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Executive Summary 

This deliverable provides the preliminary results on the adaptation of two programming models 

OmpSs (task-based) and StarPU (task-based) to the TEXTAROSSA computing nodes. It 

summarizes the objectives for both runtime systems and the current progress status. Both 

OmpSs and StarPU are task-based runtime system, but in the project OmpSs focuses more on 

the use of FPGA at a low level, whereas StarPU is used at higher level by considering the 

FPGA as any classical processing unit, such as GPU, and focuses on scheduling. 

The work package also includes activities related to mixed precision technologies (tied to 

WP6), inter-FPGA communication SW stack (tied to WP2), and power modeling and use in 

runtime systems (tied to WP3). The current document describes the work related to facilitate 

the use of these technologies into the task-based programming models, but the core activities 

are performed in the other WPs, and WP4 is used to provide their software interface or study 

their inclusion in the runtime systems. Consequently, only activities that imply changes in the 

programming models’ framework (compiler and runtime) are included in this deliverable. 

As described in D1.1 and D1.2, WP4 uses IPs and technologies developed in other WPs and 

will be used by applications in WP6. 

  



  

   

 

1 Introduction 

WP4 focuses on the middle layer of the TEXTAROSSA project. It is tied to hardware and 

software, making the bridge between hardware features and software interfaces. Consequently, 

most WP4 activities are highly coupled with other WPs. The main activities of WP4 include 

the improvement of the streaming and task-based programming models to computing nodes 

with FPGAs. In this deliverable we focus on the task-based programming models: OmpSs and 

StarPU. Both runtime systems were mature and efficient before the beginning of the project. 

The current document summarizes the progress that has been done on both tools and provides 

their improvements. It also includes the additions to the programming models related to the 

other technologies addressed in WP4.  

   

It should be noted that this WP does not provide a single unified system where all applications 

are expected to use all features. Instead, it provides building blocks that allow for efficient 

hardware utilization, which will be validated using micro benchmarks and WP6's applications. 

1.1     Objectives 

FPGAs are widely used as accelerator devices because they provide high levels of performance 

and energy efficiency. However, programming such devices involves the use of specific tools 

and techniques, and even hardware skills to develop a baseline application due to interfaces, 

data transfers, etc. This causes reluctance when using them by programmers, or completely 

make them not use them.  

  

Task based programming models such as OmpSs and StarPU provide a good opportunity to 

abstract the underlying hardware complexity, so implementation effort is kept low while 

maintaining good levels of performance. The objectives of each programming model (further 

described in its own section) are related to the project objectives:  

   

• Objective 1 - Energy efficiency. Executing in FPGA has been demonstrated to be 

competitive with other computing platforms in terms of energy efficiency. In addition 

of providing the support to executing in the IDV-E platform, the OmpSs task-based 

model is integrated with power measurement tools in order to be able to further control 

and improve the energy spent when executing in the platform.  

• Objective 2 - Sustained application performance. As explained in the next sections, we 

aim to improve the performance obtained when executing applications over the IDV-E 

platform both by improving the framework and also by improving the task scheduling 

through the use of the Fast Task Scheduler developed in Task 2.5.  

• Objective 3 - Fine-tuned thermal policies integrated with an innovative cooling 

technology. As explained in Objective 1, the power measurement tools integrated in the 

OmpSs framework for IDV-E provide the basis for integrating fine-tuned thermal 

policies developed in Task 4.5.  



  

   

 

• Objective 4 - Seamless integration of reconfigurable accelerators. The task-based 

runtimes allow for seamless integration of reconfigurable accelerators as can be seen in 

their respective sections.  

• Objective 5 - Development of new IPs. The Fast Task Scheduler IP is a key part of the 

OmpSs@FPGA framework. OmpSs@FPGA contributes to the IP development as a 

primary tool to test the IP functionality. It also provides design requisites that must be 

incorporated in the IP for the whole framework to work as expected.  

• Objective 6 - Integrated Development Platform. Task based runtimes will be used in 

applications executing on the project platforms. It is important to highlight that IDV-E 

features a host CPU (ARM based) that has never before been used to drive computation 

in a PCIe attached FPGA. Developing the system in a way that is compatible with new 

different CPUs helps ensuring new host CPUs (like EPI CPUs) will be able to drive this 

kind of computations in the future.  

  

The objectives are also related to the strategic goals of the project:  

  

• Strategic Goal #1: Alignment with the European Processor Initiative (EPI). As shown 

in this deliverable the OmpSs@FPGA task-based programming model provides a 

system that can use an EPI processor to drive computations in a cluster of FPGA PCIe 

attached accelerators. Also, as described deliverable 2.11, the programming model 

allows to manage a manycore RISC-V processor with significant performance 

improvement over other state-of-the-art approaches. 

• Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s 

Strategic Research Agenda (SRA) for open HW and SW architecture. The 

OmpSs@FPGA framework is developed following the open-source model and is freely 

available in its github repository.  

• Strategic Goal #3: Opening of new usage domains. The task-based frameworks address 

the problem of simplifying the task of executing applications over FPGA-based 

computing platforms. In this sense, we expect that through the improvement of the tool, 

it will open the possibility of executing efficiently new applications on the objective 

platforms.  

  

These objectives are further discussed in the next sections. 
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2 StarPU - Task-based scheduling and use of FPGA 

Leader: Inria  

2.1 Presentation  

StarPU is a task-based runtime system designed from the beginning to support heterogeneous 

architectures. Since then, it has been improved to support distributed memory parallelization 

(on top of MPI). Its internal structure allows for the development of new schedulers very easily. 

Several scientific computing applications use StarPU, such as an FMM solver [SCALFMM], 

a dense linear algebra solver [CHAMELEON], a sparse linear algebra solver [PASTIX], an H-

Matrix solver [HMAT], a machine learning framework for climate/weather prediction 

[ExaGeoStat], a quantum Monte Carlo kernel library [QMCkl, a Navier-Stokes solver 

[FLUSEPA], and others. 

 

 

Figure 2.1: StarPU internal structure. The scheduler has access to all the ready tasks and decides how they should be 

distributed. 

 

The scheduler is a critical component in any dynamic runtime system because it decides the 

order of execution of the ready tasks and on which processing unit the tasks are executed. 

Therefore, these decisions impact the execution duration and the amount of memory transfer 

between memory nodes. 

2.2 Objectives  

The use of FPGA in task-based parallelization is still an open problem and has not been 

investigated in depth in StarPU. This is why, in Textarossa, we will attempt to better understand 

when FPGA can be beneficial, how to schedule the tasks, and if we can save energy. 
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2.3 Status  

In the context of the project, we have created a new scheduler called multreeprio and we have 

performed the initial test in using FPGA with StarPU. 

 

Multreeprio is a dynamic task scheduler that aims to minimize the overall completion time of 

parallelized task-based applications. The goal is to find a trade-off between resource affinity, 

task criticality, and workload balancing on the resources. To this end, we compute priority 

scores for each task and manage the available tasks in the system with a data structure based 

on a set of binary trees. Tasks are assigned to available resources according to these scores, 

which are dynamically computed by heuristics based on task affinity and criticality. We also 

consider workload balancing across resources and data locality awareness. To evaluate the 

scheduler, we study the performance of dense and sparse linear algebra task-based applications 

using the StarPU runtime system on heterogeneous nodes. Our scheduler shows interesting 

results compared to other state-of-the-art schedulers in StarPU. 

 

 
Figure 2.2: Performance results of the multreeprio scheduler against state-of-the-art scheduler 

for classic linear algebra kernels (Chameleon) on A100 (top) and V100 (bottom). 

 

To utilize FPGAs within StarPU, we employ the OpenCL interface to access and manage 

Xilinx devices. Prior to the start of the project, StarPU already offered support for OpenCL. 
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However, several modifications were required to facilitate its use. Foremost, the OpenCL 

kernel should only be allocated once on the device. This approach contrasts with GPUs/CPUs, 

where OpenCL kernels exist as binary code for execution. In the context of FPGAs, allocating 

a kernel involves configuring the FPGA, which ideally should be done once. 

  

Consequently, our first modification involved adding two extra steps: initializing and releasing 

the FPGA devices. To accomplish this, a straightforward call to a function that facilitates 

execution on the workers is sufficient. 

  

The second modification aims to ensure a coherent execution of OpenCL tasks. This can be 

achieved either by the user, who can verify the code to be executed within the task, or by 

StarPU itself, which can restrict execution to certain devices only. The version of StarPU that 

is provided in this project includes a filter module to select only some of the devices out of all 

the devices that are present on the computing node. 

 

Currently, we do not have performance or energy results available. However, we aim to obtain 

some for Chameleon and Scalfmm by the end of the project. These will be included either in 

an updated version of the current deliverable or in the deliverables produced at the end. 

 

The software stack for utilizing OpenCL with Xilinx FPGAs has proven to be less robust than 

anticipated. For instance, HWLOC was generating illegal instructions, and using 

CL_DEVICE_TYPE_ACCELERATOR instead of CL_DEVICE_TYPE_ALL resulted in a 

segmentation fault by the Xilinx library. This has delayed our benchmark campaign. 
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3 OmpSs@FPGA - Task-based runtime for FPGAs 

Leader: BSC 

3.1 Presentation  

OmpSs is a task-based programming model. OmpSs has been designed to be non-invasive so 

that minimal changes are needed to port and parallelize an application. In particular, pragma 

directives annotations are used to allow productive parallel programming, even for 

heterogeneous architectures, such as GPUs and FPGA. 

 

In the last part of the project development presented in this deliverable we have completely 

overhauled the framework to update it. Now the OmpSs@FPGA framework leverages the new 

state-of-the-art programming model OmpSs-2. Also, the compiler tool Mercurium used in 

previous versions has been deprecated in favor of an in-house developed LLVM/Clang fork 

compatible with newer C++ standards. Finally, the new system is compatible with the new 

Vitis HLS flow that has substituted the previous Vivado HLS system. In addition, our carefully 

implemented framework maintains backward compatibility with the old tools. More details 

about the new implementation can also be found in deliverable 4.7 HLS Flow, section HLS in 

the Task-based model and in deliverable 4.8 Framework for efficient CNNs inference on a 

TEXTAROSSA node, section 6.2 Compiler modifications for CNN mixed precision. For the 

sake of clarity, here a brief reference introduction to the new updated framework follows. 

 

3.1.1 OmpSs@FPGA code example 

  

In the OmpSs-2 programming model (that for simplicity from now on will be referred as 

OmpSs), the programming model directives allow the user to specify the target device of any 

given task as well as the input that it requires and the output data it produces. This input and 

output data specification allows the runtime to detect dependencies among tasks to ensure a 

correct task execution scheduling. Listing 3.1 shows a function defined as a task, that will be 

submitted as task for any vecSum function call in listings 3.2 and 3.3. The pragma “oss 

taskwait” at the end of the code is necessary to guarantee completeness of all the tasks. 

However, it is important to highlight that the OmpSs programming model in this new iteration 

advocates using as few taskwaits as possible. As a result of the code shown, tasks “vecSum” 

will be offloaded into an FPGA accelerator (as indicated by the “device” clause). Those tasks 

will require input data “a”, which is a vector with 16 elements and a parameter of the function, 

and input data “b”, also a vector with 16 elements. In addition, each task produces (updates) 

vector a. All input and output data requirements are transferred to/from the device 

automatically and transparently to the programmer. 

 

#pragma oss task device(fpga) inout([16]a) in([16]b) 

void vecSum(float a[16] , float b[16]) { 

for (int i = 0; i < 16; ++i) 
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a[i] += b[i]; 

} 

Listing 3.1: Sample FPGA accelerated task 

 

The compiler also uses local memory in order to optimize memory accesses. This feature can 

be declared with the copy_in, copy_out, copy_inout, copy_deps clauses and is activated 

by default with dependence (in, out or inout) clauses. A variable stored in local FPGA 

memory is automatically declared, and data will be copied to/from this variable by the wrapper 

prior to/after the kernel execution. Accesses to the variable will reach the local memory instead 

of the global one. Without the mentioned clauses to enable this optimization, pointer 

dereferences generate an access to off-chip memory. 

 

In order to execute multiple instances of the same task call in parallel, resources, i.e. 

accelerators, can be replicated. The clause num_instances(N) allows specifying the number 

of times that a task accelerator is instantiated in the FPGA. The OmpSs@FPGA user guide 

[OMPSSGUIDE] defines all specific OmpSs@FPGA clauses and their usage. 

 

float vec_a[16], vec_b[1024]; 

for (int i = 0; i < 1024; i+=16) 

     vecSum(vec_a, &vec_b[i]); 

#pragma oss taskwait  

Listing 3.2: Minimal example of C code invoking sequential tasks 

 

Listing 3.2 shows how a code invoking the task defined in listing 1 works. As can be seen in 

line 5 of the code, invoking a task is as simple as calling the function that the task performs. 

With the simple code shown in listings 3.2 and 3.1 the user will be able to program an FPGA 

IP that receives the data from the CPU host, computes the vector addition and sends the output 

back to the host without taking care of the cumbersome data movements and/or IP managing 

details.  

 

Another important feature of the OmpSs model is that it allows the Nanos6 runtime to 

implicitly extract parallelism. From the previous listing 3.2, Nanos will be able to know that 

invocations of task vecSum should be executed sequentially as the output of each invocation 

is the input of the next invocation. Consider now listing 3.3 that executes a slightly modified 

main program. 

 

float vec_a[1024], vec_b[1024]; 

for (int i = 0; i < 1024; i+=16) 

     vecSum(&vec_a[i], &vec_b[i]); 

#pragma oss taskwait  

Listing 3.3: Minimal example of C code invoking parallel tasks 
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As can be observed in listing 3.3, all the invocations of vecSum can be executed in parallel 

because their input and output dependencies do not overlap in memory. The Nanos6 runtime 

will be able to detect this situation and execute the code in listing 3.3 using all the available 

hardware resources in parallel. As an example, adding clause num_instances(2) at the line 

1 pragma of listing 3.1 will result in nearly doubling the performance of the program without 

any other programmer involvement. 

 

3.1.2 Nested FPGA tasks 

 

One of the most innovative features of the OmpSs@FPGA model is the capacity of creating 

and managing tasks inside the FPGA (i.e. without CPU host intervention). The feature intends 

to break the master-slave model for FPGA devices in task based parallel programming models. 

The main goal is to allow interaction of the FPGA device with the parallel programming 

runtime to make the FPGA cooperate in the application execution beyond the current offload 

model. The new interaction capabilities include the creation of nested tasks inside an FPGA 

task and its synchronization. 

 

Listing 3.4 shows the same code of listing 3.3 but with a function largevecSum also 

annotated as an FPGA task. To the best of our knowledge, the call to vecSum of line 7 is not 

possible in on other programming models aside OmpSs@FPGA. Indeed, in the programming 

model side, our proposal adds support for task calls inside code regions annotated with the 

device(fpga) clause. Note that those task calls are converted into runtime API calls by the 

compiler, and therefore, a new design and implementation of the model is needed to support 

such runtime APIs inside the FPGA devices. 

 

float largevec[SIZE*16]; 

float anothervec[SIZE*16]; 

 

#pragma oss task device(fpga) inout([SIZE*16]a) in([SIZE*16]b) 

void largevecSum(float a[SIZE*16] , float b[SIZE*16]) { 

     for (int i=0; i<(SIZE*16); i+=16) 

          vecSum(&largevec[i],&anothervec[i]); 

     #pragma oss taskwait 

} 

 

int main() { 

     largevecSum(&largevec[0],&anothervec[0]); 

     #pragma oss taskwait 

} 

Listing 3.4: Minimal example of C code invoking parallel tasks 

 

All runtime API calls are supported inside the FPGA by using queues, where the task 

accelerators write requests to the runtime. Then, the runtime reads these requests and makes 
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the needed actions. Some interactions are optimized and directly read and handled inside the 

FPGA, avoiding the latency between the host and the device. For this direct FPGA task 

execution, a hardware runtime support inside the FPGA has been designed and implemented. 

The hardware runtime part coordinates with the host runtime when needed to correctly execute 

the application. 

 

3.1.3 Compilation process 

 

Figure 3.1 shows the compilation process in the OmpSs@FPGA framework developed in this 

project. A C/C++ source file is read by the LLVM compiler where a frontend phase splits the 

code into two different flows: SMP and FPGA. As outline tasks are not supported, this 

distinction is done through C/C++ function annotation with task declaration pragmas. In 

OmpSs@FPGA, tasks or kernels can target both SMP or FPGA devices. The SMP part of the 

code, i.e. main code and tasks that do not have an FPGA target, is separated and its compiler 

directives are replaced by Nanos6 API calls. The Nanos6 runtime has a dedicated API for 

FPGA tasks, which uses internally the xTasks library, containing the low-level code to 

communicate with the FPGA. It is separated from the main runtime because each hardware 

platform uses different communication protocols, depending on the board memory model (e.g. 

shared like SoCs or distributed like PCIe attached FPGAs).  

 

 
 

Figure 3.1: OmpSs@FPGA compilation flow 

 

The FPGA code is also separated and integrated with a wrapper code, which communicates 

with a hardware runtime inside the FPGA, accesses main memory to load/store local memories 

and starts the actual hardware task engine. This wrapper is in fact C++ code with Vitis HLS 

pragmas. Since generally FPGAs count with on-chip RAM (e.g. BRAMs), the kernels can 
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exploit this feature by storing data in this local memory. Depending on the memory model, 

main DRAM can be shared with the CPU or featured separately in the FPGA board. In both 

cases accessing local memory is faster, and OmpSs@FPGA allows to declare arrays stored in 

local memory and use them inside a task. The difference with other approaches like CUDA or 

OpenCL is that the local copies are automated in the wrapper and thus transparent to the user, 

who otherwise has to code them explicitly in the kernel. Once the code is transformed by 

LLVM, it is passed to the Accelerator Integration Tool (AIT). This tool feeds all the high-level 

codes to the vendor-provided tools and integrates them inserting the proper connections with 

the hardware runtime and the FPGA I/O pins in order to generate the final bitstream. 

 

This integrated compilation process has some useful features such as compilation of the whole 

system (bitstream and executable file) from a single command and automatic connection and 

integration of the hardware design, reducing the complexity of an otherwise error-prone 

process. 

3.2 Objectives  

FPGAs are widely used as accelerator devices because they provide high levels of performance 

and energy efficiency. However, programming such devices involves the use of specific tools 

and techniques, and even hardware skills to develop a baseline application due to interfaces, 

data transfers, etc. This causes reluctance when using them by programmers, or completely 

make them not use them. 

 

Task based programming models such as OmpSs provide a good opportunity to abstract the 

underlying hardware complexity, so implementation effort is kept low while maintaining good 

levels of performance. The objectives of the OmpSs programming model in the Textarossa 

project can be summarized as follows: 

 

• Provide support to the execution of task-based parallelized programs (with the OmpSs 

programming model) on Textarossa IDV-E platform. 

• Improve performance of such task-based parallelized programs so it can be competitive 

with alternative current state-of-the-art programming models. 

• Explore how task-based and stream programming models could be mixed to obtain 

systems that get the best of both worlds in terms of programmability, performance and 

energy efficiency.  

• Support the Fast Task Scheduling Hardware developed in Task 2.5 and leverage it to 

accomplish the previous objectives. 

 

The last objective is in fact accomplished by fulfilling the three previous objectives. All the 

objectives have been accomplished as described mainly in the next sections and to some 

extension in deliverable 4.7 HLS Flow, section HLS in the Task-based model and in deliverable 

4.8 Framework for efficient CNNs inference on a TEXTAROSSA node, section 6.2 Compiler 

modifications for CNN mixed precision. 
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The results of the research reported in this deliverable have been published in three conference 

papers. A first research paper at the 9th BSC Doctoral Symposium [FILBSCDS] covered the 

initial implementations of the task-based programming model for PCIe attached large FPGA 

boards and how to improve the applications resource usage. The second research paper 

published at the 32nd IEEE International Symposium on Field-Programmable Custom 

Computing Machines [FILFCCM] included how a set of memory and placement improvements 

to the framework allowed different precission applications to take advantage of multi-SLR 

FPGAs (as the one used in IDV-E). Finally, a third paper [FILFPT] has been accepted for 

presentation at the upcoming International Conference on Field-Programmable Technology 

(FPT’23). This last conference paper evaluates how different applications benefit from the 

improvements developed in this work package. Also, a journal research paper titled 

“Automated parallel execution of distributed task-graphs with FPGA clusters” covering the 

joined stream and task-based programing models' proposal is under review by the Future 

Generation Computing Systems journal. 

 

3.3 Accelerator Placement, Interleave and Priorities 

In modern FPGA devices, place and route has become an increasingly difficult task due to an 

increase in resources and device complexity. This results in an exponential increase in 

implementation possibilities. Such a huge search space causes tools to have a hard time 

providing a good solution. This is even more challenging in chiplet-based devices due to their 

topology. In the same way, off-chip memory resources have grown both in size and number of 

modules. These resources are presented to the user as raw memory interfaces requiring the user 

to manage how accelerator kernels access off-chip memory to make effective use of the 

available bandwidth. Efficient usage of memory resources becomes a critical challenge as more 

computational resources are added to a design imposing more pressure on the memory 

subsystem. This section describes a set of new features added to the OmpSs@FPGA 

programming model and runtime in order to mitigate these issues in a transparent way for 

programmers.  

 

3.3.1     Accelerator Placement 

Acceleration in multi-SLR FPGAs may result in a below expected resource usage by the model 

due to the larger costs of propagating signals. To mitigate these larger costs of propagating 

signals across large regions, specially between different SLR, the accelerator placement feature 

allows users to assign specific computation kernels to different SLR.  

  

This serves two main purposes. First, by constraining an IP core to a single SLR region, it 

prevents the implementation tool from placing it across different SLR. When this happens, the 

design can fail to implement because it needs more SLR crossing points than are available on 

the device as region crossing is a very limited resource [17, 18]. Even if design can be 
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implemented, design quality of results (QoR) can be dramatically affected because the delay 

introduced in SLR crossing limits maximum clock frequency.  

  

Also, by letting the user assign kernels to specific regions, it defines which signals have to 

cross an SLR boundary. This allows you to automatically place register slices on accelerator 

interfaces. These register slices are configured and constrained to specifically perform region 

crossing. They are placed around the boundary of the region and pipelined to propagate signals 

to points that are far away from the boundary without degrading design QoR.  

  

Code 3.3.1.1 shows a placement configuration file used in the Alveo U200 FPGA. In this file, 

users specify the target SLR for each accelerator instance. This file is read by AIT to build and 

constrain the design. It is represented as the Place CFG input file in listing 3.5 

.  

Listing 3.5: Placement Configuration File 

 

In this case, there are three instances of first_acc, two of them are placed in SLR 0 and one of 

them in SLR 2. The only instance of second_acc is placed into SLR 1.  

  

Figure 3.2 shows a schematic view of a design generated using the OmpSs@FPGA framework. 

Figure 3.2a shows a design that’s generated without considering the different SLR, treating the 

device as if it was a monolithic design. When enabling placement feature, the resulting design 

is represented in 3.2b.  

  

Note that in top of prevent accelerators from being placed among two SLRs, we also insert 

slices in elements belonging to the static part of the design, sometimes referred as the shell, in 

addition to accelerator data interfaces.  

  

It is also worth noting that inside the same region, no slices are inserted. This is because 

interconnect IPs have all their interfaces registered, therefore, no extra register slices are needed 

inorder to keep good QoR. Furthermore, adding extra registers can worsen congestion, which 

can lead to lower operating frequencies. 
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Figure 3.2: Design diagrams when not specifying placement (a) and with placement enabled (b) 

 

Figure 3.3 shows a physical representation of the device. They show how components are laid 

out in the target device after the implementation phase. Highlighted and numbered areas belong 

to the computing accelerators, non-highlighted parts represent the shell and dark areas 

represent unused resources.  

  

Figure 3.3a shows how a design without placement would be implemented. This would be the 

implementation of a design like the one represented in represented in figure 3.2a, using 5 

accelerators. Applying the proposed placement improvement, results in figure 3.3b, which 

would implement a design that follows the scheme shown in figure 3.2b, increasing the number 

of accelerators up to 7. In this case, we were able to fit two more accelerators and better exploit 

device resources. This can be seen as a reduction of the dark areas in figure 3.3b.  
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Figure 3.3: Physical representation of implemented designs without (a) and with placement constraints (b) 

 

In addition, even though we have implemented those features specifically for SLR, arbitrary 

placement regions can be defined and treated the same way. This is especially interesting for 

devices such as the Alveo U280. In this device, input/output pins are placed in a narrow column 

at the center of the device where user logic cannot be placed. This acts like an SLR boundary 

as crossing this gap, introduces some delay in signal propagation. 

 

3.3.2 Memory Interleaving for DDR channels Accelerator 

Placement 

We have implemented a general and transparent way to efficiently place application data into 

separate memory modules. Even though this can be achieved by manually placing application 

data in a specific layout to use all memory modules, this would result in increased development 

effort as it may not be a trivial task.  

  

The goal is that accelerator accesses can be scattered across multiple memory interfaces in 

order to reduce access conflicts when several accelerators need to access data that otherwise 

would be stored in the same memory module. This is implemented by inserting an “interleaver” 

module between accelerator memory interface and the memory interconnection and between 

any other IP that access off-chip memory, such as the PCIe block, they are shown in figure 3.4, 

labeled as IL.   

  

Memory interleaving modules are inserted between master and slave memory interfaces. They 

overwrite the transaction memory address in order to scatter access among all available 

interfaces. The address rewrite process is implemented by performing a series of bit selections 
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and shifts, in a similar fashion as how chip, bank or row are selected in DRAM memory 

modules. In our case, however, no individual select signals are generated, instead, the address 

is reassembled and sent through the memory interconnection. External memory interfaces are 

mapped contiguously, therefore, rewriting the address is enough to send the transaction through 

the proper memory interface. This also provides a modular solution as no other part of the 

design, such as memory interface configuration or interconnection must be modified in the 

design to enable interleaving. 

 

 

Figure 3.4: Memory interconnection diagram with interleaver modules (IL) 

 

However, there are a number of requirements in this solution. One of them is that memory 

module size, as well as the number of modules must be power of 2 so address rewrite can be 

implemented using bitwise operations. This happens to be the case for most available FPGA 

devices. If this was not the case, we can always split a memory interface address space into 

multiple ones (high/low halves, for instance) to get a number of regions that is a power of 2. 

This, however, can cause imbalance as the divided interface will receive double the number of 

accesses, but even in this case, overall bandwidth is expected to improve.  

  

Another requirement is the size of the interleaving stride. On one hand, it must be larger than 

4K, to keep AXI4 compliance [AMBAAXI]. Keeping interleaving stride above certain size, 

also allows to take advantage of large bursts and transaction pipelining. On the other hand, it 

must be power of 2 to allow bitwise operations to be performed. However, as this is a user 

defined parameter, these requirements are not problematic in the final design. 

 

3.3.3 Memory Priorities 

An adverse effect observed in some applications is memory access conflicts. When more than 

one accelerator tries to access a single memory interface, one transaction is processed while 

the rest have to wait for the one in progress to finish. This presents two main issues. The default 

behavior for the memory interconnect crossbar is to process incoming transactions in a round-

robin fashion across all its slave interfaces. In this configuration, the interconnect core 

processes a transaction from one accelerator, and then processes transactions from another one, 

preventing transaction pipelining as no more than one transaction from the same accelerator 

will be processed in sequence. By preventing pipelining, overall throughput is reduced. This is 
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because all transactions must pay the cost of initiating a new transaction, which is a non-

negligible latency.  

  

By enabling priorities, this latency can be hidden by allowing transactions to be pipelined. In 

this case a single accelerator (the one with higher priority) will send multiple transaction 

requests in a row and data can be transferred at maximum throughput. Even though this effect 

will only appear when there is contention in memory accesses, enabling priorities in an 

application with low memory bandwidth demand, will not cause any performance degradation. 

Resource wise, enabling priorities do not have any meaningful impact when compared with 

default round robin scheduling.  

  

The other issue that causes default transaction scheduling, and by enabling priorities we can 

mitigate, is that it slows down data copies for all accelerators even if the aggregate bandwidth 

remains the same. This causes further performance degradation in cases where accelerators 

have separate copy and computation phases, which is a common pattern. By enlarging the data 

copy phase of all accelerators, the relative amount of time spent in computation is reduced, 

decreasing overall performance. By letting one accelerator finish its copies earlier, it also 

improves contention as the computation phase is usually less memory intensive. This allows 

the rest of the accelerators to progress faster. 

 

3.3.4 Summary of improvements 

Figure 3.5 shows two execution traces showing the internal state of FPGA accelerators across 

the same given time range. Each row of the traces represents a different matrix multiplication 

accelerator instance, in this case they are instances of the matrix multiplication kernel. The 

horizontal axis represents the execution time. Each color region corresponds to a different 

accelerator state. Which can be any of the following: Data copies from off-chip memory to 

accelerator local memory (gray), computation (blue) and data copies to external memory (red).   

  

Note that figure 3.5 shows only six accelerators instead of the seven that we could fit by using 

placement improvements, explained above. This is because the logic needed to capture events 

from the accelerator does not allow to implement a design using 7 accelerators due to place 

and route conflicts. However, data should still be representative.  
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Figure 3.5: Matrix multiply execution traces with placement enabled, without (a), with memory access priorities (b), 

and with priorities and interleave (c) 

 

An execution trace without memory access priorities is shown in figure 3.5a. In this case all 

accelerators spend roughly the same amount of time copying data due to round robin 

scheduling performed by the memory interconnect. Once memory access priorities are enabled, 

the effect is clearly shown in figure 3.5b as copy regions (gray regions) at the top are smaller 

than the ones at the bottom. This causes upper accelerators to finish their copies and start 

computation earlier than if no priorities were used. This also causes the side effect of spreading 

subsequent memory accesses, further improving memory access congestion. Accesses tend to 

line up in a way that conflicts are greatly reduced. This effect is especially notorious when 

tasks are created from FPGA accelerators (FPGA nested tasks), where tasks are created much 

closer together compared with tasks being created from the host due to accelerators having 

much higher throughput creating tasks than the host [BOSCH2020]. It is worth noting that even 

though accelerators in bottom rows can be negatively impacted in some cases, overall, time 

spent in data movements throughout execution is reduced, resulting in increased performance. 

More precisely, we spend 59% less time performing data copies when compared to a design 

that does not use priorities in instrumentation executions.  

  

In our case, priorities to accelerator interfaces are not assigned in any way. The only goal is 

that one accelerator can process as fast as possible. Priority assignation could be user defined, 

allowing further tuning by users. PCIe interface, however, has the highest priority, this is done 
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to allow data copies from the host to be finished as soon as possible, allowing more tasks to be 

able to start due to their data being ready. Starvation is not a problem in this approach. In the 

worst case, accelerators with higher priority will eventually consume all available tasks of their 

type and will enter idle state, allowing other accelerators to access memory resources. 

Therefore, application progress is guaranteed in any case. However, this is not the typical case, 

as accelerators usually have phases where no memory access is performed, allowing 

accelerators with lower access priority to progress.  

  

Effects of interleaving can also be seen in figure 3.5c. When multiple copies overlap, copies 

(gray and red regions) take significantly less time than in cases without interleave, shown in 

figures 3.5a and 3.5. This is caused by interleaving spreading accesses to different banks, 

allowing them to be performed in parallel. By applying interleaving, 64% less time is spent 

moving data from or to off-chip memory when compared with the baseline design. When 

combining priorities and interleaving, time spent in copies is 21% less when comparing with a 

design only using priorities and 68% less compared to the baseline design. 

 

Figure 3.6 shows the speedup achieved by using the proposed features across different 

applications and data types: 

 

• MM-half, single and double: Matrix multiplication in half, single and double precision, 

respectively. Matrix multiplication is a well-known embarrassingly parallel 

application. The application computes C = C + A × B, being A, B and C matrices of 

size N × N.  

• Cholesky: This benchmark performs the Cholesky decomposition of a real Hermian 

positive definite matrix A into a lower triangular matrix L. Multiplying L by its 

transpose, results in the original matrix A = L × L T. In the same fashion as the matrix 

multiplication kernel, the input matrix A is distributed in square blocks of size BS × BS 

single-precision elements.  

• N-body: The N-body simulation computes how a group of particles with different 

masses interact with each other due to gravitational forces over a period of time. 

Algorithm input is a set of particles, each one consisting of an initial position, mass, 

and initial velocity. Position and velocity are 3-dimensional single precision floating 

point vectors, while mass is a scalar value. The output of the algorithm is the set of 

particles with their positions updated due to gravitational interactions after a given 

amount of time steps.  

• Spectra: The Spectra application computes a histogram of electronic weights between 

particles versus distance for a given set of particles. To do so, it needs to compute the 

distance between each pair of particles and then add their electronic weight to the 

histogram. The histogram is afterwards used to compute the X-ray spectrum of the 

physical material being analyzed allowing the determination of the material 

composition [GONZ2022]. 
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Figure 3.6: Speedup (bars) using different features across different applications. Points and dashed lines show energy 

efficiency 

 

Figure 3.6 shows speedup compared to the baseline version. This baseline version (labeled as 

baseline) is the best design we could implement for a given application without using any of 

the new proposed features. Baseline design configurations and performance are shown in table 

3.1 (first of each Baseline/Improved pair). 

 

Table 3.1: Performance, power, accelerator configuration and resource usage for all analyzed applications. Data is 

presented as Baseline / Improved when there is a difference between versions. 1Gflops, 2Gpair/s 

Placement shows the improvement introduced when using placement features. Priorities bars 

show the improvement obtained by enabling the memory access priorities feature. Finally, 

interleave shows speedup when enabling interleaving on top of priorities. Dots show energy 

efficiency for baseline and fully improved versions. 

 

Placement feature impact varies depending on the number of accelerators and their sizes. 

Implementation tools seem to be able to perform better in designs with a larger number of 

smaller accelerators. However, all designs benefit from an increased clock frequency. When 

adding more accelerators contention in memory accesses increases, limiting the overall 

performance achieved using this feature alone. This can be seen in the matrix multiply case 

where the ideal speedup from the placement feature should be 1.55x, according to the number 

of operations performed each cycle but it only achieves a speedup of 1.18x. This is caused by 

memory accesses limiting performance.  
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Memory interleaving and priorities improvements seem to be proportional to data type sizes. 

The wider data types result in a larger amount of data to be moved which results in more 

pressure in the memory subsystem. Therefore, memory optimizations have a greater impact. 

This is especially relevant when using double precision matrix multiply. In this particular case, 

BS is halved, resulting in 8 times less computation but only half the data that each block 

computation needs compared to single precision. In the case of double precision, using 

priorities helps, but not as much as interleaving. Even though priorities reduce overlapped 

copies, there are still a lot of conflicts accessing memory due to the size of the data that needs 

to be moved for a relatively short computation. This effect is mitigated by interleaving, which 

increases available bandwidth to accelerators. As commented before, N-body and Spectra 

applications do not take much advantage of memory improvements because these applications 

have a low data-to-computation rate. However, as can be seen in table 3.1 the improved 

memory features do not increase the resource usage of the implementations so they can be used 

as a default for all applications. 

 

3.4 HBM memory access 

One of the main goals of AIT and OmpSs@FPGA is to abstract all FPGA-related complexity 

and heterogeneity by providing a set of high-level tools allowing programmers to guide the 

implementation process. This includes providing an efficient exploitation of available memory 

resources, without requiring an in-depth knowledge of how it is arranged, or which type of 

technology is used.   

  

One of the challenges of the goal is supporting the different memory models used by the 

different FPGA boards available. Figure 3.4 shows a diagram of the DDR memory 

interconnection scheme that AIT uses in the OmpSs@FPGA model to enable access to all the 

available DDR memory. On HBM-based FPGAs, in contrast, there is a single memory module 

providing access to the entire HBM memory through a series of channels acting like standard 

DDR interfaces. Each channel is serviced by a single memory controller and can be accessed 

through two different AXI interfaces. The HBM memory module consists of two stacks of 8 

memory channels for a total of 32 pseudo-independent AXI interfaces. In this case, access to 

the full address space is enabled through the Global Addressing configuration which enables 

HBM internal micro-switches, meaning that no external crossbar is needed. Nevertheless, a 

simple 1-to-1 AXI Interconnect IP is used on each AXI interface for data width and protocol 

conversion, as can be seen in figure 3.7. 
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Figure 3.7: Memory interconnection diagram for HBM 

 

All previous datapath optimizations applicable to DDR memories such as wide port access, 

copies optimization, etc. can be used on HBM memories out of the box. 

3.5 OmpSs@cloudFPGA 

OmpSs@cloudFPGA is an extension to the OmpS@FPGA framework.  Its goal is to enable 

multi-FPGA execution via message passing, like the Message Passing Interface (MPI), but 

with the benefits of the task-based programming models. With OmpSs@cloudFPGA, the HLS 

accelerators can send and receive message messages with the OmpSs MPI for FPGAs (OMPIF) 

API. Each FPGA participating in the application is assigned a rank, which can be used to 

determine the source and destination of the messages.  

 

void OMPIF_Send(const void* buf, int count, OMPIF_Datatype 

               datatype, int dest, int tag, OMPIF_Comm comm); 

void OMPIF_Recv(void* buf, int count, OMPIF_Datatype datatype 

                , int dest, int tag, OMPIF_Comm comm); 

     #pragma oss task device(fpga) inout([16]a) in([16]b) 

void vecSum(float a[16], float b[16]) { 

   int rank = OMPIF_Comm_rank(OMPIF_COMM_WORLD); 

   int nrank = OMPIF_Comm_size(OMPIF_COMM_WORLD); 

   if (rank != 0) { 

      OMPIF_Recv(a, 16, OMPIF_FLOAT, rank-1, 0, 

                 OMPIF_COMM_WORLD); 

   } 

   for (int i = 0; i < 16; ++i) 

      a[i] += b[i]; 

   } 

   if (rank != nranks-1) { 

       OMPIF_Send(a, 16, OMPIF_FLOAT, rank+1, 0, 
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                  OMPIF_COMM_WORLD); 

   } 

} 

Listing3.6: OMPIF code example 

 

We can see an example of the OMPIF code in listing 3.6. It is very similar to the MPI equivalent 

functions, like MPI_Send/MPI_Recv. The main difference with MPI is that OMPIF calls don’t 

return a status code. In the current implementation there are only blocking calls. I.e., 

OMPIF_Send only returns when the buffer is safe for reading or writing, and OMPIF_Recv 

returns when the buffer contains the matching message. A match is determined by the source 

rank and tag of the message. Moreover, the size of a receive operation must match the size of 

the matching send. Besides simple send and receive, we also implemented the collectives 

broadcast and allgather. 

When the FPGA accelerator calls OMPIF, the runtime creates a task and submits it to the 

hardware task scheduler. The OMPIF runtime is composed of two modules: the message sender 

and message receiver, which implement OMPIF_Send and OMPIF_Recv respectively. 

Besides OMPIF, we implemented a new type of task in the CPU side. In classic 

OmpSs@FPGA, all tasks target the only FPGA in the system. However, in the 

OmpSs@cloudFPGA model we have many devices, so we need a mechanism to send tasks to 

the cluster nodes. For that, we introduced the distributed task type. This is an FPGA task that 

can only be created by the CPU. When invoked once by the software program, the software 

runtime replicates this task for every FPGA in the cluster. Then, every device starts executing 

the same task, and can use the rank and cluster size to execute different code. 

 

#pragma oss task device(fpga) distributed \ 

inout([n]a) in([n]b) 

void vecSumDistributed(float *a, float *b, int n) { 

   for (int i = 0; i < n; ++i) { 

      vecSum(a + i*16, b + i*16); 

      #pragma oss taskwait 

   } 

} 

Linsting 3.7: Distributed task code example 

 

We can see an example of a distributed task in listing 3.7. This task is executed by all FPGAs 

in the cluster, which creates vecSum tasks of listing 3.6 on a variable-length array a and b with 

blocks of 16 elements. From the CPU side, we can prepare the input data, and send it to the 

FPGA devices with a specific Nanos6 API. For example, a copy to a specific rank is done with 

nanos6_dist_memcpy(int dst, const void* buf, int srcOffset, int 

dstOffset), where dst is the FPGA rank, buf is a mapped memory pointer, and srcOffset 

and dstOffset are the corresponding offsets on CPU and FPGA memories. The memory pointer 

is mapped with the nanos6_dist_map_address(const void* buf, int size), where 
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the size is in bytes. This function allocates memory on all FPGAs in the cluster, so the user 

doesn’t have to call the allocate function manually. 

The architecture and integration of the OMPIF runtime in OmpSs@cloudFPGA is detailed in 

deliverable 4.7. We also show the implementation of the programming model in the IBM 

cloudFPGA and BSC MEEP FPGA clusters. 

3.5.1 Benchmarks 

To test our programming model, we have implemented three different applications, with very 

different dependence and communication patterns. For this evaluation we integrated the Picos 

dependence manager [OMPSSFPGA] with the Fast Task Scheduler IP, since we needed 

support to create tasks with dependencies in HLS accelerators. Picos is a hardware extension 

to the task scheduler that adds dependence analysis for FPGA created tasks. 

3.5.1.1 Nbody 
The Nbody application is a simulator of the interaction of celestial bodies attracted by 

gravitational forces. The input is a set of particles with initial positions, velocities, and masses. 

Both positions and velocities are represented by 3-dimensional vectors. Data is represented 

with single precision. During the simulation, two steps are repeated iteratively. The first one is 

the calculation and accumulation of the forces of each particle against each other. This part is 

the most computationally expensive, because the number of forces grows with the formula 𝑛2 

where n is the number of particles. Forces are calculated using Newton's gravitational law: 

𝐹𝑖𝑗 =
𝐺 ×𝑚𝑖 ×𝑚𝑗 × (𝑝𝑗 − 𝑝𝑖)

∥ 𝑝𝑗 − 𝑝𝑖 ∥3
 

Where 𝐹𝑖𝑗 is a vector with the forces between particles i and j, 𝑚𝑖 is the mass of particle i, 𝑝𝑖 

is a vector with the position of particle i and G is the gravitational constant. The second step 

involves updating the particle's position and velocity according to the force calculated. 

 

To parallelize this benchmark on a cluster, we assign a subset of the force calculation tasks to 

each rank proportionally. Then, before doing the update part, we do an all-gather collective to 

send the forces calculated by each rank to every other rank in the cluster. Finally, every rank 

updates positions and velocities of all particles. We do this because forces are stored 

consecutively in memory, while positions are stored in a different structure with padding 

between them. Even though we are doing more calculations in the update part, this doesn’t 

affect performance significantly, as we can see in the results section (3.3.5). 

3.5.1.2 Heat 
The heat benchmark simulates the propagation of heat over a two-dimensional surface. 

Propagation is calculated on each iteration k with the following formula: 

𝐴𝑖,𝑗
𝑘+1 =

𝐴𝑖+1,𝑗
𝑘 + 𝐴𝑖−1,𝑗

𝑘+1 + 𝐴𝑖,𝑗+1
𝑘 + 𝐴𝑖,𝑗−1

𝑘+1

4
 

Where A is a matrix of dimensions 𝑛 ×𝑚 , with extra rows and columns on the boundaries to 

avoid reading positions out of bounds. Thus, the real dimensions of the matrix are, 

(𝑛 + 2) × (𝑚 + 2) and the indexes of the formula have the range 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1,𝑚]. 

We use a Gauss-Seidel approach, where A is used both as input and output. When the equation 

is executed sequentially, the top and left neighbors have the updated values from the current 
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iteration, while the bottom and right positions have the values from the previous iteration. The 

initial heat sources are placed on the boundaries, and the rest of the matrix is initialized to 0. 

We use double precision for this benchmark. 

Although the formula is simple and there is only one kernel, the main challenge to parallelize 

this benchmark is to respect the top and left dependencies. First, we split the matrix into square 

blocks of a fixed size $b$, and we create tasks that execute the kernel for a single block. With 

this algorithm, each task has a dependence on the top and left blocks, except for the blocks that 

are on the first row and column. This type of dependence graph creates a wave-like pattern, 

where on each step an anti-diagonal of the matrix can be executed in parallel. The final step is 

to distribute the work among many nodes and decide on a communication strategy. The 

simplest distribution is to split the matrix by rows on each node. Each rank has assigned 

𝑛 × 𝑟𝑎𝑛𝑘𝑠 consecutive rows, which are at the same time divided into 𝑏 × 𝑏  blocks. 

 

Figure 3.8: Heat wavefront on the left, matrix distribution and communication strategy on the right 

 

Figure 3.8 shows this distribution on the right part. The matrix allocated on each node has one 

extra row for each block on the top, and one extra row for each block on the bottom. In the case 

of the figure, there is only one row of blocks, so each one has two additional rows. These are 

used to store data from neighbor ranks (halo points), except for the first and last, which contain 

the extra rows of the original matrix with the initial data. The figure also shows the data 

movements on each iteration of the simulation. First, each node with rank i except the last 

needs the first row from the neighbor 𝑖 + 1  on the bottom extra row. This communication is 

performed at the block level, so as long as one block has the needed row, the computation task 

can start, producing a wavefront execution. This type of execution is illustrated in figure 3.7 

on the left at the matrix element level. We can see anti-diagonals with different colors, which 

designate matrix positions that can be computed in parallel. 

Except the first rank, every rank i needs the last row from the neighbor 𝑖 − 1  on the top extra 

row before the computation task can start. In summary, on each iteration, every rank except the 

first sends its top row in parallel to the previous neighbor. Then, the first rank starts computing 

every block and sends the bottom row with the updated data to the next neighbor. This process 

is repeated for every rank except for the last one. Communication and computation tasks 

between iterations can overlap if dependencies do not collide. 
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3.5.1.3 Cholesky 
The Cholesky benchmark implements a Cholesky decomposition of a symmetric positive-

definite matrix in single precision, which solves the equation: 

𝐴 = 𝑈𝑇𝑈 

Where A is a square matrix of size n, and U is the output which is an upper triangular matrix. 

The task-based implementation of this benchmark has four kernels that work on square blocks 

of A with a fixed size: potrf, trsm, gemm and syrk. Except potrf, they are part of the Basic 

Linear Algebra Subprograms (BLAS) specification. The potrf kernel is a Cholesky 

decomposition of a single block. To better understand the algorithm, we show the main code 

below: 

void cholesky_solver(int n, int b, int nb, 

float *Ab[nb][nb]) { 

for (int k = 0; k < nb; ++k) { 

    #pragma oss task inout(Ab[k][k]) 

    potrf(Ab[k][k]); 

    for (int i = k+1; i < nb; ++i) 

        #pragma oss task in(Ab[k][k]) inout(Ab[k][i]) 

        trsm(Ab[k][k], Ab[k][i]); 

    for (int i = k+1; i < nb; ++i) { 

        for (int j = k+1; j < i; ++j) 

            #pragma oss task in([Ab[k][I]) in([Ab[k][j]) \ 

                inout(Ab[j][i]) 

            gemm(Ab[k][i], Ab[k][j], Ab[j][i]); 

        #pragma oss task in(Ab[k][i]) \ 

            inout(Ab[k][k]) 

        syrk(Ab[k][i], Ab[k][k]); } } } 

Listing 3.8: Code of the Cholesky factorization with tasks 

 

In the code of listing 3.8, the input matrix is divided into separate square blocks in memory. 

The input Ab is a matrix of pointers to each block. Variable nb indicates the number of blocks 

in each dimension of A, and b is the size of a block. 

A straightforward strategy to distribute the algorithm of figure 3.8 on a cluster is to assign rows 

of blocks to ranks. I.e. tasks are executed on the node that has the output row assigned to it. 

We do a cyclic distribution of block rows because the critical kernel of the benchmark is the 

gemm. The amount of gemm tasks created grows with a factor of ≈ (𝑛/𝑏)3, while syrk and 

trsm with a factor of ≈ (𝑛/𝑏)2 and potrf with 𝑛/𝑏 . All tasks created on the innermost j loop 

are parallel and have output blocks from different rows. It is critical to distribute them in 

different nodes to avoid bottlenecks. However, if we do this distribution, the potrf and trsm are 

executed by a single node. After these tasks are finished, the corresponding node broadcasts 

the row of blocks k to the rest of the cluster. The gemm and syrk tasks can be executed without 

barriers before moving to the next iteration of the k loop. 
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Although this implementation is easy to write, it doesn’t give the best performance as seen in 

section 3.3.5. Instead, we propose an alternative implementation that requires more changes to 

the original code. Instead of distributing rows of blocks, we do a cyclic distribution on both 

rows and columns. This way, both trsm and gemm tasks can be executed in parallel by different 

ranks. However, instead of a single broadcast, we have to do sends and receive with blocks, 

depending on the dependencies of each task. I.e. if a task has a dependence on a block that is 

stored on another node, we do a send operation in that node, and a corresponding receive in the 

destination node. 

 

Figure 3.9: Cyclic block distribution of a Cholesky matrix and data transfer from rank 0 to rank 1 

 

We show an example of the distribution in figure 3.9 with a matrix of 4 blocks in a cluster of 

4 nodes. Blocks belonging to ranks 0 and 1 are highlighted with different colors. The figure 

also shows the first data movement on the first trsm task, because it is executed by rank 1 but 

needs a block that belongs to rank 0. 

3.5.2 Results 

3.5.2.1 Experimental setup 
We evaluated the mentioned benchmarks of section 3.3.4 in the cloudFPGA cluster. The MEEP 

cluster implementation is still under development and there are no performance results. 

 

In cloudFPGA, we use 56 Xilinx Kintex UltraScale xcku060-ffva1156-2-i FPGAs, with 20nm 

TSMC technology. The boards include 2 DDR4 modules of 8GB RAM each (16GB total). 

FPGAs have no CPU host attached, instead, all devices are connected to the same network. 

The cluster uses UDP/IP via two levels of 10G ethernet switches. In our designs, we only use 

one of the DDR modules to improve timing constraint satisfaction. We realized that most of 

the time the critical path is on the memory controllers, which has a negative slack. So, we 

removed one to get positive slack on all paths. 

 

We also evaluated the benchmarks with the MareNostrum4 (MN4) supercomputer at BSC. 

This way we can compare our model with a regular CPU cluster using MPI. MN4 has 3456 
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nodes with two Intel Xeon Platinum 8160 CPUs, 94GB of DDR4 RAM each, and 14nm Intel 

technology. It also features a 100Gb Intel Omni-Path Full-Fat Tree network. 

 

However, first we focus on the FPGA implementation and performance of the benchmarks on 

sections 3.3.5.2, 3.3.5.3 and 3.3.5.4. Then, on section 3.3.5.5 we explain the implementation 

and performance of all benchmarks in MN4, and a comparison with cloudFPGA. 

3.5.2.2 Nbody 
In all our tests we use a block size of 2048. For cloudFPGA, we can fit 4 force accumulation 

and one particle update accelerators in the bitstream at 200MHz clock for each node. The force 

accumulation kernel consists mainly of a pipelined loop with an Initiation Interval (II) of 1, 

and an unroll factor of 8. This means the kernel computes 8 forces per cycle per accelerator 

(32 forces per FPGA). In our experiments, each Stratix board has 8 force accumulation 

accelerators that compute 32 forces in parallel with II 1 (256 forces per FPGA). The particle 

update loop is pipelined with a factor of 7. It is limited by the port number of the particle and 

force memories. I.e., there are not enough parallel ports to do all loads and stores in the same 

cycle. 

 

 

Figure 3.10: Nbody performance scalability with ~3.4M particles 

 

With the aforementioned configuration, we run the application from 1 to 56 FPGAs. The 

performance results are in figure 3.10, reported as the number of forces calculated per second. 

The performance line is overlapping with the ideal line, because the efficiency of this 

application is near perfect, being 99% with 56 FPGAs.  
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3.5.2.3 Heat 
We use a block size of 128 × 128  and fit 5 accelerators in the bitstream of each FPGA at 

200MHz. We pipeline the main loop with II 1. To do that, the kernel visits each position of a 

block with an anti-diagonal order to remove any dependence in consecutive iterations. 

However, there is still a dependence between positions at different anti-diagonals. We can 

compute both with II 1 if the latency of the loop is greater than the distance between two 

consecutive anti-diagonals. I.e. if the latency of the loop is l and we are at iteration t on anti-

diagonal d, any element of d will be read by iteration 𝑡 + 𝑑 , expecting an updated value. With 

II 1, a new iteration starts on each cycle, but the output of iteration t is calculated after l cycles. 

Therefore, we avoid the dependence if 𝑡 + 𝑙  < 𝑡 + 𝑑 , because by the time the kernel reads the 

block array, it will be already updated. The value of l is reported by the HLS tool itself after 

compilation but depends on many factors like the target frequency. 

 

With this method, we split the main loop into three. First, to calculate all anti-diagonals that 

are smaller than l with II 1 only for a single anti-diagonal. Then, to calculate all anti-diagonals 

greater than l with II 1, overlapping anti-diagonals. Finally, one last loop to calculate the 

trailing anti-diagonals smaller than l like the first one. 

 

 

Figure 3.10: Heat performance scalability with matrix size 35K×25K 

 

We have the results in figure 3.10, performance is reported as number of matrix updates per 

second. Scalability is not as perfect as with Nbody because network latency affects negatively 

this benchmark. First, every FPGA has to wait for the neighbor rank before it can start 

computing. Second, the amount of computation tasks is linear to the matrix size, while in 

Nbody is quadratic, thus the percentage of time spent in communication is bigger for Heat. 
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3.5.2.4 Cholesky 
We could add 1 accelerator of each type with 128 × 128  block size at 200Mhz. The HLS code 

of gemm, syrk and trsm calculate a block row every two cycles. We could calculate a row per 

cycle by increasing the II, but this increases proportionally the resource usage. On the other 

hand, the potrf kernel has more dependencies on internal loops, so we cannot pipeline or unroll 

it efficiently without transforming significantly the original code. This is why it is the slowest 

kernel, nevertheless, it is not the most critical because the total execution time of potrf is very 

small compared to the others. 

 

Figure 3.11: Cholesky performance scalability with matrix size 43008 

 

Figure 3.11 shows the performance of Cholesky from 1 to 56 FPGAs as floating-point 

operations per Second (Flops/s). This application shows even less scalability than Heat, 

reaching 60% efficiency with 56 nodes. We theorize this is caused by two factors. First, like in 

Heat, network latency is limiting performance, because with more FPGAs and bigger matrices, 

there are more tasks that have communication. Second, the matrix size is not big enough to 

achieve maximum performance. In our proof-of-concept implementation, all nodes allocate the 

full matrix, so we are limited by the memory available in a single node. We use one DDR 

module of 8GB, with 1GB reserved for the intermediate buffer explained in deliverable 4.7, so 

we have 7GB available. This is why we only test with a matrix size of 43008. The average 

parallel blocks per node is 6, which might not be enough to stress the system. 

3.5.2.5 CPU cluster implementation and comparison 
For all benchmarks we use the same task parallelization as the FPGA implementations with 

Intel MPI instead of OMPIF. The main changes are in the kernel optimizations. 
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In N-body, we use Intel AVX-512 intrinsics to vectorize the force accumulation kernel loop, 

with a block size of 512. The Heat benchmark kernel uses the original sequential code for a 

single block of size 512 × 512 . We also use MPI to send and receive 8 rows in parallel. In 

Cholesky, we use the Intel Math Kernel Library (MKL) implementation of the kernels with a 

block size of 512 × 512 . 

 

Figure 3.12: Benchmarks normalized performance of MareNostrum4 cluster 

 

Results are summarized in figure 3.12, where we show performance as speedup to fit every 

benchmark in a single plot. Like in cloudFPGA, we test from 1 to 56 nodes. Problem sizes used 

are: N-body uses 6M particles, Heat 65K rows per node and 131K columns (weak-scaling), 

and Cholesky 143360 matrix size. For this figure we focus on scalability. We see similar effects 

as with cloudFPGA. Nbody scales almost perfectly, and Heat and Cholesky show degradation 

in performance. With MN4, this effect is even greater. We believe the causes are similar. First, 

communication time has bigger effects on Heat and Cholesky due to dependencies with 

computation tasks, and the amount of communication tasks grow proportionally to computation 

tasks. Second, in Cholesky we have the same memory limitation. With 56 nodes and matrix 

size of 134460, there is an average of 5 blocks per node, but each node has 48 cores. Also, the 

threads used for communication block a core until the operation is finished. This implies that 

receive operations waiting for a matching message prevents the cores from doing useful work. 

This limitation could be solved by modifying the runtime, and pausing the thread while there 

are no messages. 

 

Cluster Nbody Heat Cholesky 

Gp/s Pf/W Eff. Gup/s Pf/W Eff. GFlops/s Pf/W Eff. 

cloudFPGA 348 0.374 99% 12.9 0.020 70% 596 1.12 60% 
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MN4 356 0.154 94% 208 0.012 67% 19299 1.61 22% 

Table 3.2: Performance, performance per power and efficiency of all benchmarks 

 

We summarize all results in table 3.2, where we put together the performance, performance 

per power and efficiency of cloudFPGA and MN4. Although absolute performance is lower in 

cloudFPGA for all benchmarks, this one has better scalability and energy efficiency. Cholesky 

is the only one that has less performance per Watt, but the scalability is 2.7x higher. To compare 

both clusters, we also must consider the technology gap, since Kintex UltraScale FPGAs have 

older technology (20nm vs 14nm). Despite this, we managed to improve the performance per 

Watt and scalability. 

 

Another fact to consider is the problem's size. We can observe that every CPU benchmark uses 

bigger sizes in all benchmarks. For example, with 56 nodes in N-body we use double the 

number of particles, in Heat the matrix is 519 times bigger, and in Cholesky 12 times. This 

means that FPGAs reach peak performance with much smaller inputs than the CPUs, especially 

in Heat. There are several reasons for that, like the runtime overheads, the number of computing 

units and their speed. For FPGAs, we demonstrate that FPGAs have significantly less overhead 

in section 3.3.3.6. Regarding the number of computing units, MN4 nodes have 48, while FPGA 

nodes have between 5 and 8. Regarding the computing unit speed, it also depends on the 

benchmark. For example, in Nbody, cloudFPGA accelerators' performance is ~1.5Gpairs/s, 

while in MN4 it is ~0.13. However, this is not the case for Heat and Cholesky. 

 

In summary, we demonstrated that FPGA clusters can help improve energy consumption while 

maintaining a useful performance in HPC applications. Furthermore, with 

OmpSs@cloudFPGA we can efficiently and easily program these clusters in a similar way like 

in classic CPU clusters. We believe this can help to introduce HPC programmers to FPGAs. 

3.5.2.6 Runtime overheads 
We have measured the overheads of the task scheduling and message passing runtimes for 

cloudFPGA and MN4. The results are in table 3.3. For the task scheduling, we measure the 

average time to process a task for every benchmark. To do that, we execute the application 

removing the computation code. I.e., the code creates tasks that have almost 0 execution time. 

This way we are only measuring the time to execute the code creation code and the runtime 

task processing. 

 

Cluster Nbody Heat Cholesky Network 

ns/task ns/task ns/task Badnwidth (MB/s) Latency (us) 

cloudFPGA 310 629 441 300 13.12 

MN4 2008 1844 9798 3512 110.00 

Table 3.3: Average task processing time for every benchmark and network bandwidth and latency 

 

For the network overheads, we run a microbenchmark between two nodes. Rank 0 sends an 

arbitrary number of bytes to rank 1 in chunks of a fixed size. To do that, we use multiple calls 
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to OMPIF_Send/Recv or MPI_Send/Recv. With this benchmark, we measure the bandwidth 

of the network and the overheads of the message passing runtime. 

The latency is measured using the ping command on MN4, while on cloudFPGA we use 

hardware counters in the message sender IP. 

 

In task scheduling, the software runtime in MN4 is 6.47x, 2.93x and 22.21x slower than the 

hardware runtime of cloudFPGA. The main reason is that task creation and processing is 

optimized in hardware with local memories, so creating a task takes only a few cycles, while a 

memory load in a CPU core may take hundreds. The difference between every benchmark is 

due to the HLS code implementation, which has a significant effect. For example, in Nbody 

the time per task is much lower because the task creation loop is pipelined with II 1, while on 

the rest it is not. 

 

MN4 has a 100Gb network while cloudFPGA is 10Gb, so it is expected to find a ~10x 

difference in bandwidth. However, we see that both are far from the peak bandwidth, due to 

the protocol layers and the message passing runtime overheads. MN4 reaches 28% of the peak, 

while cloudFPGA reaches 24%. This means that our runtime is not optimized as well as the 

Intel MPI runtime, and that we can improve significantly the bandwidth. 

 

The latency of the cloudFPGA cluster is much lower than MN4. There are two main factors 

that affect latency, the distance between nodes and the runtimes. Although not optimized for 

bandwidth, latency added by the FPGA runtime is on the order of tens of cycles, while on a 

CPU the operating system adds a significant latency. Moreover, MN4 cluster is much bigger 

so it is expected that a message has to travel significantly more distance than in cloudFPGA. 
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4 Conclusions 

In this deliverable we have shown the work done in the task-based runtime models (OmpSs 

and StarPU) in the Textarossa project.  

 

As explained in this deliverable and deliverables 4.7 HLS flow and 4.8 Framework for efficient 

CNNs inference on a TEXTAROSSA node, the additions to the OmpSs@FPGA framework 

done in the context of the project have been significant. The whole framework has been 

upgraded to use the new version of the programming model OmpSs-2. Also, the framework 

compiler support has changed from the old Mercurium compiler to a new fork of llvm compiler. 

Finally, the framework has been made compatible with Vitis HLS system, the last version 

provided by the FPGA vendor. 

 

The new implementation supports all the features present in the previous version of the 

framework and also adds new improved characteristics that result in better performance and 

programmability. Support for mixed precision data, new C++ features, and better usage of the 

IDV-E resources are among the improvements described to name a few. 

 

Finally, a new system to program large, distributed clusters of FPGAs is described and 

evaluated. This new feature is to the best of our knowledge the most advanced runtime system 

to perform this kind of work. The capability to execute complex computational problems in 

FPGA (like NBody or Cholesky problems) with performance competitive with state-of-the-art 

HDL designs, as reported, proves its value.  
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5 Future Work 

As a future work we plan to continue developing the systems described in this deliverable. 

Apart from maintaining the tools for others to use we plan to address a wider audience of users 

by incorporating our ideas into open standards like OpenMP. 

 

We really believe that the distributed tasks idea presented in this deliverable will be helpful to 

program large clusters of FPGAs. Porting this solution from the IDV-E platform developed in 

the project to other commonly available platforms (from the same or different vendors) and 

evaluating its capabilities is a necessary next step. In addition to finalizing the publication of 

the journal paper already submitted for review, we need to prepare at least one more paper 

centered in the distributed task idea. 

 

Finally, we plan to integrate all the work presented here with some of the project applications 

and further evaluate them in IDV-E. We expect to improve performance even further while 

maintaining programmability as presented here. 
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Appendix A. OmpSs framework source code 

 

The source code of the complete OmpSs@FPGA framework can be found in the 

OmpSs@FPGA public Github page:  

 

https://github.com/bsc-pm-ompss-at-fpga  

 

The most recent implementation of the fast task scheduler is integrated in the OmpSs-2@FPGA 

release that is the version currently under development (OmpSs-1@FPGA is no longer 

updated, only bug fixes are applied to it, the OmpSs@FPGA framework and components 

referred in this deliverable are all related to the new OmpSs-2@FPGA release). 

 

Also, the source code of all hardware modules described in deliverable 2.10, as well as the 

wrappers that interconnect and instantiate them, are available via BSC’s B2Drop platform:  

  

https://b2drop.bsc.es/index.php/s/tbEzqEHegxNXLP6 

 

The source code of StarPU that includes the patch to support FPGAs as OpenCL devices and 

the Multreeprio scheduler can be found in the public Gitlab page: 

 

https://gitlab.inria.fr/htayeb/starpu-multiprio-scheduler 

 

https://github.com/bsc-pm-ompss-at-fpga
https://b2drop.bsc.es/index.php/s/tbEzqEHegxNXLP6
https://gitlab.inria.fr/htayeb/starpu-multiprio-scheduler
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Appendix B. Published research articles 

The results of the research reported in this deliverable have been published in three conference 

papers: 

 

• [FILBSCDS] Antonio Filgueras, Daniel Jimenez-González, Carlos Álvarez: Improving 

resource usage in large FPGA accelerators. 9th BSC Doctoral Symposium Book of 

Abstracts. 2022 (https://www.bsc.es/education/predoctoral-phd/doctoral-

symposium/9thbsc-%20so-doctoral-symposium). This article covers the initial 

implementations of the task-based programming model for PCIe attached large FPGA 

boards and how to improve the applications resource usage.  

• [FILFCCM] Antonio Filgueras, Miquel Vidal, Daniel Jiménez-González, Carlos 

Álvarez, Xavier Martorell: Improving Performance of HPC Kernels on FPGAs Using 

High-Level Resource Management. FCCM 2023: 213 

(https://ieeexplore.ieee.org/document/10171527). This article includes how a set of 

memory and placement improvements to the framework allowed different precission 

applications to take advantage of multi-SLR FPGAs (as the one used in IDV-E).  

• [FILFPT] Antonio Filgueras, Miquel Vidal, Daniel Jiménez-González, Carlos Álvarez, 

Xavier Martorell: FPGA framework improvements for HPC applications. FPT 2023, 

accepted, to be published in December 2023. This last article, already accepted for 

presentation at the upcoming International Conference on Field-Programmable 

Technology (FPT’23) evaluates how different applications benefit from the 

improvements developed in this work package.  

• [HAYMUL] Hayfa Tayeb, Bérenger Bramas, Abdou Guermouche and Mathieu 

Faverge: MulTreePrio: Scheduling task-based applications for heterogeneous 

computing systems, Compas National Conf. 2022. This article describe the first version 

of Multreeprio. 

 

Also, a journal research paper titled “Automated parallel execution of distributed task-graphs 

with FPGA clusters” covering the joined stream and task-based programing models' proposal 

is under review by the Future Generation Computing Systems journal. In addition, a conference 

paper titled “Dynamic Tasks Scheduler with Multiple Priority-based Trees on Heterogeneous 

Computing Systems” providing a more in-depth performance study of Multreeprio is under 

review at the IPDPS conference. 

 

https://www.bsc.es/education/predoctoral-phd/doctoral-symposium/9thbsc-%20so-doctoral-symposium
https://www.bsc.es/education/predoctoral-phd/doctoral-symposium/9thbsc-%20so-doctoral-symposium
https://ieeexplore.ieee.org/document/10171527

