); 

       fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),6, 

local_coord); // 3D coordinate 

fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),69, 0x01800060); // 

threshold 

       fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),70, 

0x0000ff40); // new credit cycle 

  

 

apeiron::cout<<"Running receiver kernel ...\n"; 

xrt::run kreceiver_run = kreceiver(recv_buffer, m2egp_count); 

apeiron::cout<<"Starting sender kernel ...\n"; 

xrt::run kimage_sender_run = kimage_sender(NPORTS,NDEVICES); 

xrt::run ksender_run = ksender(npackets, send_buffer); 

auto tstart = std::chrono::high_resolution_clock::now(); 

apeiron::cout<<"Waiting for sender kernel to complete ...\n"; 

       fpga_handler->set_state_waiting(); 

ksender_run.wait(); 

apeiron::cout<<"Waiting for receiver kernel to complete ...\n"; 

kreceiver_run.wait(); 

auto tend = std::chrono::high_resolution_clock::now(); 

recv_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE); 

auto deltat = tend - tstart; 

  

float *rings; 

float *evts; 

rings = (float*)calloc(20,sizeof(float)); 

evts = (float*)calloc(5,sizeof(float)); 

for (unsigned i=0; i < m2egp_count; ++i) { 

auto ring_RECO= (recv_buffer_map[i].high >> 48) & 0xFF; 

if(ring_RECO>=3) ring_RECO=3; 

evts[ring_RECO]++; 

auto ring_NN= recv_buffer_map[i].low & 0xFF; 

rings[4*ring_RECO+ring_NN]++; 

} 

 

std::stringstream ss;  
ss << m2egp_count << "m2egp in " << deltat.count()/(1e9) << "s -> " << 

deltat.count()/(m2egp_count)<< "ns/evt\n"; 

ss << m2egp_count << " \t "<< deltat.count()/(m2egp_count ) << "\n"; 

apeiron::cout << ss.str(); 

 

std::stringstream ss1;  
ss1 <<"EFFICIENCY CONFUSION MATRIX (N_RINGS) \n";  

ss1 << efficiency_matrix(rings,evts) <<"\n"; 
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ss1 <<"PURITY CONFUSION MATRIX (N_RINGS)\n"; 

ss1 << purity_matrix(rings) << “\n”; 

apeiron::cout << ss1.str(); 

 

std::printf("----- APEIRON LIB DUMP -------\n"); 

std::printf(apeiron::cout.circular_buffer_dump().c_str()); 

std::printf("------------\n"); 

  

} 

// **** COMPUTING NODE **** // 

 

extern "C" void run_kernel (apeiron::Handler *fpga_handler) 

{ 
  unsigned local_coord = LOCAL_COORD; 
  
  

  fpga_handler->device_open(fpga_handler->get_device_id()); 
  fpga_handler->device_dump(); 
  fpga_handler->xclbin_load("computing_node.xclbin"); 
  
  fpga_handler->set_state_initializing(); 
 

  apeiron::cout<<"Resetting switch\n"; 

  fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),4, 0x1); // auto-

toggle reset 
   sleep(1); 
   fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),6, local_coord); 

// 3D coordinate 
   fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),69, 0x01800060); 

// threshold 
    fpga_handler->write_register(fpga_handler->get_ip("TextaRossa_switch"),70, 0x0000ff40); 

// new credit cycle 
    
   fpga_handler->set_state_waiting(); 
 
   std::printf("----- APEIRON LIB DUMP -------\n");     

   std::printf(apeiron::cout.circular_buffer_dump().c_str());  

   std::printf("------------\n"); 

  

} 
Listing 5.6: Host code for Preprocessing and Computing nodes  
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Figure 5.4: Monitoring execution on Preprocessing node using the APEIRON Supervisor display 

 

We have scaled the system from 2 nodes (one I/O and preprocessing and one computing) up to 4 

increasing the number of computing nodes as shown in Figure 5.2 and measured the processing time 

per event and the integrated processing throughput of the system; results are tabulated for the former 

and plotted for the latter in Figure 5.5 (throughput is in millions of events per second, MHz in figure).  

 

 

Figure 5.5: Scaling of processing time per event (left) and processing throughput (right) 

with the number of deployed CNN kernels distributed over 1 to 3 computing nodes 
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The presented results show the good scaling of system performance with the number of nodes. The 

flattening slope of the curve when the number of CNNs goes beyond 4 is mainly due to the saturation 

of the data injection rate in the krnl_sender on the preprocessing node. 

 

6. Conclusion 
We presented the three main components of the APEIRON framework: the host software stack, the 

HAPECOM lightweight C++ HLS communication library and the tool for the automatic linking of 

computational tasks and Communication IP for FPGA bitstream generation. 

The APEIRON framework in its entirety allowed us to overcome the limits imposed by the original 

Xilinx XRT suite, such as the limited management of multiple processes that need to use the same 

hardware resources concurrently 

We then used a real application developed at INFN (RAIDER) to validate the software stack, from the 

upper level “supervisor” component, used to deploy the application to four nodes equipped with 

multiple FGPAs down to the hardware description of the kernels. This demonstrates how it can be 

possible to set up the software environment to reach the expected overall system design.  

The co-design of APEIRON software stack along with its Communication IP allowed reaching very low 

and deterministic latency and a high fraction of the channel raw bandwidth for communications 

between FPGAs, addressing two fundamental bottlenecks for real-time distributed streaming 

applications at the same time, while allowing for a straightforward development and deployment of 

multi-FPGA HLS designs. 
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