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 Executive Summary 

This document details the utilization and integration of the Vitis High-Level Synthesis (HLS) flow within 

tools developed in Work Package 4, specifically focusing on the Toolchain for heterogeneous multi-

node HPC platforms. 

Within the context of streaming models, Vitis HLS kernels have been encapsulated as specialized 

FastFlow nodes and seamlessly integrated into the FastFlow streaming parallel programming 

framework. Section 2 of this document provides comprehensive insights into the extensions made to 

FastFlow and the methodology for interfacing with FPGA kernels. 

Similarly, addressing task models, the ompSS@FPGA programming framework has undergone 

enhancements in this project. New Intellectual Properties (IPs) have been defined to support Fast Task 

Scheduling, optimize memory accesses, facilitate inter-FPGA communication, and manage kernel 

execution and power monitoring. Section 3 elucidates the proper instantiation, utilization, and 

interaction with these IPs. 

The APEIRON hardware/software framework supporting the execution of distributed HLS applications 

has been successfully developed. Section 4 of this document, following a thorough review of the 

architecture of the APEIRON communication infrastructure, outlines the recommended instantiation 

and utilization of this framework. The document specifically addresses the API developed for 

managing both intra and inter-FPGA communications. 

TAFFO is a precision tuning framework for automatically exploiting the performance/accuracy trade-

off. To avoid expensive dynamic analyses, TAFFO leverages programmer annotations which 

encapsulate domain knowledge about the conditions under which the software being optimized will 

run. As a result, TAFFO is easy to use and provides state-of-the-art optimization efficacy in a variety of 

hardware configurations and application domains. Since TAFFO is based on the LLVM framework, it is 

easily extensible to HLS workflows. We successfully integrated TAFFO with the Vitis HLS tool, allowing 

mixed precision workflows that also include a FPGA-based kernel component. This is described in 

section 5. 

Given the pivotal role of High-Level Synthesis (HLS) coding in achieving high performance with the 

software (SW) tools outlined in this document, a dedicated section, section 6, has been incorporated. 

This section aims to elucidate guidelines identified during the project, providing insights into the 

efficient implementation of various classes of algorithms onto FPGA. The focus is on leveraging 

different granularities of available parallelism. 

The software tools developed in the TEXTAROSSA project are highlighted for their significant contributions 

towards achieving the project's objectives. Specifically: 

- Section 2.1 outlines how the streaming models have contributed to realizing the project's 

objectives. 

- In section 3.1.1, a detailed account is provided regarding the contributions made by the Task-based 

models. 

- Section 4.1 sheds light on the contributions stemming from the APEIRON fast communication 

HW/SW environment. 
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1 Introduction  
 

After undergoing significant development, High-Level Synthesis (HLS) for FPGA devices has now evolved 

into a well-established methodology, owing to the advancements achieved by leading HLS tools developed 

by prominent FPGA hardware and software manufacturers. Notable among these industrial solutions are 

Vitis by AMD, OneAPI by Intel, and CatapultC by Menthor Graphics. 

This deliverable delineates the integration of the Vitis HLS flow, identified as the most prevalent and mature 

HLS solution, within the programming frameworks developed as part of TEXTAROSSA and tailored for the 

IDV-E High-Performance Computing (HPC) prototype node. It elucidates how Vitis HLS has been harnessed 

within the project - configuring it to support novel IPs developed in TEXTAROSSA (such as the Task 

Scheduler, FPGA monitoring, intra- and inter-FPGA communication), augmenting existing parallel 

programming frameworks (FastFlow and OmpSS), and incorporating methodologies to facilitate variable 

precision in computations. 

The AMD U280 FPGA board serves as the reference accelerator board selected for integration into the IDV-

E node prototype. 

The document is structured as follows: 

• Section 2 elaborates on the extensions made to the FastFlow streaming framework. 

• Section 3 details the extension of ompSS achieved through management of specific new IPs. 

• Section 4 presents the APEIRON framework: the communication IP, its software stack, and the 

associated APIs. 

• Section 5 describes the outcomes attained by applying the TAFFO library/tool to programs 

implemented on the FPGA accelerator. 

• Section 6 offers algorithmic templates for leveraging HLS programming effectively within the 

streaming model. 

Throughout the description of the developed software tools, their contributions to realizing the objectives 

of the TEXTAROSSA project are underscored. 

. 
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2 HLS in the Streaming 

Model  

FastFlow is a structured parallel programming framework developed to target shared memory 

architectures [Aldinucci et al, 2017], possibly equipped with (GPU) accelerators, and recently extended 

to target also distributed architectures (COW/NOW) [Tonci et al, 2023]. In the past, FastFlow has been 

extended to provide minimal support to manage execution of simple accelerator kernels on FPGA 

leveraging an implementation like the one used for GPUs and targeting FPGAs exploiting a specialized 

run time developed at the University of Darmstad [Korinth et al, 2025], in the framework of the EU 

Funded F7 project REPARA. Within TextaRossa, a full integration of FPGA kernels developed through 

the Vitis toolchain has been developer that supports the orchestration of single and multiple kernels 

on single or multiple FPGA boards within standard FastFlow streaming applications [Danelutto et al. 

2023]. The FastFlow extension manages all the details related to the execution of existing, pre-

compiled Vitis Kernels on the Alveo FPGA boards used in the TextaRossa reference nodes, leaving the 

FastFlow application programmer a minimal burden to specify a distinct template to instantiate the 

accelerated application components—with respect to the standard one used to instantiate non-

accelerated application components—and to declare the list of actual parameters to be 

supplied/received to/from the FPGA kernel. The FastFlow implementation supporting FPGA Vitis 

kernel execution (FFfpga, from now on) greatly improves the programmability of FPGA accelerated 

streaming applications and reduces to time-to-production in the accelerated application design and 

development.  

2.1 Introduction 

In streaming applications, parallelism is usually exploited by processing different “stages” of the 

overall computation on different, parallel, execution engines, such that the throughput of the 

application is improved, with respect to sequential implementation. Typical patterns used in 

streaming (I.e. stream parallel) applications is the pipeline one. In a pipeline, input data items 

appearing onto the application streaming input—the tasks—are processed by applying different, 

independent computations—the stages—such that each stage works on the partial results produced 

by the previous stage and directs results to the next stage. Eventually, the last pipeline stage directs 

its results to the streaming application output stream. Assuming uniform stages (that is stages that all 

consume a comparable amount of time to execute) the throughput of the pipeline achieves a speedup 

proportional to the number of stages with respect to the sequential execution. In the case of “slow” 

stages, these stages may be replicated to achieve the aforementioned speedup with some problems 

to be faced in case the slow stage maintains some kind of internal state. This to avoid the slow stage 

de facto limits the overall performance of the streaming application, that cannot exceed a throughput 

bound to the inverse of the time taken to execute the slower pipeline component. 

Hardware acceleration is of paramount importance in streaming applications as it can be exploited to 

speed up the execution of particular—slow—stages thus contributing to improvement of the overall 

throughput.  

The approach taken in the design of FFfpga is based on pragmatic separation of concerns:  
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• FPGA programmers are left as the only and main responsible for the efficient implementation 

of the kernels to be executed on the accelerator board. The kind and level of knowledge 

necessary to implement efficient hardware accelerated kernels is completely different from 

the one usually in the background of the streaming application programmers. 

• All the offloading activities related to the usage of pre-designed FPGA kernels within a 

FastFlow application have been left in the responsibility of the FastFlow (FFfpga) runtime 

designers, such that streaming application programmers are only asked to identify the kernel 

suitable to support acceleration in the streaming application and to use the FPGA node 

FastFlow templates provided by FFfpga to instantiate the kernel(s) in the streaming 

computation code. The FFfpga runtime will take care of all the activities related to kernel 

execution, such as kernel configuration, data memory transfers to/from the FPGA, 

synchronization, double buffering, etc.  

Consequently, the main contribution of FFfpga may be summarized as: 

• Full integration of existing kernels in C++ FastFlow streaming applications, provided the kernel 

activation parameters and the kernel results datatypes and sizes are known. 

• Minimal effort is required for the application programmer to integrate one or more kernel 

accelerated computation stages. 

• Freedom in the orchestration of accelerated stages within complex streaming applications, by 

supporting seamless kernel chaining, replicas and placement on different boards connected 

to the same node.   

In the TextaRossa project perspective, FFfpga contributes to different objectives:  

• It improves energy efficiency: FPGA accelerated stages may compute the very same results of 

functionally equivalent CPU bound stages using smaller amounts of time. Considering the 

energy needed to keep the FPGA board alive is usually lower than the one needed to keep the 

CPU alive, this results in a double power saving: smaller device power consumption and 

shorter execution time. By spending shorter execution times than CPU and with the efficient 

orchestration of accelerated stages within the general, larger streaming application, FFfpga 

also contributes to achieve sustained application performance. (project objective 1 and 3) 

• As FFfpga relieves application programmers from the burden of managing—host side—the 

execution of the FPGA kernels, FFfpga contributes to the seamless integration of 

reconfigurable accelerators. (project objective 4) 

• FFfpga runs on either Intel based or Arm based CPUs, equipped with Alveo FPGA boards with 

the associated Vitis development environment, thus fully complying the integrated 

development platform objective. (project objective 6) 

• Last but not least, FFfpga targets a domain (streaming applications) traditionally targeting 

different hw/sw combinations (big data, distributed programming frameworks) thus opening 

perspectives to the usage of more classical HPC frameworks for this kind of applications. 

(project strategic goal 3, opening of new usage domains). 
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2.2 FFfpga in a nutshell 

FFfpga comes as a software package to be used along with the current version of FastFlow 

(https://github.com/fastflow/fastflow.git). FastFlow applications are built of stages subclassing a 

system provided ff_node_t<Tin,Tout> template. The template basically requires the programmer to 

implement a “service” method Tout * svc(Tin * task) implementing the computation to be provided 

by the stage. FastFlow stages may be orchestrated in pipelines—by using the ff_Pipe<Tin, Tout> 

template—stages may be replicated—by using the ff_Farm<Tin, Tout> template—and in addition 

several other “parallel orchestrator patters” are provided supporting other kind of parallel 

computations, including a “parallel for” and a “divide and conquer” pattern. Whatever provided as a 

parallel pattern in FastFlow is an ff_node_t, thus supporting full compositionality of patterns. In 

FastFlow, we can program pipelines with parallel for data parallel stages, farms with divide and 

conquer worker, etc. Sequential code is always wrapped in plain ff_node_t stages. The whole 

framework is implemented using C++ and supports (only) C++ sequential code, although with minimal 

effort programmers may use precompiled modules developed with other programming languages by 

properly wrapping them into minimal C++ ff_node_t nodes.  

The key concept in FFfpga is the wrapping node. FFfpga provides a different template—the 

FNodeTask—that subclasses the ff_node_t and can therefore be used in any place where a normal 

ff_node_t stage may be used. The FNodeTask constructor accepts as parameters the device to be 

used (any of the FPGAs in the node where the ff_node_t wrapping node is run, with the associated 

bitstream file name where the existing, precompiled kernel must be taken) and the kernel name. By 

using the FNodeTask stage in a pipeline, the FFfpga run time takes care of all the steps needed to 

manage the offloading of FNodeTask input stream tasks to the FPGA and redirection of the FPGA 

kernel computed results to the FNodeTask output stream. All these activities are completely 

transparent to the streaming application programmer and include:  

• Loading the bitstream on the selected FPGA (among the ones available at the node) if it has 

not already been loaded. 

• Declaring the host side aligned buffers necessary to host kernel input parameters and output 

results. 

• Managing the memory buffer movement in between host and device memory as needed, 

possibly exploiting double buffering to improve overall streaming throughput. 

• Synchronizing execution of the different input tasks on the FPGA kernel(s). 

 

Just to introduce the kind of coding required to exploit FFfpga, the effort required to the streaming 

application programmer to include an accelerated stage in a pipeline requires to specify the pipeline 

as depicted in Fig. 2.1.  

Somewhere, programmer must detail the name of the bitstream implementing the kernel(s) he wants 

to use. In this declaration of the FDevice object, a second parameter with the id (0,1,2,…) of the board 

to be used may be exploited to declare which one of the FPGA attached to the node has to be used. 

In principle, the FPGA could also be different models, provided they support Vitis and provided the 

bitstream named in the first parameter has been correctly compiled for the specified FPGA. All 

experiments have been performed using two identical FPGA boards per node, so far.  

https://github.com/fastflow/fastflow.git
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In addition to the code in Fig. 2.1, the streaming application programmer must consider that the 

parameters provided to the offloading nodes must be organized as a FTask. The FTask is basically a 

container hosting different vectors with the addresses and sizes of the parameters processed by the 

FPGA kernels. Fig. 2.2 shows how an FTask may be declared and filled to be used with a kernel that 

consumes two vectors and produces one vector as a result. In the code, the first parameter of the 

add_input/add_output calls represents the address of the data structure, the second parameter 

represents the size of the data structure and the optional third parameter represents the bank to be 

used to host the data structure in the FPGA board HBM.  

 

Fig. 2.1: Code snippet with an FPGA kernel offloading stage in FastFlow exploiting FFfpga. 

 

 
Fig. 2.2: Code snippet declaring an FPGA offloader node task 

// declare a logical FFfpga device, by specifying the bitstream filename used and   

// (optional, the id of the board to be used (if multiple boards are present)  

FDevice device(bitstream, id);  

…  

// declare the pipeline  

ff_pipeline p;  

  

// add stages: stream generator, FPGA offloader, stream consumer stages  

p.add_stage(new generator(n, m));  

p.add_stage(new FNodeTask(device, kernel_names[0], chain));  

p.add_stage(new drain());  

   

…  

// execute the pipeline  

p.run_and_wait_end();  

FTask * task = new FTask();  

task->add_input(a,  size_in_bytes, bank1);  

task->add_input(b,  size_in_bytes, bank2;  

task->add_output(c, size_in_bytes, bank3);  

task->add_scalar(s, sizeof(int));  
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Fig. 2.3: FFfpga application development workflow 

The workflow needed to compile the streaming application of Fig. 2.1 is very simple (see Fig. 2.3):  

• The application must be compiled using a standard C++ compiler implementing C++17, at 

least. 

• Being FastFlow implemented as a header only library and due to the heavy usage of advanced 

meta programming techniques, when compiling the –O3 flag is mandatory. If not used, 

performance of FastFlow application execution may suffer a notable inefficiency (up to 10x 

slowdown w.r.t. the –O3 version) 

• The application can be run from command line, once the bitstream of the kernel(s) used is 

located in the exact place used to specify the bitstream in the FDevice call.  

 

All the interactions of FFfpga with the FPGA are managed through OpenCL, and therefore, mandatory 

prerequisites consist of the availability of OpenCL toolchain and of the XILINX XRT. 

2.3 FFfpga implementation 
FFfpga implementation consists of different small components that are used to build and operate the 

special ff_node_t FNodeTasks. To detail the structure of the FFfgpa implementation we need first to 

dissect the basics of an ff_node_t.  

An ff_node_t is an object encapsulating a parallel activity in a FastFlow program. The base node just 

encapsulates a thread computing some kind of sequential (business logic) code. Proper template 

classes of FastFlow provide more complex, internally parallel, parallel activities such as a pipeline or a 

parallel for as an ff_node_t, thus fully supporting complex parallel compositions in the development 

of an application.  

 

An ff_node_t<Tin,Tout> provides three fundamental methods:  
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• A service method svc with signature Tout * svc(Tin * t) implements the actual computation of 

the parallel activity modelled by the ff_node_t. In the base case, it wraps the business logic 

code, possibly reused from existing application(s), in complex patterns, such as the pipe, 

orchestrates the parallel execution of the component svc methods according to the parallel 

pattern implemented.  

• An initialization method svc_init with signature int svc_init(void) is executed when the 

parallel activity implemented by the node is actually started.  

• A finalization method svc_end with signature void svc_end(void) that is executed at the 

termination of the ff_node_t orchestrated by the termination of the topmost ff_node_t in the 

application code.  

This said, a FNodeTask wraps the execution of an existing, pre-compiled FPGA Vitis kernel by exploiting 

the ff_node_t structure:  

• The svc_init method is used to host all the OpenCL code needed to set up the management 

of the FPGA (kernels). We look for the platform, for the device and set up all the handlers 

needed to manage the execution of a kernel on the FGPA. Finally, the bitstream hosting the 

kernel is loaded on the FPGA so that, at the end of this method, the device is ready to start 

kernel executions. It is worth pointing out that in case the setup of the OpenCL management 

structures has been already performed (e.g. being one of the multiple FNodeTask nodes 

offloading to the same FPGA), this work is performed just once at the first one of the 

FNodeTasks.  

• The svc service method takes care of the execution of the stream of offloading targeting the 

FGPA kernel(s). To achieve proper overlapping of the data offloading with the computation of 

the kernels, this method actually spawns two service threads, such that the data buffering 

may actually be exploited. From outside, however, the method looks like as a “normal” 

ff_node_t svc method, that is as a synchronous call starting the business logic code execution 

(the FPGA kernel, in this case) and returning the results of the computation immediately after 

the computation has ended.  

• The svc_end method is used to finalize the interaction of the OpenCL subsystem with the 

FPGA, to clean up the data structures allocated for the management of the FPGA, etc.  

In addition to the implementation of the ff_node_t subclass FNodeTask, we included in the FFfpga 

implementation some service code. Part of the code dedicated to the execution of the OpenCL calls is 

embedded in dedicated files, and the code needed to represent the tasks directed to the FPGA kernels 

is included in a specific class the FTask class.  

The FTask class provides methods to declare the structure and sizes of the FPGA kernels parameters 

(see Fig. 2.4). There are methods to declare input and output parameters (size, location and HBM 

memory bank allocation), methods to declare scalars to be passed as input parameters to the kernel 

(output scalars must be represented as vectors with length equal to 1). There are also a couple of 

methods used to enqueue the tasks (that is finalize buffer copies host to device, if necessary and 

starting the kernel execution) and to await the termination of the computation of the task. These 

latter methods are used in the two threads exploited in the FNodeTask implementation to support 

communication/computation overlapping through double buffering: the first thread equeues the task 

and the second one awaits termination of the task computation. 
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Fig. 2.4: FTask structure 

 

The FNodeTask class is minimal (see Fig. 2.5): it just provides a constructor creating two threads, and 

enqueuer and a waiter thread in pipeline to start kernel execution on the task and await task 

termination.  

class FTask  

{  

private:  

 ...  

public:  

    std::vector<FTaskElement> inputs;  

    std::vector<FTaskElement> outputs;  

    std::vector<FTaskElement> scalars;  

   

    events_t write_events;  

    events_t kernel_events;  

    events_t read_events;  

    FTask() {}  

       void add_input(size_t size) {…}  

       void add_input(size_t size, int bank_id) {…}  

       void add_input(void * ptr, size_t size, int bank_id) {…}  

       void add_output(size_t size) {…}  

       void add_output(size_t size, int bank_id) {…}  

       void add_output(void * ptr, size_t size, int bank_id) {…}  

       void add_scalar(void * ptr, size_t size) {…}  

       void wait() {…}  

       void enqueue(FDevice & device, cl::Kernel & kernel,   

                             cl::CommandQueue & queue, FTask * previousTask = nullptr,   

                             bool flush = false) {…}  

};  
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Fig. 2.5: FNodeTask structure. 

2.4 FFfpga usage 
FFfpga may be exploited to implement different kinds of offloading strategies: 

• Exploit a single kernel in a single shot application (no streaming) 

• Exploit a single kernel in a streaming application (repeated execution of the very same kernel) 

• Exploit multiple kernels on the same FPGA to sustain throughput of a single streaming node 

(pipeline stage replicas) 

• Exploit multiple FPGAs or single FPGA on the same node with any application setting requiring 

to exploit multiple kernels in the same or in different computation stages. 

We are currently still working to finalize the possibility to manage different kernels on different FPGA 

attached to different nodes with the kernels communicating either using the on-board Ethernet IP or 

the interconnection support provided by INFN within the TextaRossa project. 

2.4.1 Single shot applications 

In this case, we assume that FastFLow is used to run some data parallel application that does not 

require the execution of streaming tasks. Therefore, we assume that FPGA kernels are used only to 

accelerate a single computation, possibly using different replicas of the kernels to operate on different 

partitions of the input data set. In this case, any technique aimed at overlapping computation to 

communication may result useless. A different, simpler implementation of the FNodeTask is available 

that simply offloads task data to the FPGA, starts kernel, awaits kernel termination, and moves back 

the computed results to the host memory, sequentially. Therefore, the cost paid for the offloading 

sums communication to computation times and the only improvement is in the faster computation of 

the function in the FPGA kernel with respect to the slower computation of the very same function on 

the host CPU cores.  

 

 

 

 

class FNodeTask : public ff::ff_pipeline {  

public:  

    FNodeTask(FDevice & device, std::string kernel_name, bool chain_tasks = false)  

    {  

        add_stage(new FNodeTaskInternals::FNodeEnqueuer(device, kernel_name, chain_tasks));  

        add_stage(new FNodeTaskInternals::FNodeReader());  

        cleanup_nodes();  

    }  

};  
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2.4.2 Single kernel in streaming application 

When stream parallelism is exploited, stages in the stream parallel computation may be accelerated 

offloading to the FPGA kernel a stream of task computations. In order to accelerate a stage 

computation offloading the task to an FPGA kernel, the user has simply to include an FNodeTask 

instead of a plain (or composition of) ff_node_t. In this case, the multithreaded implementation of 

FNodeTask deals with the proper management of the overlapping between parameter copies host to 

device—as well as result copies device to host—with the streaming computation of the FPGA kernels.  

On the application program side, the application programmer has to provide an FTask hosting all the 

data needed to compute the kernel, declare the FDevice data structure and then use the FNodeTask 

in the proper pipeline (or farm) declaration, as depicted in Fig. 2.6. 

  

 
Fig. 2.6: Offloading in streaming applications: excerpt of pipeline application code 

The code snippet in the picture, de facto uses distinct host threads to offload kernel parameters and 

start execution of the kernel, and to await kernel termination. Therefore, all the steps needed to 

execute multiple tasks from the stage input stream happen to be executed in pipeline on host and on 

the FPGA. 

Bandwidth of offloading is clearly upper bound by the DDR or HBM memory bandwidth and by the 

PCIe bus bandwidth, as expected.  

 

 

 

 FDevice device(bitstream);  

    ...  

    FTask * task = new FTask(); // sample 2 vec in, 1 vec out kernel  

    task->add_input(a,  size_in_bytes, 0); // parameters in different HBM banks   

    task->add_input(b,  size_in_bytes, 1); // to support parallel read  

    task->add_output(c, size_in_bytes, 2); // and write  

    task->add_scalar(s, sizeof(int));  

    …  

     ff_pipeline p; // declaration of the pipeline  

     ...  

     p.add_stage(new FNodeTask(device, "kernel_name",  chain)); // offloader stage  

     …  

    p.cleanup_nodes();  

    p.run_and_wait_end(); // pipeline execution (separate declaration and execution in Fastlow)  
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2.4.3 Multiple kernels on the same FPGA 

In case the PCIe and DDR memory bandwidth suit the execution of multiple kernels on the FPGA, 

different kernels or copies of the same kernel may be targeted in different pipeline stages of farm 

workers from within the FastFlow streaming application. Provided the proper FTask and FDevice 

objects have been declared and initialized, then multiple kernels hosted in the uploaded .xclbin file 

may be used as offloading pipeline stages as show in the excerpt of code in Fig. 2.7. 

 

Fig. 2.7: Multiple kernels to offload different pipeline stage execution on FPGA.  

In this case, results of the first offloaded tasks, computed on the FPGA by the kernel_stage1 kernel, 

are directed to the second computing stage of the pipeline and then the results of this CPU hosted 

staged are used as input to the kernel_stage2 kernel.  

In this case, FFfpga manages to overlap the computations of kernel_stage1 and kernel_stage2 relative 

to different tasks on the FPGA, as expected. Fig. 2.8 shows the timings achieved in the execution of a 

pipeline such as the one in Fig. 2.7. 

 

Fig. 2.8: Execution of two pipeline stages offloaded to distinct kernel on the same FPGA.  

To further increase pipeline throughput, we can use replicas of the slower stages that in FastFlow are 

modelled as farm nodes. A three-stage pipeline with a “bottleneck” second stage may be turned into 

a pipeline of farm composition by “farming out” the stage, as outlined in Fig. 2.9. 

        ff_pipeline p;  

        p.add_stage(new generator(n, m));  

        p.add_stage(new FNodeTask(device, "kernel_stage1" , chain));  

        p.add_stage(new middle(n, 1));  

        p.add_stage(new FNodeTask(device, "kernel_stage2", chain));  

        p.add_stage(new drain());  
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Fig. 2.9: Replicas in FastFlow pipeline bottleneck stage  

In case the bottleneck stage may be offloaded to an FPGA kernel, and provided that multiple kernels 

may be actually hosted on the FPGA and have eventually been included in the .xclbin, the 

parallelization of the pipeline stage as outlined in Fig. 2.9 can be applied by simply using FNodeTask 

stage2 components. Each one of the instances will target a different kernel instance (e.g. some 

kernel_stage2:n) and therefore the declaration of the FastFlow farm object is slightly “wordier”. First 

a ff_farm<> f; has to be declared, then a vector<ff_node_t*> w; has to be used to host as many 

FNodeTask * as the number of replicas required, by issuing multiple w.push_back(new 

FNodeTask(device, “kernel_stage2:0”)); and then setting the farm workers with the vector with some 

f.add_workers(w);.  

The kind of behaviour achieved is the one depicted in Fig. 2.10, outlining the overlapping of execution 

of the four (in this particular case) kernel workers of the farm.  

 

Fig. 2.10: Replica execution in farmed pipeline stage.  

 

2.4.4 Exploiting multiple FPGAs 

        ff_pipeline p;                // version with no replicas on second stage 

        p.add_stage(stage1);  

        p.add_stage(stage2);  

        p.add_stage(stage3);  

        p.run_and_wait_end()  

        ff_Farm ParStage2(stage2,n);    // version with n replicas on 2nd stage 

        ff_pipeline p;  

        p.add_stage(stage1);  

        p.add_stage(ParStage2);  

        p.add_stage(stage3);  

        p.run_and_wait_end()  
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In case a node supports more than a single FPGA (e.g. in TextaRossa reference node A and B, where 

we have two U280 Alveo cards), any of the solutions outlined in the previous sections may be adopted 

simply changing the FDevice declarations to direct kernel management to the first or the second FPGA. 

Taking again as an example the pipeline application of Fig. 2.7, what we need to do to use the first 

kernel on one FPGA and the second kernel stage on the second FPGA is to declare two FDevice objects 

and the use the two objects to instantiate the two FNodeTask first parameters. In particular, the 

FDevice constructor takes a second, optional parameter, which is the index of the device in the device 

list “discovered” using the OpenCL calls. As such, by declaring FDevice dev1(bitstream1,0); FDevice 

dev2(bitstream2,1); and subsequently using p.add_stage(new FNodeTask(dev1, "kernel_stage1")); 

p.add_stage(new FNodeTask(dev2, "kernel_stage2")); the execution of the two offloading stages will 

be managed on the two boards available.  

 

2.5 Kernels 
In principle, kernels supported by the current FFfpga implementation are those taking any number of 

parameters from FPGA global memory (HBM) and delivering results in buffers in the very same 

memory using buffers initialized and managed from within the OpenCL interface. The typical structure 

of such kernels is a #pragma HLS dataflow unit with a module fetching input data from the OpenCL 

allocated HBM buffers and delivering them to an hls_stream, a module actually computing results 

from the input hls_stream and delivering such results to another hls_stream, and finally a module 

storing in the OpenCL allocated output HBM output buffers the items appearing on the computing 

module output stream (see Fig. 2.11, outlining the typical kernel code structure). 

 

Fig. 2.11: Typical structure of an FFfpga kernel. 

void krnl_stage1(uint32_t* in1, uint32_t* in2, uint32_t* out, int size) {  

#pragma HLS INTERFACE m_axi port = in1 bundle = gmem0  

#pragma HLS INTERFACE m_axi port = in2 bundle = gmem1  

#pragma HLS INTERFACE m_axi port = out bundle = gmem0  

    static hls::stream<uint32_t> in1_stream("input_stream_1");  

    static hls::stream<uint32_t> in2_stream("input_stream_2");  

    static hls::stream<uint32_t> out_stream("output_stream");  

#pragma HLS dataflow  

   // dataflow pragma instruct compiler to run following three APIs in parallel  

    load_input(in1, in1_stream, size);  

    load_input(in2, in2_stream, size);  

    compute_add(in1_stream, in2_stream, out_stream, size);  

    store_result(out, out_stream, size);  

}  
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Nothing prevents a more complex internal structure of the kernels used with FFfpga. Indeed, the FTask 

implementation supports the declaration of buffers only used FPGA side, such that these buffers may 

be used to have different modules implemented on the same FPGA (kernel) to share partial results 

besides using hls_streams as outlined in the kernel structure of Fig. 2.11. 

2.6 Applications 
So far, we have developed different toy examples and applications exploiting the FFfpga 

implementation. UNITO (third party of the CINI beneficiary in the TextaRossa project) developed a 

CNN compute kernel targeting Alveo FPGAs implementing a classifier for MNIST. The model was 

developed and trained using TensorFlow, then converted to C via HLS4ML tool and finally compiled 

with Vitis. An FFfpga application was then used to offload tasks to the kernel. Synthesis of the kernel 

achieved 100Mhz on an Alveo U50 and the application demonstrated the functionality of the full 

FFfpga implementation. Fig. 2.12 outlines the internal structure of the CNN kernel exploited via 

FFfpga.  

 

Fig. 2.12: structure of the CNN kernel  
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UNIPI (third party of the CINI beneficiary of the TextaRossa project) in cooperation with ENEA 

developed several simple streaming applications exploiting kernels processing images and 

compressing data in different shapes and flavours, that have been used to exercise, debug, and tune 

the FFfpga implementation. As an example, the kernel used to implement data compressor consists 

of more than 600 lines of code, but eventually has the very same structure as Fig. 2.11. The kernel is 

built of two distinct modules (see Fig. 2.13) in pipeline with the inter module communications 

managed by using an hls_stream. 

Fig. 2.13: Compressor kernel module 
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extern "C" {  

void DeflateKernel(hls::stream<io_stream_16B>  &strm_in,  

                               hls::stream<io_stream_32B> &strm_out, int input_size)  

{  

#pragma HLS INTERFACE axis port=strm_out  

#pragma HLS INTERFACE axis port=strm_in  

#pragma HLS INTERFACE s_axilite port=input_size  

#pragma HLS INTERFACE s_axilite port=return  

    static hls::stream<io_stream_48B_tuser> LZ77Enc2Huffman_stream("LZ77Enc2Huffman_stream");  

#pragma HLS dataflow  

    LZ77_Encoder(strm_in, LZ77Enc2Huffman_stream, input_size);  

    huffman_encoder(LZ77Enc2Huffman_stream,strm_out);  

}  

}  
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3 HLS in the Task-

based model  
OmpSs@FPGA as a programming model, is an extension to the OmpSs-2 task-based programming model 

[OmpSs-2 2023] for C/C++ High Performing Computing applications [Haro 2021]. In this document, we refer 

to the programming model just as OmpSs. Every OmpSs program starts with one thread executing the main 

function, and function calls annotated with task pragmas are transformed by the compiler to asynchronous 

calls to the Nanos6 runtime. This runtime analyses dependencies (specified in the pragma) and schedules 

tasks that are ready for execution (i.e. no memory collisions). With OmpSs@FPGA, these tasks can be 

scheduled to hardware accelerators. To do that, the FPGA task code is processed by a High-Level Synthesis 

Tool (HLS) and transformed to a hardware IP implemented in the bitstream. OmpSs@FPGA is also a 

framework, a collection of software tools and hardware IPs that automatically create a bitstream and a 

software binary from the original source.  

3.1 Introduction 

OmpSs@FPGA framework support aims to create a free, open fra mework that makes programming Xilinx 

FPGAs easy. The framework leverages Vitis HLS and LLVM compilers to allow a single-source C/C++ program 

annotated with pragmas to be compiled and executed on a heterogeneous system composed of a CPU and 

an AMD FPGA. Task-based programming provides great code portability across different FPGAs and, at the 

same time, provides good performance results. It also allows FPGA tracing to improve code behaviour 

analysis. Finally, new features have been added to OmpSs@FPGA programming model to allow FPGA-

based cluster execution of OmpSs programs. 

The main contributions under the point of view of implementation are the following: 

• LLVM/Clang compilation support to extract each of the programmer tasks to be accelerated (FPGA 

tasks) and creates and builds its corresponding top function (wrapper) fully compatible with new 

versions of Vivado and Vitis HLS. On the other hand, the same support generates the CPU binary. 

Each wrapper has the necessary ports and connections to synchronize the FPGA task execution 

with the hardware runtime, perform the communication between the host memory and the FPGA 

tasks memory, and execute the FPGA task of the programmer. The set of wrappers generated (one 

per FPGA task) is automatically passed to the Accelerator Integration Tool (also develop in this 

project) to generate the bitstream, transparently to the user. 

• Accelerator Integration Tool (AIT) allows to create the Vitis/Vivado projects and the bitstream, 

transparently to the programmer, by just annotating functions of a sequential program with 

OmpSs@FPGA pragmas. AIT calls Vitis/Vivado tools to generate the HLS and Design projects, while 

dealing with several optimizations specified at user level both at compile time and configuration 

time, including low level information about the SLR placement of the accelerators. 

• Custom IPs for the FPGA Hardware Runtime to allow all the synchronizations between FPGA and 

Software Runtimes and management of the FPGA and SMP tasks executions. 

• Accelerator Placement techniques, high level guided by the programmer. 

• Interleaving and Priority Custom IPs to avoid memory conflicts among FPGA tasks.  

• FPGA instrumentation support. 

• Software runtime support of FPGA tasks. 

• Power sampling support. 
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• Support and Custom IPs for inter-communication in a FPGA-based clusters. 

 

In Deliverable 4.6 we explain how the programming model works and how FPGA tasks are scheduled, 

including nested FPGA tasks. In this deliverable we detail the compilation process and custom IPs that allow 

inter-communication, integrating and making compliant the OmpSs@FPGA model with the Vitis HLS flow.  

3.1.1 Relationship with the project objectives and strategic goals 

Task based programming models such as OmpSs provide a good opportunity to abstract the underlying 

hardware complexity, so implementation effort is kept low while maintaining good levels of performance. 

The contributions described in this section are related to the project objectives:   

• Objective 1 - Energy efficiency. Executing in FPGA has been demonstrated to be competitive with 

other computing platforms in terms of energy efficiency. In addition of providing the support to 

executing on the IDV-E platform, the OmpSs task-based model is integrated with power 

measurement tools included in the HLS flow to be able to further control and improve the energy 

spent when executing in the platform.   

• Objective 2 - Sustained application performance. As explained in the next sections, we aim to 

improve the performance obtained when executing applications over the IDV-E platform both by 

improving the framework through an improved HLS flow and by improving the task scheduling 

using the Fast Task Scheduler developed in Task 2.5.   

• Objective 3 - Fine-tuned thermal policies integrated with an innovative cooling technology. As 

explained in Objective 1, the power measurement tools integrated in the OmpSs HLS flow for IDV-

E provide the basis for integrating fine-tuned thermal policies developed in Task 4.5.   

• Objective 4 - Seamless integration of reconfigurable accelerators. The OmpSs runtime allows for 

seamless integration of reconfigurable accelerators as can be seen in their respective sections. The 

HLS flow developed is necessary to allow this seamless integration of new HLS reconfigurable 

accelerators developed.  

• Objective 5 - Development of new IPs. The Fast Task Scheduler IP is a key part of the OmpSs@FPGA 

framework. OmpSs@FPGA contributes to the IP development as a primary tool to test the IP 

functionality. It also provides design requisites that must be incorporated in the IP for the whole 

framework to work as expected. Also, new accelerators can be more easily developed in HLS 

thanks to the presented work. 

• Objective 6 - Integrated Development Platform. Task based runtimes will be used in applications 

executing on the project platforms. It is important to highlight that IDV-E features a host CPU (ARM 

based) that has never been used before to drive computation in a PCIe attached FPGA. Developing 

the system in a way that is compatible with different new CPUs helps to ensure new host CPUs 

(like EPI CPUs) will be able to drive this kind of computation in the future.   

The objectives are also related to the strategic goals of the project:   

• Strategic Goal #1: Alignment with the European Processor Initiative (EPI). As shown in this 

deliverable the OmpSs@FPGA task-based programming model provides a system that can use an 

EPI processor to drive computations in a cluster of FPGA PCIe attached accelerators. Also, as 

described deliverable 2.11, the programming model allows to manage a manycore RISC-V 

processor with significant performance improvement over other state-of-the-art approaches.  

• Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic 

Research Agenda (SRA) for open HW and SW architecture. The OmpSs@FPGA framework and its 
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HLS flow is developed following the open-source model and is freely available in its GitHub 

repository.   

• Strategic Goal #3: Opening of new usage domains. The task-based frameworks address the 

problem of simplifying the task of executing applications over FPGA-based computing platforms. 

In this sense, we expect that through the improvement of the tool, it will open the possibility of 

executing efficiently new applications on the objective platforms.   

3.2 Compilation process 

Figure 3.1 shows the compilation process in the OmpSs@FPGA framework developed.  A C/C++ source file 

is read by the LLVM compiler where a frontend phase splits the code into two different flows: SMP and 

FPGA. As outline tasks are not supported, this distinction is done through C/C++ function annotation with 

task declaration pragmas. In OmpSs@FPGA, tasks or kernels can target both SMP or FPGA devices. The 

SMP part of the code, i.e. main code and tasks that do not have an FPGA target, is separated and its 

compiler directives are replaced by Nanos6 API calls. The Nanos6 runtime has a dedicated API for FPGA 

tasks, which uses internally the xTasks library, containing the low-level code to communicate with the 

FPGA. It is separated from the main runtime because each hardware platform uses different 

communication protocols, depending on the board memory model (e.g. shared like SoCs or distributed like 

PCIe attached FPGAs). 

The FPGA code is also separated and integrated with a wrapper code, which communicates with a 

hardware runtime inside the FPGA, accesses main memory to load/store local memories and starts the 

actual hardware task engine. This wrapper is in fact C++ code with Vitis HLS pragmas. Since generally FPGAs 

count with on-chip RAM (e.g. BRAMs), the kernels can exploit this feature by storing data in this local 

memory. Depending on the memory model, main DRAM can be shared with the CPU or featured separately 

in the FPGA board. In both cases accessing local memory is faster, and OmpSs@FPGA allows to declare 

arrays stored in local memory and use them inside a task. The difference with other approaches like CUDA 

or OpenCL is that the local copies are automated in the wrapper and thus transparent to the user, who 

otherwise must code them explicitly in the kernel. Once the code is transformed by LLVM, it is passed to 

the Accelerator Integration Tool (AIT). This tool feeds all the high-level codes to the vendor-provided tools 

and integrates them inserting the proper connections with the hardware runtime and the FPGA I/O pins to 

generate the final bitstream. 

This integrated compilation process has some useful features such as compilation of the whole system 

(bitstream and executable file) from a single command and automatic connection and integration of the 

hardware design, reducing the complexity of an otherwise error-prone process. 
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Figure 3.1: OmpSs@FPGA LLVM compiler process 

 

3.2.1 OmpSs@FPGA Clang/LLVM compiler 
 

In this work we have introduced changes in the frontend and backend of Clang to provide support to 

OmpSs@FPGA programming model for Vitis HLS.  Figures 3.2 and 3.3 show the schemes of the frontend 

and backend support for FPGA. 

On one hand, frontend support performs the following main tasks: 

• Preprocessing and lexer to identify the different tokens in the code. 

• Parsing and semantic analysis to accept HLS pragmas and analyze any dependence introduced by 

their clauses. 

• Parsing and semantic analysis to accept HLS types (i.e. half precision). 

• Parsing and semantic analysis to accept OmpSs-2 pragmas and clauses, analysing any dependence 

introduced by their clauses. 

On the other hand, backend support has two main paths: 

• Host path: Generates the intermediate code for LLVM to obtain the host binary. 

• FPGA path: Performs the wrapper generation for AIT. In this case we have had to implement and 

add new AST nodes to be able to modify the programmer code, create a wrapper with all the 

necessary ports and support task creation and synchronization. 

During the backend process it is necessary to modify the original code to create the appropriate wrapper. 

On the other hand, it is not possible to modify the AST generated by Clang. Therefore, we have 

implemented a replacement mechanism to modify the source code at the printer step.  
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Figure 3.2: Clang frontend support for OmpSs@FPGA 

 

 

Figure 3.3: Clang backend support for OmpSs@FPGA 

 

Listing 3.4 shows an excerpt of a OmpSs@FPGA program, showing a FPGA task annotation.   

#pragma oss task device(fpga) in([CONST_BSIZE*CONST_BSIZE]a,[CONST_BSIZE*CONST_BSIZE]b)\ 

                              inout([CONST_BSIZE*CONST_BSIZE]c) copy_deps num_instances(2) 

void matmulBlock_hw(elem_t a[CONST_BSIZE*CONST_BSIZE], elem_t b[CONST_BSIZE*CONST_BSIZE],                         

                    elem_t c[CONST_BSIZE*CONST_BSIZE]) { 

        int i,j,k; 

#pragma HLS ARRAY_PARTITION variable=a cyclic factor=CONST_BSIZE/2 dim=1 

#pragma HLS ARRAY_PARTITION variable=b block factor=CONST_BSIZE/2 dim=1 

 loop_i_matmul: 

   for (i = 0; i < BSIZE; i++) { 

loop_j_matmul: 

      for (j = 0; j < BSIZE; j++) { 

#pragma HLS PIPELINE II=2 

         elem_t sum = c[i*BSIZE + j]; 

loop_k_matmul: 

         for (k = 0; k < BSIZE; k++) { 

            sum += a[i*BSIZE + k] * b[k*BSIZE + j]; 

         } 

         c[i*BSIZE + j] = sum; 

      } 

   } 

} 

 
Listing 3.4: OmpSs Program Example FPGA task 

Our framework extracts this kernel and generates a Vitis HLS compatible code.  We generate the top 

function (called wrapper) to include the communication ports between the CPU and the FPGA. This 
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wrapper is charge of the task management protocol with the FPGA hardware runtime, in addition to 

perform the declaration of the local BRAM variables and copies, if needed.   

3.2.1.1 Top wrapper function 

 

Function parameters and Vitis HLS directives: 
 

Listing 3.5 shows an excerpt of the transformation done of the code, to be integrated in a Vitis HLS design 

to obtain the bitstream. By default, the original parameters of the function-task are kept with a prefix 

“mcxx_”. This prefix is automatically inserted. Those parameters will be automatically transformed to AXI 

ports by Vitis HLS to access the real parameters.  In addition, two specific HLS stream ports: 

“mcxx_inPort” and “mcxx_outPort” are added to allow the FPGA hardware runtime management of the 

accelerators. 

Void matmulBlock_hw_wrapper(hls::stream<ap_uint<64> >& mcxx_inPort, 

                            hls::stream<mcxx_outaxis>& mcxx_outPort,  

                            elem_t * mcxx_a, elem_t * mcxx_b, elem_t * mcxx_c) { 

#pragma HLS interface ap_ctrl_none port=return 

#pragma HLS interface axis port=mcxx_inPort 

#pragma HLS interface axis port=mcxx_outPort 

#pragma HLS interface m_axi port=mcxx_a 

#pragma HLS interface m_axi port=mcxx_b 

#pragma HLS interface m_axi port=mcxx_c 

 

Listing 3.5: Wrapper header example of a FPGA task 

 

 

 

Local variables (BRAM) and accelerator copies 
 

By default, local variables are automatically declared by our framework with the original names of the 

parameters and with the static size specified at the programmer definition.   This allows us to keep the 

exact original code of the task-function.  Listing 3.6 shows an excerpt of the code of the wrapper with the 

declaration of the three original parameters as local variables: a, b, and c. Those variables are arrays of 1 

dimension of 4096 elem_t elements.  Those variables are synthesized to BRAM memories that will be 

partitioned following the programmer Vitis HLS annotations of the original code.  

void matmulBlock_hw_wrapper(hls::stream<ap_uint<64> >& mcxx_inPort, 

                            hls::stream<mcxx_outaxis>& mcxx_outPort,  

                            elem_t * mcxx_a, elem_t * mcxx_b, elem_t * mcxx_c) { 

#pragma HLS interface ap_ctrl_none port=return 

#pragma HLS interface axis port=mcxx_inPort 

#pragma HLS interface axis port=mcxx_outPort 

#pragma HLS interface m_axi port=mcxx_a 

#pragma HLS interface m_axi port=mcxx_b 

#pragma HLS interface m_axi port=mcxx_c 

static elem_t c[4096]; 
static elem_t a[4096]; 
static elem_t b[4096]; 
... 

Listing 3.6: Wrapper local variables example 
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In addition, wrapper code contains the necessary copies of the data using Vitis HLS memcpy .  Listing 3.7 

shows the copies of a, b, and c parameters. Those copies are done if, and only if, the FPGA hardware 

runtime activates it through the flag variables (see Deliverable 2.10 to see the circumstances where copies 

are avoided due to runtime optimizations).  

… 

  if (mcxx_flags_2[4]) { 

    memcpy(c, mcxx_c + mcxx_offset_2/sizeof(elem_t), (16384)); 

  } 

  if (mcxx_flags_0[4]) { 

    memcpy(a, mcxx_a + mcxx_offset_0/sizeof(elem_t), (16384)); 

  } 

  if (mcxx_flags_1[4]) { 

    memcpy(b, mcxx_b + mcxx_offset_1/sizeof(elem_t), (16384)); 

  } 

  matmulBlock_hw_moved(a, b, c); 

  if (mcxx_flags_2[5]) { 

    memcpy(mcxx_c + mcxx_offset_2/sizeof(elem_t), c, (16384)); 

  } 

... 

Listing 3.7 Wrapper memory copies and original kernel invocation 

 

Then, the original kernel (with suffix moved) is called with the local variables, and finally, the output result 

is copied through the mcxx_c port, if needed.  

The number of elements to be copied from/to are determined by mcxx_offset variables. Those values are 

provided by the FPGA hardware runtime.  

 

Runtime control management 

 
Wrapper code reads control information through the mcxx_inPort port to manage the copies and execution 

of the kernel. For each parameter it reads two data info to know, for instance, if it has to copy the data or 

not, and the size of the data it has to copy. In addition, it read information regarding the identification of 

the task and its parent task. Listing 3.8 shows the declaration of the local variables associated to each 

parameter and the task information. 

  … 

  mcxx_inPort.read(); //command word 

  __mcxx_taskId = mcxx_inPort.read(); 

  ap_uint<64> __mcxx_parent_taskId = mcxx_inPort.read(); 

  ap_uint<8> mcxx_flags_0; 

  ap_uint<64> mcxx_offset_0; 

  ap_uint<8> mcxx_flags_1; 

  ap_uint<64> mcxx_offset_1; 

  ap_uint<8> mcxx_flags_2; 

  ap_uint<64> mcxx_offset_2; 

  { 

  #pragma HLS protocol fixed 

    { 

      mcxx_flags_0 = mcxx_inPort.read()(7,0); 

      ap_wait(); 

      mcxx_offset_0 = mcxx_inPort.read(); 

    } 

    ap_wait(); 

    { 

      mcxx_flags_1 = mcxx_inPort.read()(7,0); 

      ap_wait(); 

      mcxx_offset_1 = mcxx_inPort.read(); 

    } 

    ap_wait(); 

    { 
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      mcxx_flags_2 = mcxx_inPort.read()(7,0); 

      ap_wait(); 

      mcxx_offset_2 = mcxx_inPort.read(); 

    } 

    ap_wait(); 

  } 

 ... 

Listing 3.8: Excerpt of wrapper code reading control and task information. 

Once the code has been run and copy out the data, if needed, the wrapper has to inform the hardware 

runtime about the end of the task. This is done using the mcxx_outPort, as shown in Listing 3.9.   

...  
 { 
  #pragma HLS protocol fixed 

    ap_uint<64> header = 0x03; 

    ap_wait(); 

    mcxx_write_out_port(header, 0, 0, mcxx_outPort); 

    ap_wait(); 

    mcxx_write_out_port(__mcxx_taskId, 0, 0, mcxx_outPort); 

    ap_wait(); 

    mcxx_write_out_port(__mcxx_parent_taskId, 0, 1, mcxx_outPort); 

    ap_wait(); 

  } 

Listing 3.9: Excerpt of wrapper code notifying the end of the task and the task information. 

 

Wide and Unified Memory Port 
 

Each accelerator needs to access memory to get data, whether it is stored in a local memory or directly 

accessed. Vitis HLS tool uses an AXI4 interface to handle memory reads and writes. The most 

straightforward solution to convert pointer accesses in C to AXI transactions is through the creation of an 

independent memory port per each pointer argument. Vitis HLS syntax to read and write from an AXI 

interface is the same as in C to access a pointer or array. 

However, there are two main problems with this implementation. First, using a different interface for each 

pointer or array argument can easily outnumber memory access ports. The number of real memory ports 

on an FPGA system is quite low (except for devices with HBM), for instance, discrete boards like the Xilinx 

Alveo U200 have only one per DDR module, whereas SoCs like the Xilinx Zynq UltraScale+ have up to six. 

Reducing several ports to one is indeed possible with an AXI interconnect, but it increases resource usage 

and hinders design routability. Moreover, performance-wise it is better not to have more than one memory 

port in a single Vitis HLS module. Our efforts to make the tool use more than one port in parallel have been 

unsuccessful, since Vitis HLS seems to always respect the access order between all external interfaces. 

The second and most important handicap of the mentioned implementation is the bandwidth. The default 

behavior is to use a data bus with the same bit width as the data type. However, the FPGA memory 

controller may allow a wider data bus. Therefore, to exploit the memory bandwidth of the system, the AXI 

data bus used must be as wide as supported by the memory controller, if the frequency is lower or equal 

than the memory side of the AXI interface. This way, each cycle the accelerator can read multiple data 

elements. 

To conclude, to remove redundant resources and improve performance, we added the possibility to use a 

single memory port with a configurable data width. Specified as a compiler flag at compile time, the user 

can provide the bit width of the data bus. This port is shared across all array arguments, thus, limiting the 

total required AXI interfaces to one per accelerator. Using this feature is only possible for array arguments 
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that are stored in local memory. If the task directly accesses memory, the shared memory port is not 

supported. We have not yet found any use case that would benefit from this feature without the use of 

local memory. 

Listing 3.10 shows a portion of the wrapper HLS code generated by OmpSs@FPGA LLVM from FPGA task 

mastrixBlock_hw seen above. The resulted wrapper contains a single memory interface, mcxx_memport 

with a 128-bit data bus and two local memories. The compiler also generates the necessary code to copy 

the data from main memory, mainly loops enhanced with Vitis HLS pragmas to maximize bandwidth. 

HLS pipeline pragmas are used to pipeline the memory load with the store to local memory. The inner loop 

is fully unrolled automatically by the tool, and the Initiation Interval (II) depends on the partition of the 

local memory. To generate the unified memory interface with a specified width, the argument “-fompss-

fpga-memory-port-width <width>” must be provided to the compiler in the invocation command. 

There are some restrictions to consider when using the unified port. The HLS generated code, for each 

parameter, uses an interface declared as a pointer to an unsigned integer type with the specified width. 

Therefore, all accesses must be aligned to that type. In the example shown in listing 3.10, the memory port 

is used to copy from a 128 bit unsigned integer pointer to a local array of 4096 floats. Hence the address 

stored in param[0] must be aligned to 16 bytes or the lower bits will be discarded in the division of the 

condition of innermost loop “_ _ j”. Accessed type width must be multiple of the memory port width. There 

is a compiler flag to enable support for copies that are not multiple of this width, at the cost of using more 

resources and a more complex logic. Moreover, the union used to do the casting between types, mainly to 

avoid float to integer conversion, uses a 64-bit unsigned integer type. As a result, the casted type cannot 

have more than 64 bits, and due to union restrictions, it cannot have a non-trivial constructor. 

Another important concept to have in mind is that to get the maximum bandwidth (II=1 in the copy loop), 

the local array must be able to be written or read at the same rate as the memory. I.e. it needs enough 

ports to read or write a memory word in one cycle. For instance, in the example the a, b, and c memories 

should have at least 4 ports. Translated into Vitis HLS terms, they should have a cyclic partition of factor 2 

if implemented as BRAMs, since each one has two ports. This happens for a and c, but not for b, which has 

been partitioned using blocks of elements. Here there is a tradeoff between an extra cost during the copy 

vs the extra cost during the matrix computation.  

void matmulBlock_hw_wrapper(hls::stream<ap_uint<64> >& mcxx_inPort,  

                            hls::stream<mcxx_outaxis>& mcxx_outPort, 

                            ap_uint<128>* mcxx_memport) { 

#pragma HLS interface ap_ctrl_none port=return 

#pragma HLS interface axis port=mcxx_inPort 

#pragma HLS interface axis port=mcxx_outPort 

#pragma HLS interface m_axi port=mcxx_memport 

  static elem_t a[4096]; 

  static elem_t c[4096]; 

  static elem_t b[4096]; 

  ... 

  

  // Read task parameters, address of a param[0] 

  if (mcxx_flags_0[4]) { 

    for (int __i = 0; __i < ((16384) - 1)/sizeof(ap_uint<128>)+1; ++__i) { 

    #pragma HLS pipeline II=1 

      ap_uint<128> __tmpBuffer; 

      __tmpBuffer = *(mcxx_memport + mcxx_offset_0/sizeof(ap_uint<128>) + __i); 

      for (int __j=0; __j <(sizeof(ap_uint<128>)/4); __j++) { 

        __mcxx_cast<elem_t> cast_tmp; 

        cast_tmp.raw = __tmpBuffer((__j+1)*4*8-1,__j*4*8); 

        a[__i*(sizeof(ap_uint<128>)/4)+__j] = cast_tmp.typed; 

      } 

    } 

  } 
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  ... 

  

} 

 
Listing 3.10: Wrapper Example of the FPGA task using wide port 128 bits 

Mixed precision for CNN support 
In deliverable 4.8 describes the necessary LLVM modifications that allow to use Vitis HLS specific mixed 

precision types, very useful for CNNs.  

 

3.2.1.2 Data synchronizations 
 

Programmers may need to perform an exclusive section in the FPGA using critical as shown in foo2 

function in Listing 3.11.   

void foo2(const float *src, float *dst) { 

   #pragma oss critical 

   *dst = *src; 

} 

#pragma oss task device(fpga) in([1] src) out([1] dst) 

void foo(const float *src, float *dst) { 

   foo2(src, dst); 

} 

Listing 3.11: Excerpt of a code using FPGA tasks with a critical section. 

To implement a critical, the FPGA must execute a function at the beginning and end of the sentence, 

activating and disabling a mutual exclusion zone; mcxx_set_lock to activate it or wait, and 

mcxx_unset_lock, to deactivate it. To be able to perform locks they require the in and out ports. So, the 

first one transformation that should be done is to add these ports as parameters to both the function that 

uses them as the entire chain of dependencies that make use of it (in this case, “foo2” and “foo”). The next 

one transformation involves replacing the node with the critical one by a BlockStmt (a code block of the 

style “{stmts;*}”) that contains a function call, the child of the critical (that is, the statement that was 

marking as exclusive, in this case *dst = *src) and another function call. The resulting code of these two 

transformations is shown in Listing 3.12. 

void mcxx_set_lock(hls::stream<ap_uint<64> >& mcxx_inPort,  

                   hls::stream<mcxx_outaxis>& mcxx_outPort); 

void mcxx_unset_lock(hls::stream<mcxx_outaxis>& mcxx_outPort); 

 

void foo2_moved(const float *src, float *dst,  

                hls::stream<ap_uint<64> > &mcxx_inPort,  

                hls::stream<mcxx_outaxis> &mcxx_outPort) { 

    { 

        mcxx_set_lock(mcxx_inPort, mcxx_outPort); 

        *dst = *src; 

        mcxx_unset_lock(mcxx_outPort); 

    } 

} 

void foo_moved(const float *src, float *dst,  

               hls::stream<ap_uint<64> > &mcxx_inPort,  

               hls::stream<mcxx_outaxis> &mcxx_outPort) { 

    foo2_moved(src, dst, mcxx_inPort, mcxx_outPort); 

} 

  

... 

  

void mcxx_set_lock(hls::stream<ap_uint<64> >& mcxx_inPort,  

                   hls::stream<mcxx_outaxis>& mcxx_outPort) { 

#pragma HLS inline 

  ap_uint<64> tmp = 0x4; 

  ap_uint<8> ack; 
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  do { 

    ap_wait(); 

    mcxx_write_out_port(tmp, 1, 1, mcxx_outPort); 

    ap_wait(); 

    ack = mcxx_inPort.read(); 

    ap_wait(); 

  } while (ack == 0); 

} 

  

void mcxx_unset_lock(hls::stream<mcxx_outaxis>& mcxx_outPort) { 

#pragma HLS inline 

  ap_uint<64> tmp = 0x6; 

  mcxx_write_out_port(tmp, 1, 1, mcxx_outPort); 

} 

 

Listing 3.12: Excerpt of the code to support data sharing synchronization. 

The code of mcxx_set/unset_locks is also included in the wrapper code (shown in Listing 3.12) so that the 

Vitis HLS toolchain can implement the necessary hardware. We use the in/out memory port to implement 

the locks. 

 

3.2.1.3 Task creation and synchronization support 
 

One important feature of OmpSs@FPGA is the creation of tasks from inside FPGA tasks. Listing 3.13 shows 

an example of FPGA task foo invoking FPGA task foo2. In addition, a taskwait is added to wait for them.   

#pragma oss task device(fpga) in([1] src) out([1] dst) 

void foo2(float *src, float *dst) { 

   *dst = *src; 

} 

#pragma oss task device(fpga) inout([1] src) inout([1] dst) 

void foo(float *src, float *dst) { 

  

   if (src[0] > 10) 

      foo2(src, dst); 

   else 

      foo2(dst, src); 

  

#pragma oss taskwait 

} 

Listing 3.13: Excerpt of a OmpSs code with FPGA sibling tasks. 

 

When a task has to generate other tasks, it may have to pass through arguments of the parent task as show 

in the example. Note, however, that pointers received by the top wrapper function are translated to AXI 

ports in order to be able to access external data. Because it must preserve the position relative to the port, 

the pointers are replaced by a 64-bit number that simply is updated with the current memory position, but 

this number cannot then be used for a read from memory as shown in Listing 3.14.  

template <typename T> 

struct __mcxx_ptr_t { 

  T *ptr; 

  unsigned long long int val; 

  __mcxx_ptr_t(T *ptr, unsigned long long int val) : ptr(ptr), val(val) {} 

  __mcxx_ptr_t() {} 

  inline operator __mcxx_ptr_t<const T>() const { 

    return __mcxx_ptr_t<const T>(ptr, val); 

  } 

  template <typename V> inline __mcxx_ptr_t<T> operator+(V const val) const { 

    return __mcxx_ptr_t<T>(ptr, this->val + val * sizeof(T)); 

  } 

  template <typename V> inline __mcxx_ptr_t<T> operator-(V const val) const { 
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    return __mcxx_ptr_t<T>(ptr, this->val - val * sizeof(T)); 

  } 

  template <typename V> inline operator V() const { return (V)val; } 

  T& operator[](long long int i) { return ptr[val/sizeof(T)+i]; } 

}; 

 
Listing 3.14: Port replacement structure 

An example of the use of this class would be the one shown in Listing 3.15, where we observe the 

transformations made in user code for the task case “foo” in Listing 3.13. FPGA task foo2 does not appear 

in the code shown. Two calls to invocations to mcxx_task_create are seen instead. This function receives 

the arguments and dependencies initialized in the parent task foo, and the identification of the foo2 FPGA 

task (4775314383). “mcxx_task_create” function is in charge of passing the task hash to be created, its 

dependencies and arguments to the Hardware Runtime, as it was created in the host.  

void foo_moved(__mcxx_ptr_t<float > src, __mcxx_ptr_t<float > dst,  

               hls::stream<ap_uint<8> > &mcxx_spawnInPort,  

               hls::stream<mcxx_outaxis> &mcxx_outPort) { 

    if (src[0] > 10) 

        { 

            unsigned long long __mcxx_args[2]; 

            unsigned long long __mcxx_deps[2]; 

            __mcxx_ptr_t<float > __mcxx_arg_0; 

            __mcxx_arg_0 = src; 

            __mcxx_args[0U] = __mcxx_arg_0.val; 

            __mcxx_ptr_t<float > __mcxx_dep_0; 

            __mcxx_dep_0 = src; 

            __mcxx_deps[0U] = 1UL << 58UL | __mcxx_dep_0.val; 

            __mcxx_ptr_t<float > __mcxx_arg_1; 

            __mcxx_arg_1 = dst; 

            __mcxx_args[1U] = __mcxx_arg_1.val; 

            __mcxx_ptr_t<float > __mcxx_dep_1; 

            __mcxx_dep_1 = dst; 

            __mcxx_deps[1U] = 2UL << 58UL | __mcxx_dep_1.val; 

            mcxx_task_create(4775314383UL, 255U, 2U, __mcxx_args,  

                             2U, __mcxx_deps, 0U, 0U, mcxx_outPort); 

        } 

    else 

        { 

            unsigned long long __mcxx_args[2]; 

            unsigned long long __mcxx_deps[2]; 

            __mcxx_ptr_t<float > __mcxx_arg_0; 

            __mcxx_arg_0 = dst; 

            __mcxx_args[0U] = __mcxx_arg_0.val; 

            __mcxx_ptr_t<float > __mcxx_dep_0; 

            __mcxx_dep_0 = dst; 

            __mcxx_deps[0U] = 1UL << 58UL | __mcxx_dep_0.val; 

            __mcxx_ptr_t<float > __mcxx_arg_1; 

            __mcxx_arg_1 = src; 

            __mcxx_args[1U] = __mcxx_arg_1.val; 

            __mcxx_ptr_t<float > __mcxx_dep_1; 

            __mcxx_dep_1 = src; 

            __mcxx_deps[1U] = 2UL << 58UL | __mcxx_dep_1.val; 

            mcxx_task_create(4775314383UL, 255U, 2U, __mcxx_args,  

                             2U, __mcxx_deps, 0U, 0U, mcxx_outPort); 

        } 

    mcxx_taskwait(mcxx_spawnInPort, mcxx_outPort); 

} 

 

Listing 3.15: Excerpt of code showing the task creation of foo2 tasks.  

Finally, “mcxx_taskwait” is used to wait for the child tasks.  Listing 3.16 shows the code of mcxx_taskwait 

and mcxx_task_create functions, automatically generated by our framework in the foo wrapper code.  

void mcxx_task_create(const ap_uint<64> type, const ap_uint<8> instanceNum,  

                   const ap_uint<8> numArgs, const unsigned long long int args[],  

                   const ap_uint<8> numDeps, const unsigned long long int deps[],  

                   const ap_uint<8> numCopies,  

                   const __fpga_copyinfo_t copies[],  

                   hls::stream<mcxx_outaxis>& mcxx_outPort) { 
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#pragma HLS inline 

  const ap_uint<2> destId = 2; 

  ap_uint<64> tmp; 

  tmp(15,8)  = numArgs; 

  tmp(23,16) = numDeps; 

  tmp(31,24) = numCopies; 

  mcxx_write_out_port(tmp, destId, 0, mcxx_outPort); 

  mcxx_write_out_port(__mcxx_taskId, destId, 0, mcxx_outPort); 

  tmp(47,40) = instanceNum; 

  tmp(33,0)  = type(33,0); 

  mcxx_write_out_port(tmp, destId, 0, mcxx_outPort); 

  for (ap_uint<4> i = 0; i < numDeps(3,0); ++i) { 

    mcxx_write_out_port(deps[i], destId, numArgs == 0 && numCopies == 0 && i == numDeps-1, 

mcxx_outPort); 

  } 

  for (ap_uint<4> i = 0; i < numCopies(3,0); ++i) { 

    mcxx_write_out_port(copies[i].copy_address, destId, 0, mcxx_outPort); 

    tmp(7,0) = copies[i].flags; 

    tmp(15,8) = copies[i].arg_idx; 

    tmp(63,32) = copies[i].size; 

    mcxx_write_out_port(tmp, destId, numArgs == 0 && i == numCopies-1, mcxx_outPort); 

  } 

  for (ap_uint<4> i = 0; i < numArgs(3,0); ++i) { 

    mcxx_write_out_port(args[i], destId, i == numArgs-1, mcxx_outPort); 

  } 

} 

  

void mcxx_taskwait(hls::stream<ap_uint<8> >& mcxx_spawnInPort,  

                   hls::stream<mcxx_outaxis>& mcxx_outPort) { 

#pragma HLS inline 

  ap_wait(); 

  mcxx_write_out_port(__mcxx_taskId, 3, 1, mcxx_outPort); 

  ap_wait(); 

  mcxx_spawnInPort.read(); 

  ap_wait(); 

} 

 

Listing 3.16: mcxx_task_create and mcxx_taskwait functions.  

 

3.2.1.4 FPGA Instrumentation support 
 

Programmer can activate the instrumentation code. This instrumentation allows, by default, to obtain 

timing information of data copies done by the wrapper code and the execution of the kernel. In addition, 

if there are critical sections it allows you to obtain information about the synchronization overheads.  

This is possible including a new port as an argument of the wrapper code and instrumenting the wrapper 

code with calls to mcxx_instrument_event.  Listing 3.17 shows an excerpt of the wrapper code of the 

mamulBlock_hw FPGA task where the new argument and part of the instrumentation are done. 

void matmulBlock_hw_wrapper(hls::stream<ap_uint<64> >& mcxx_inPort,  

                            hls::stream<mcxx_outaxis>& mcxx_outPort,  

                            ap_uint<128>* mcxx_memport,  

                            hls::stream<__mcxx_instrData_t>& mcxx_instr) { 

#pragma HLS interface ap_ctrl_none port=return 

#pragma HLS interface axis port=mcxx_inPort 

#pragma HLS interface axis port=mcxx_outPort 

#pragma HLS interface m_axi port=mcxx_memport 

#pragma HLS interface ap_hs port=mcxx_instr 

  

... 

  

mcxx_instrument_event(78, __mcxx_taskId, mcxx_instr); 

  if (mcxx_flags_1[4]) { 

    for (int __i = 0; __i < ((16384) - 1)/sizeof(ap_uint<128>)+1; ++__i) { 

    #pragma HLS pipeline II=1 

      ap_uint<128> __tmpBuffer; 

      __tmpBuffer = *(mcxx_memport + mcxx_offset_1/sizeof(ap_uint<128>) + __i); 



 TextaRossa – Deliverable D4.7 

textarossa.eu   D4.7 | 40 

      for (int __j=0; __j <(sizeof(ap_uint<128>)/4); __j++) { 

        __mcxx_cast<elem_t> cast_tmp; 

        cast_tmp.raw = __tmpBuffer((__j+1)*4*8-1,__j*4*8); 

        b[__i*(sizeof(ap_uint<128>)/4)+__j] = cast_tmp.typed; 

      } 

    } 

  }  

   

  ... 

  

mcxx_instrument_event(206, __mcxx_taskId, mcxx_instr); 

mcxx_instrument_event(80, __mcxx_taskId, mcxx_instr); 

  matmulBlock_hw_moved(a, b, c, mcxx_instr); 

mcxx_instrument_event(208, __mcxx_taskId, mcxx_instr); 

mcxx_instrument_event(79, __mcxx_taskId, mcxx_instr); 

  if (mcxx_flags_2[5]) { 

    for (int __i = 0; __i < ((16384) - 1)/sizeof(ap_uint<128>)+1; ++__i) { 

    #pragma HLS pipeline II=1 

      ap_uint<128> __tmpBuffer; 

      for (int __j=0; __j <(sizeof(ap_uint<128>)/4); __j++) { 

        __mcxx_cast<elem_t> cast_tmp; 

        cast_tmp.typed = c[__i*(sizeof(ap_uint<128>)/4)+__j]; 

        __tmpBuffer((__j+1)*4*8-1,__j*4*8) = cast_tmp.raw;  

      } 

      *(mcxx_memport + mcxx_offset_2/sizeof(ap_uint<128>)+ __i) = __tmpBuffer; 

    } 

  } 

mcxx_instrument_event(207, __mcxx_taskId, mcxx_instr); 

  ... 

 

Listing 3.17: Wrapper Example of a FPGA task with instrumentation 

Note that each event has its pair: <start, end> event points. Any start event instrumentation value is 

smaller than “200” while end event instrumentation is start event value + 128.  

Listing 3.18 shows the mcxx_instrumentation_event function, which writes the event identification, the 

task id to the special instrumentation port.  

void mcxx_instrument_event(unsigned char event,  

                           unsigned long long payload,  

                           hls::stream<__mcxx_instrData_t>& mcxx_instr) { 

#pragma HLS inline 

  __mcxx_instrData_t tmp; 

  tmp.range(63, 0) = payload; 

  tmp.range(95, 64) = event & 0x7F; 

  tmp.range(103, 96) = event >> 7; 

  tmp.bit(104) = 1; 

  ap_wait(); 

  mcxx_instr.write(tmp); 

  ap_wait(); 

}              

Listing 3.18: mcxx_instrument_event instrumentation function 

 

3.2.1.5 Json Wrapper Information 
 

A particularity of AIT is that part of the compilation information is received through a Json file. This 

document contains, for each wrapper file generated, the information regarding the location of the file, the 

identifier of the wrapper, and information about the characteristics it uses. Given that this Json file is 

composed of the information of the various compilation stages we are in combining, it has been chosen to 

generate an "extracted.json.part" file in the same directory as the wrappers with the relevant information. 

Once in AIT's JobAction, it reads these parts and combines them in a single Json file. The content of this file 

would be like Listing 3.19. 
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{ 

{ 

    "full_path" : "<path>/task_hls_automatic_clang.cpp", 

    "filename" : "task_hls_automatic_clang.cpp", 

    "name" : "task", 

    "type" : 5998371774, 

    "num_instances" : 1, 

    "task_creation" : false, 

    "instrumentation" : false, 

    "periodic" : false, 

    "lock" : false, 

    "deps" : false, 

    "ompif" : false 

} 

} 

Listing 3.19: Example content of the "extracted.json" file 

 

 

3.2.2 Accelerator Integration Tool (AIT) 
 

AIT automatically builds the block design with all the accelerators requested by the programmer, creating 

the necessary interconnections between them and custom and Xilinx IPs, allowing the management, 

scheduling and memory accesses of the tasks and the communication with the host application, if needed.   

Among all the IPs used, the main custom IPs are the hardware runtime (detailed in deliverable 2.11 and 

2.10), communication accelerators to support OMPIF (partially explained in deliverable 4.6) and the custom 

interleaving and priority memory access (explained in deliverable 4.6). The runtime basically receives 

commands from the software runtime and forwards them to the related accelerator. In the case of having 

more than one accelerator available for any given task, a simple round-robin scheduler dispatches the task 

to one of the accelerators. After the execution finishes, it informs the hardware runtime which forwards 

the information to the software control. The communication accelerators allow decoupling processing and 

point-to-point communication between processing element devices; for instance, FPGA accelerators. 

Finally, the custom interleaving and priority IPs reduce memory conflicts and increase the memory 

bandwidth achieved.  The framework can keep the intermediate and final design projects so that the 

programmer can open either the HLS project or the final hardware design in case of having any issue with, 

for instance, a negative WNS. 

Figures 3.20 and 3.21 show the N-body overall view and zoom full screen, respectively, of the final block 

design with target Alveo u200. This block design includes the programmer accelerators and the FST 

hardware runtime.  
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Figure 3.20: Overall view of the final hardware block design of N-body application generated by AIT with 

7 kernel accelerators (FPGA tasks). 

 

Figure 3.21: Fullscreen of the final hardware block design of N-body application generated by AIT. 

Figure 3.22 shows a zoom in of a Vivado/Vitis design for Matrix Multiply application with two instances of 

a matmulBlock_hw kernel seen above. The design is connected to the FPGA DDR RAM memory and PCIe 

to Host; providing support for discrete FPGAs connected via PCIe and Ethernet.  
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Figure 3.22: Matrix Multiply Hardware design with two accelerators instances of matmulBlock_hw FPGA 

task.  

3.3 Custom IPs for the FPGA Hardware Runtime 

As mentioned, AIT inserts a small hardware runtime, as shown in Figure 3.6 (Fast Task Scheduler described 

in deliverable 2.10), in the final hardware design. This runtime (Vivado block design shown in Figure 3.3.1) 

basically receives commands from the software runtime and forwards them to the related accelerator. In 

the case of having more than one accelerator available for any given task, a simple round-robin scheduler 

dispatches the task to one of the accelerators. After the execution finishes, it informs the hardware runtime 

which forwards the information to the software control. The characteristics of this FPGA Hardware Runtime 

are described in deliverables 2.10 and 2.11. 

Figure 3.23 shows the block design of the Hardware Runtime IP in Figure 3.6. There you can see the input 

and output command queues, and the input and output stream connections. The Fast Task Scheduler 

oversees the management of all the task executions, copy optimizations, etc.  
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Figure 3.23: Hardware Runtime block design. 

3.4 Accelerator Placement, Interleave and Priorities 

In modern FPGA devices, place and route has become an increasingly difficult task due to an increase in 

resources and device complexity. This results in an exponential increase in implementation possibilities. 

Such a huge search space causes tools to have a hard time providing a good solution. This is even more 

challenging in chiplet-based devices due to their topology. In the same way, off-chip memory resources 

have grown both in size and number of modules. These resources are presented to the user as raw memory 

interfaces requiring the user to manage how accelerator kernels access off-chip memory to make effective 

use of the available bandwidth. Efficient usage of memory resources becomes a critical challenge as more 

computational resources are added to a design imposing more pressure on the memory subsystem. To 

tackle these problems, the OmpSs@FPGA framework has modified not the HLS flow but the hardware 

runtime that is instantiated in the final design, implementing new IPs that in conjunction with the 

programming model deliver very good performance results [Filgueras 2022, 2023, 2023b]. These 

modifications can be summarized as follows: 

• Accelerator Placement: Acceleration in multi-SLR FPGAs may result in a below expected resource 

usage by the model due to the larger costs of propagating signals. To mitigate these larger costs 

of propagating signals across large regions, specially between different SLR, a new accelerator 

placement feature allows users to assign specific computation kernels to different SLR. 

• Memory Interleaving for DDR channels: We have implemented a general and transparent way to 

efficiently place application data into separate memory modules. The goal is that accelerator 

accesses can be scattered across multiple memory interfaces to reduce access conflicts when 

several accelerators need to access data that otherwise, would be stored in the same memory 

module. This is implemented by inserting an interleaver module between accelerator memory 

interface and the memory interconnection and between any other IP that access off-chip memory, 

such as the PCIe block. 

• Memory Priorities: An adverse effect observed in some applications is memory access conflicts. 

When more than one accelerator tries to access a single memory interface, one transaction is 

processed while the rest have to wait for the one in progress to finish. By enabling priorities, this 

latency can be hidden by allowing transactions to be pipelined. In this case a single accelerator 
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(the one with higher priority) will send multiple transaction requests in a row and data can be 

transferred at maximum throughput.  

All these modifications source code (and the resulting IPs generated) can be found in the OmpSs@FPGA 

GitHub. A complete description of the features introduced in the context of Textarossa and an evaluation 

of its performance results is detailed in deliverable 4.6 task-based runtime systems, section OmpSs@FPGA 

- Task-based runtime for FPGAs.  

3.5 HBM memory access 

One of the main goals of AIT and OmpSs@FPGA is to abstract all FPGA-related complexity and 

heterogeneity by providing a set of high-level tools allowing programmers to guide the implementation 

process. This includes providing an efficient exploitation of available memory resources, without requiring 

an in-depth knowledge of how it is arranged, or which type of technology is used.  

One of the challenges of the goal is supporting the different memory models used by the different FPGA 

boards available. HBM and DDR memories present different characteristics and consequently need 

different interfaces in order to be accessed from FPGA accelerators. The IDV-E platform developed in 

Textarossa features both types of memory. In OmpSs@FPGA support for both memories is developed. As 

both memories can be accessed at the same time/from different programs we have opted to include the 

support at the runtime level. The full description of the HBM specific support can be found in deliverable 

4.6 task-based runtime systems, section OmpSs@FPGA - Task-based runtime for FPGAs. 

3.6 FPGA Instrumentation Support 

OmpSs@FPGA programming model framework allows the programmer to generate instrumented FPGA 

tasks to generate hardware execution traces with details of the execution of FPGA tasks. The programmer 

can specify at compile time that she/he wants an instrumented FPGA tasks and then, at runtime, it can be 

executed to generate the execution trace or not. The hardware execution traces generated includes 

information about the elapsed time of: 

• data transfers between host and FPGA memory, 

• the execution of the programmer FPGA task, 

• taskwait and critical synchronizations 

• task creation overhead 

To be able to instrument the code, a specific port has been added to the top function (wrapper) at compile 

time. This port must be passed through each function as a new parameter to be able to write trace events 

to specific trace execution buffers from any point of the code. Listing 3.24 shows the HLS wrapper 

generated with the new instrumentation port and an excerpt of the code to figure out if the execution 

should or not generate an execution trace. 

void foo_wrapper(... stream<__mcxx_instrData_t>& mcxx_instr) { 

... 

  if (__command(7,0) == 2) { 

    __mcxx_instrData_t tmpSetup; 

    tmpSetup(63,0) = mcxx_inPort.read(); 

    tmpSetup(79,64) = (__command>>8)&0xFFFFFF; 

    tmpSetup[104] = 0; 

    mcxx_instr.write(tmpSetup); 

    return; 

  } 

  ... 
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  foo_moved(..., mcxx_instr); 

  ... 

} 

Listing 3.24: Vitis HLS wrapper code generated by OmpSs@FPGA Clang with instrumentation port 

Listing 3.25 shows an example of the Clang transformation of a critical pragma to support this critical (set 

and unset lock) and instrument it to measure its elapsed time (mcxx_instrument_event). The original 

source code (top) and the HLS transformed code (bottom), done by our framework, are shown. 

// Input Programmer source code 

#pragma oss critical 

*dst = *src;  

... 

// Output of the Clang transformation 

{ 

mcxx_instrument_event(85U, 2UL, mcxx_instr); 

mcxx_set_lock(mcxx_inPort, mcxx_outPort); 

mcxx_instrument_event(213U, 2UL, mcxx_instr); 

} 

*dst = *src; 

{ 

mcxx_instrument_event(85U, 3UL, mcxx_instr); 

mcxx_unset_lock(mcxx_outPort); 

mcxx_instrument_event(213U, 3UL, mcxx_instr); 

} 

Listing 3.25: Vitis HLS wrapper code generated by OmpSs@FPGA Clang with instrumentation port 

There is a trace execution buffer per accelerator so that there will not be data race conditions. Each trace 

event basically consists on the identifier of the task, flag indicating start and end point of the event, type 

of the event and clock time measured in the FPGA (and that will be processed thanks to a timestamp taken 

at the beginning of the application execution). Nowadays, the execution trace event follows the Obtuse 

but Versatile Nanoscale Instrumentation (OVNI) [OVNI 2023]. The execution trace generated of listing 3.25 

is shown in figure 3.26. Figure 3.26 shows a Paraver [Paraver 2023] view of the execution trace along a 

period of time (x axis). Horizontal lines (only one shown) show the state of each of the threads or 

accelerators executed. Each state is shown with a different color. Figure shows the different steps of the 

FPGA task execution, and in particular, the execution time of the data transfer from the host memory to 

the FPGA memory (brown), the FPGA task execution (green), the set lock (white), again green to execute 

another part of the FPGA task, the unset lock (red), FPGA task execution (green) and finally, the data 

transfer from the FPGA to the host (violet). 

 

Figure 3.26: Paraver view of an execution trace. Critical example shown in listing 3.25. 

Hardware instrumentation also allows the programmer to understand the performance execution of 

several nested and non-nested FPGA tasks running in parallel.  
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3.7 Custom IPs for inter-communication in FPGA-based 

clusters 

 

In this section we explain the IPs and the protocols developed to support multi-FPGA clusters with 

OmpSs@cloudFPGA [Haro 2022]. This is an extension of the OmpSs@FPGA programming model that adds 

message passing to FPGAs, like the Message Passing Interface (MPI) in CPU clusters. The programmer can 

use a similar API in the HLS code, to do simple send/receive operations and a few collectives, like broadcast. 

This message passing model is called OmpSs MPI for FPGAs (OMPIF). Another contribution of 

OmpSs@cloudFPGA to classic OmSs@FPGA is a new type of task called distributed. This type of task is 

created by the CPU, and the software runtime replicates it to every FPGA in the cluster. I.e. with a single 

call to a distributed task, all nodes start executing the code associated with it, and use the cluster rank and 

size like in a regular MPI program. The programming model is discussed in detail in deliverable 4.6, where 

we show some code examples and give performance and power results on different clusters. 

3.7.1 OMPIF runtime architecture 

The message passing runtime implements a custom protocol based on a stream interface. A message is 

split in chunks of a fixed size. This is needed to adapt to the actual transport layer, which usually limits the 

size of a network packet. For example, most ethernet networks limit the packet size to 1500 bytes. 

Therefore, the message sender has a parameter to control the amount of data sent to the transport layer. 

Besides that, it appends a custom header with the protocol information. This protocol supports packet 

reordering and packet loss, because we were working with UDP in cloudFPGA, and ethernet later in MEEP. 

The specification of the source and destination ranks depends on the FPGA shell. We discuss this topic 

further in section 4.2.3. Therefore, the message sender expects to receive acknowledgement messages 

inside a time window, if the ack is not received, the module sends it again. 

In the receiving side, there are two components, the packet decoder and message receiver. The packet 

decoder reads all incoming packets from the FPGA shell and converts them to the expected 

OmpSs@cloudFPGA format. It also decides where to forward the packet depending on the type. Ack 

messages go to the message sender, while data messages (produced by the message sender), go to a DMA 

engine and then to an intermediate buffer in main memory. We need the intermediate buffer because the 

packet decoder doesn’t know the final address. Moreover, source and destination FPGAs are not 

synchronized, so when the message reaches its destination, the message receiver may not have the address 

yet. When this one is ready, it reads from the intermediate buffer and moves the message to the user 

space. 

This protocol is illustrated in figure 3.27, where we can see on the left how the message sender of FPGA 0 

reads from memory and sends the data through the network. The packet decoder writes to memory 

through the DMA engine. Then, on the right we see the ack message produced by the packet decoder, and 

the message receiver moving data to the user-provided address in the OMPIF_Recv call. 
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Figure 3.27: OMPIF send and receive process 

3.7.2 CloudFPGA cluster 

We implemented the first prototype of the OmpSs@cloudFPGA model in the cloudFPGA cluster of IBM 

research Europe. It has 56 AMD Kintex UltraScale FPGAs, connected in a 10Gb ethernet network. In the 

data center, FPGAs are installed as standalone nodes, thus there are no CPU hosts attached with PCIe like 

in most systems. Instead, FPGAs communicate only via TCP/UDP protocols. For that, they created a shell 

inside the cloudFPGA project. This shell implements the TCP/UDP stack and the layers beneath, like 

ethernet. It provides a standard interface to the user, based on AXI-stream with meta data including the 

UDP/TCP ports and source/destination ranks. These ranks identify every FPGA in a cluster, including CPU 

nodes. Therefore, we reuse these identifiers for OMPIF, however we have to translate them because in our 

current implementation CPU nodes are not counted. 

3.7.3 MEEP cluster 

We are currently working on an implementation of this model on our own FPGA cluster at BSC, with 96 

Alveo U55C cards. In this cluster we don’t have a shell with UDP/TCP support, but we don’t need it because 

the FPGAs are connected to a private 100Gbe network. Therefore, we decided to work directly on the 

ethernet layer. For that, we have to implement IP bridges between OmpSs@cloudFPGA designs and the 

ethernet physical layer. 
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Figure 3.28: U55C ethernet shell 

 

This custom shell communicates with the UltraScale+ Integrated 100Gb ethernet subsystem IP. The IP 

connects to a QSFP port and provides AXI-stream interfaces to send and receive data. We implemented 

several modules to adapt our interface with this IP, illustrated in figure 3.28. The ethernet IP implements 

the CRC generation and checking of an ethernet frame, but the user must add the rest of the header. The 

RX and TX controllers add and remove this ethernet header. The TX controller uses the destination rank of 

the input AXI-stream to select the MAC address from a table, which can be modified at runtime by the CPU. 

The RX controller uses this table to search the source rank from the source MAC address. Another role of 

the controllers is to ensure the constraints of the ethernet IP streams are satisfied. On the receiving side, 

RX stream doesn’t have a ready signal, so when data is received, the RX controller is always ready to 

consume it or drop the entire frame. To do that, it has an internal queue that stores full frames, if the 

queue becomes full before the last word of data, it drops the whole frame. Moreover, this queue also 

discards frames that are corrupted. This information is forwarded by the ethernet IP, that marks an error 

bit in the last word when the CRC code doesn’t validate. On the TX stream side, although there is a ready 

signal, the specification states that the valid signal must be always asserted from the beginning to the end 

of a frame. This means we have to send the packets at full bandwidth. To ensure that, another queue in 

the TX controller waits for a full frame before sending it to the ethernet IP. 

Furthermore, the RX controller filters messages that are not recognized by looking at the ethernet type 

field of the ethernet header. It only allows ICMP, ARP and OMPIF packets. For the ICMP and ARP protocols, 

there are dedicated servers implemented in SystemVerilog. ICMP is used to respond to ping requests, 

limited to 64 bytes of payload. For ARP, the server responds to IPv4 requests. We implemented these 

protocols to check network connectivity and latency from the CPU side, since the servers are also 

connected to the FPGA network. 

In the figure we can also see there is a clock domain crossing between the ETH IP and the 

OmpSs@cloudFPGA application. The 322MHz frequency is fixed by the IP itself, but to reach 100Gb at 512 

bits per cycle, we only need 195MHz. However, the clock generator has a limited resolution and the closest 

frequency we can get is 200MHz. 
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3.8 Power Sampling Support 

 

To analyze how OmpSs@FPGA features regarding placement, memory interleave and priorities, etc. affect 

power consumption of different applications, we have developed an automatic method to query power 

usage statistics from FPGA board power delivery infrastructure [Filgueras 2023b]. To do so, we integrated 

a Card Management Subsystem (CMS) into the design static logic instantiated by the tools. A simplified 

diagram is shown in figure 3.29. The CMS module polls an external microcontroller in the card (μC block in 

figure 3.29) to get readings from the voltage regulators and sensors in the card. We can also get 

temperature readings, fan speed, voltage and current for different power supply rails. To compute power 

consumed by the full card, we sum all card power inputs: PCIe connector power and PCIe external power. 

 

Figure 3.29: Design diagram showing power measurement components in a design 

However, instantiating this module into a design that is close to the practical limit of the device resources, 

often causes implementation to fail due to routing congestion and timing issues. In order to work around 

this issue, we implement the design at lower frequencies and then extrapolate power consumption from 

multiple data points. As shown in figure 3.30, gathered data shows that power grows linearly with 

frequency. This figure shows the relationship between power and frequency for the different evaluated 

applications. Each data point shows power measured at a certain frequency and trend lines are shown for 

each of the different evaluated designs. For each application, baseline (solid line) and improved (dotted 

line) designs are measured separately. Applications correspond with designs described in table IV running 

at different frequencies.  

It is worth highlighting that all data points are very close to their regression line, more precisely, average 

R2 is greater than 0.995. Therefore, extrapolated data should match actual measurements with very little 

error. 

Figure 3.30 shows results for four different applications: 

  

• MM-half, single and double: Matrix multiply half, single and double precision, respectively. Matrix 

multiplication is a well-known embarrassingly parallel application. The application computes C = C 

+ A × B, being A, B and C matrices of size N × N.  

• Cholesky: This benchmark performs the Cholesky decomposition of a real Hermian positive 

definite matrix A into a lower triangular matrix L. Multiplying L by its transpose, results in the 
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original matrix A = L × L T. In the same fashion as the matrix multiplication kernel, the input matrix 

A is distributed in square blocks of size BS × BS single-precision elements.  

• N-body: The N-body simulation computes how a group of particles with different masses interact 

with each other due to gravitational forces over a period of time. Algorithm input is a set of 

particles, each one consisting of an initial position, mass, and initial velocity. Position and velocity 

are 3-dimensional single precision floating point vectors, while mass is a scalar value. The output 

of the algorithm is the set of particles with their positions updated due to gravitational interactions 

after a given amount of time steps.  

• Spectra: The Spectra application computes a histogram of electronic weights between particles 

versus distance for a given set of particles. To do so, it needs to compute the distance between 

each pair of particles and then add their electronic weight to the histogram. The histogram is 

afterwards used to compute the X-ray spectrum of the physical material being analysed allowing 

the determination of the material composition [Gonzalez 2022]. 

 

Figure 3.30: Power/frequency plot and trend lines for all evaluated applications 
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4 The APEIRON 
framework for High 
Level Programming 
of Streaming 
Applications on 
Multi-FPGA 
Systems 

 

The APEIRON framework, developed by the INFN APE Lab, aims at offering hardware and software support 

for running real-time dataflow applications on a network of interconnected FPGAs.  

The main motivation for the design and development of the APEIRON framework is that the currently 

available HLS tools do not natively support the deployment of applications over multiple FPGA devices, 

which severely chokes the scalability of problems that this approach could tackle. To overcome this 

limitation, we envisioned APEIRON as an extension of the Xilinx Vitis framework able to support a network 

of FPGA devices interconnected by a low-latency direct network as the reference execution platform. 

Developers can define scalable applications, using a streaming programming model inspired by Kahn 

Process Networks, that can be efficiently deployed on a multi-FPGAs system: the APEIRON communication 

IPs allow low-latency communication between processing tasks deployed on FPGAs, even if they are hosted 

on different computing nodes. Thanks to the use of HLS tools in the workflow, processing tasks are 

described in C++ as HLS kernels, while communication between tasks is expressed through a lightweight 

C++ API based on non-blocking send() and blocking receive() operations. 

In this section we provide a general overview of the framework, describing its main components and an 

example of APEIRON application. For a more detailed description of the communication IPs and of the 

framework software stack please refer to deliverables D2.9 - IP for low-latency inter-node communication 

links, part 2 and D4.5 - Inter-FPGA Communication SW Stack. 

4.1 Introduction 

Using APEIRON developers have the capability of deploying scalable applications on a multi-FPGAs system 

via a streaming programming model inspired by Kahn processing networks.  
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Figure 4.1: Application’s dataflow graph mapped on 4 interconnected FPGAs system  

This allows the straightforward mapping of application’s computational dataflow graph onto the underlying 

execution platform consisting in a network of FPGAs (Fig. 4.1) via a simple configuration tool that instructs 

the framework to create all the files required for the FPGA bitstream generation and to automatically build 

the application interconnection logic (Fig. 4.2). 

 

 

Figure 4.2: APEIRON interconnection logic: Communication IPs managing data streams I/O and 

communication between HLS computing tasks (represented as yellow ovals). 

 

Processing tasks are implemented in C++ thanks to the use of the Xilinx Vitis High Level Synthesis tool and 

deployed on the different FPGA nodes. Communication between tasks is expressed through a lightweight 

C++ API (called HAPECOM) based on non-blocking send() and blocking receive() operations and is 

implemented in the multi-FPGA execution platform by the APEIRON communication IP (Fig. 4.2). 
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Our design idea was motivated by the following considerations: 

 
1. The direct communication between computing tasks deployed on FPGAs avoids the involvement 

of the CPUs and system bus resources in the data transfers, improving the energy efficiency of the 
execution platform. 

2. Bypassing the intervention of the host network stack, communication latency is reduced while 
bandwidth for small massages is increased. 

3. Since communication operations are implemented on a completely “hardware” path, 
deterministic latency is achieved, in accordance with the real-time requirements. 

 
These considerations are strictly related to the TEXTAROSSA project objectives: 

 

• Objective 1 - Energy efficiency.  APEIRON addresses this objective enabling the complete offload 

of the streaming processing to FPGA devices [Qasaimeh2019, Nguyen2020, Goz2020]. 

Furthermore, avoiding the involvement of the CPUs and system bus resources in data transfers 

improves the energy efficiency of the multi-FPGA execution platform.  

• Objective 2 - Sustained application performance. The sustained application performance of 

distributed streaming applications, such as the RAIDER use case, are strongly affected by the 

performance of the network system. Implementing a direct FPGA to FPGA interconnect and 

bypassing the host network stack, allows to keep the communication latency in the sub-

microsecond range and to increase the bandwidth for small messages. 

• Objective 4 - Seamless integration of reconfigurable accelerators. The APEIRON framework 

leverages the Vitis HLS workflow, extending it to a multi-FPGA execution platform through a 

lightweight communication library (HAPECOM) at programming level, and through a simple 

configuration system for the deployment of the distributed application to the multi-FPGA 

execution platform.  

• Objective 5 - Development of new IPs. The INFN Communication IP is the key enabling technology 

behind the APEIRON framework, allowing direct low-latency intra/inter FPGA communications 

between HLS kernels. 

• Objective 6 - Integrated Development Platform. The ARMv8 based IDV-E represents the reference 

execution platform for the APEIRON runtime in the TEXTAROSSA project. Nevertheless, the 

framework has been developed and extensively tested on a X86_64 based small cluster in our lab. 

 

The objectives are also related to the strategic goals of the project:   

• Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic 

Research Agenda (SRA) for open HW and SW architecture. The APEIRON framework software is 

developed following the open-source model and is freely available in its GitHub repository 

(https://github.com/APE-group/APEIRON). 

• Strategic Goal #3: Opening of new usage domains. The APEIRON frameworks aims at offering 

hardware and software support for running real-time dataflow applications on a network of 

interconnected FPGAs, leveraging on the Vitis HLS tool.  We believe that it has the potential to 

ease the development and to support the efficient execution of a wide class of applications suited 

to be executed on a multi-FPGA platform, such as but not limited to real-time HPDA ones. 
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4.2 APEIRON Building Blocks 

 

The APEIRON main components are the Communication IP, implementing the low-latency direct network 

between FPGAs, and the software stack (runtime support, HAPECOM C++ communication library, tools for 

automatic linking of computational tasks and IPs for bitstream generation). The former is thoroughly 

described in deliverable D2.9 - IP for low-latency inter-node communication links, part 2 and the latter in 

deliverable D4.5 - Inter-FPGA Communication SW Stack, here we provide a short overview of both. 

4.2.1 Communication IP  

The Communication IP represents the main enabling component of the APEIRON framework and is based 

on the HPC direct network designs previously developed by our research group, like APEnet [1] and ExaNet 

[2]. 

The Communication IP implements within the framework a direct network which allows low-latency data 

transfer between processing tasks deployed on the same FPGA (intra-node communication) and on 

different FPGAs (inter-node communication). These processing tasks are implemented as HLS kernels; the 

details of their definition in the framework and of their interface with the IP are presented in Sec. 3.2.1. 

 

 

Figure 4.3: Communication IP hardware block structure with HLS kernels performing intra- 

node (red line) and inter-node (green line – receive, blue line– send) communications. 

 

Figure 4.3 shows the Communication IP hardware block structure, containing a Network IP and a Routing 

IP, both developed in VHDL for Xilinx Alveo U200 and U280 cards. 

The Routing IP defines the switching technique and routing algorithm and consists of the Switch 

component, the Configuration/Status Registers and the InterNode and IntraNode interfaces.  

The Switch component dynamically interconnects all ports of the IP, routing between source and 

destination ports. Dynamic links are managed by routing logic together with arbitration logic: the Router 

configures the proper path across the switch while the Arbiter solves contentions between packets 

requiring the same port. For inter-node communications, the routing policy applied is the dimension-order 

(DOR) one: each FPGA is uniquely identified by its coordinates in a N dimensional torus, the DOR consists 

in reducing the offset along one dimension to zero before considering the offset in the next dimension in 

antilexicographic order. The employed switching technique (i.e., when and how messages are transferred) 
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is Virtual Cut-Through (VCT): the router starts forwarding the packet as soon as the algorithm has picked a 

direction and the buffer used to store the packet has enough space. The deadlock-avoidance of DOR 

routing is guaranteed by the implementation of two virtual channels for each physical channel. The 

transmission is packet-based: the Communication IP sends, receives and routes packets with a header, a 

variable size payload and a footer. 

4.2.2 Software Stack 

The APEIRON software stack includes three main components: 1) runtime support, 2) HAPECOM C++ 

communication library, and 3) tools for automatic linking of computational tasks and IPs for bitstream 

generation. 

4.2.2.1 Runtime Support  

The APEIRON framework currently supports Xilinx Ultrascale PCIe-based accelerator cards. 

We designed a runtime software stack based on the Xilinx Runtime (XRT) architecture, which is 

implemented as a combination of user-space and kernel driver components [3].  

 

 

Figure 4.4: APEIRON Software Stack 

 

The APEIRON runtime software stack is built on top of the XRT one, adding three layers as shown in Figure 

4.4, to: 

• add the functionalities required to manage multiple FPGA execution platforms (e.g., program the devices, 

configure the IPs, start/stop execution, monitor the status of IPs, ...); 

• eliminate, or at least reduce, the impact of changes in XRT API introduced with any new version of Vitis 

on the APEIRON host-side applications; 

• decouple the APEIRON software stack from the specific platform, easing the future porting of the 

framework to different platforms/vendors, ideally by extending the APEIRON library layer only. 

Apeirond is a persistent daemon used to manage multiple access requests from user apps to the board.  

It uses functions exposed by the APEIRON library to operate on the devices. Apeirond module accepts client 

connections over a network socket (using the module called apeirons) and oversees creating the socket 

with the client and handling the incoming command (e.g., reading a register or flashing the board). The 

protocol currently used is based on a TCP/IP socket while messages are serialized and deserialized in JSON 

format to simplify the parsing phase. 
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4.2.2.2 HAPECOM Communication Library 
The communication between kernels is expressed through HAPECOM: a lightweight C++ API based on non-

blocking send() and blocking receive() operations. This simple API allows the HLS developer to perform 

communications between kernels, either deployed on the same FPGA (intra-node communication) or on 

different FPGAs (inter-node communication) without knowing the details of the underlying network stack.  

The Communication Library leverages AXI4-Stream Side-Channels to encode all the information needed to 

forge the packet header. Two APEIRON HLS IPs defined in the library manage the adaptation toward/from 

IntraNode ports of the Routing IP: they are Aggregator and Dispatcher, as shown in Figure  4.5. 

 

 

Figure 4.5: Interface between Intranode Port 0 and the corresponding HLS Task mediated by 

Aggregator and Dispatcher. 

 

The Dispatcher receives incoming packets from the Routing IP and forwards them to the right input 

channel, according to the relevant fields of the header. The Aggregator receives outgoing packets from the 

task and forges the packet header, then filling the header/data FIFOs of the Routing IP IntraNode port. 

The HAPECOM Communication API can be represented with the following pseudo-code: 

size_t send (msg, size, dest_node, task_id, ch_id); 

 size_t receive (ch_id, recv_buf); 

 

Where: 
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• msg is the message to be sent and size its size in Bytes;  

• dest_node is the n-Dim coordinate of the destination node (FPGA) in an n-Dim torus 

 network; 

• task_id is the local-to-node receiving task (kernel) identifier (0-3); 

• ch_id is the local-to-task receiving FIFO (channel) identifier (0-127); 

• recv_buf is the receive buffer of the destination HLS kernel.  

 

4.2.2.3 Automatic Linking of Computational Kernels and 

Communication IP for Bitstream Generation 
 

Users must prepare a YAML configuration file describing the attributes of each HLS computational kernel 

(number of input and output channels, IntraNode port of the Communication IP to which the kernel is 

connected). Starting from this, the APEIRON framework links the Communication IP and the HLS kernels 

that are connected to it and generates the bitstream for the overall design. The only requisite that HLS 

kernels must satisfy in order to be linked to the framework is in the format of their prototype that must 

adhere to this form: 

void example_apeiron_task( 

[optional kernel-specific list of parameters] 

message_stream_t message_data_in[N_INPUT_CHANNELS], 

message_stream_t message_data_out[N_OUTPUT_CHANNELS]) 

In this way, the HLS kernel implements a generic stream interface for each communication channel based 

on the AXI4-Stream protocol that is properly connected to its corresponding Communication IP intranode 

port through the Aggregator and Dispatcher components in the final design. 

If the instantiation interval on the receiving side must be kept low to maximize the design throughput, it is 

not advisable to use the blocking receive() function, and the direct access to the 

message_data_in stream through the read()method must be used instead, parallelizing data reads 

and processing, as shown in listing 4.3. 

 

4.3 Latency and Bandwidth of Communications between 

HLS Tasks in the APEIRON Framework 

We developed a set of APEIRON applications to assess the performance (i.e. end to end latency and one-

way bandwidth) of communications between HLS kernels under different conditions, here we report the 

more relevant ones: 

• Intra-node: communicating tasks deployed on the same FPGA. 

• Inter-node: communicating tasks deployed on different FPGAs (1 hop distance).  

• DDR+sync/BRAM: send and receive buffers hosted on DDR or BRAM memory. For the DDR also the 

“sync” operation to ensure data coherence between CPU and FPGA is taken into account.  
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Using the most performant configuration of the Communication IP (256 bit datapath, 200 MHz clock 

frequency) we have measured the performance reported in Table 4.1 (for latency) and Table 4.2 (for 

bandwidth). For latency, the reported measurements were collected with 16B payload packets, while for 

bandwidth we used 4kB payload packets. 

 

 

 DDR+Sync (ns) BRAM (ns) 

Intra-node 533 213 

Inter-node 1065 768 

Table 4.1: Communication Latency Between HLS Tasks in APEIRON (256 bit, 200 MHz) 

 

 DDR+Sync (MB/s) BRAM (MB/s) 

Intra-node 3938 5967 

Inter-node 3937 4658 

Table 4.2: Communication Bandwidth Between HLS Tasks in APEIRON (256 bit, 200 MHz) 

 

For the complete set of measurements, the detailed description of the APEIRON applications and a 

reference to their source code please refer to D2.9 - IP for low-latency inter-node communication links, 

part 2. 

 

4.4 Example of APEIRON Application 

We adopt a preliminary version of our RAIDER application as use case of the APEIRON framework, 

highlighting the steps needed to scale a standard Vitis HLS application towards a multi-FPGA 

implementation. RAIDERS’s task is to perform particle identification (PID) on the stream of events 

generated by the RICH (Ring Imaging CHerenkov) detector in the CERN NA62 experiment at a rate of about 

10 MHz, using neural networks.  
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Figure 4.6 Examples of events belonging to class 2 and 3 (2 or >=3 charged particles) as detected by the 

array of RICH photomultipliers (blue dots are the hit photomultipliers, red circles are the tracks 

reconstructed offline by the NA62 experiment offline analysis software framework)   

 

The inference task consists in providing an estimate for the number of charged particles (0, 1, 2, >=3) for 

any RICH detector event, that corresponds to the number of ring tracks that can be reconstructed from the 

pattern of photomultipliers that have been illuminated (hit) by the Cherenkov light cone emitted by a 

charged particle traversing the detector, as shown in Figure 4.6. The inference task is implemented with a 

preprocessing stage (Imagifier) and a Convolutional Neural Network (CNN). The CNN model has been 

developed using Tensorflow/Keras and deployed on FPGA with the HLS4ML [4] software package, refer to 

deliverable D4.8 - Framework for efficient CNNs inference on a TEXTAROSSA node for a complete 

description of this workflow.  The CNN receives in input the output of the Imagifier kernel, a 16x16 image 

of the hit photomultipliers (PMTs) map for each physics event and produces an estimate for the number 

of charged particles it contains. Considering the high event rate of the experiment, sustaining an adequate 

processing throughput is the main challenge for such a system.  

In deliverable D6.2 - Initial Application Benchmarks and Results we reported results obtained on two single-

FPGA implementations of the application, including one and two inference pipelines respectively. Here we 

scale the number of Xilinx Alveo U200 FPGAs from 2 to 4, in order to increase further the reconstruction 

throughput, deploying the HLS processing tasks according to what is shown in Figure 4.7. 
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Figure 4.7 RAIDER HLS processing tasks deployed on the 4 FPGAs execution platform. 

 

As the Figure 4.7 shows, there are two kinds of nodes (and hence the overall Multi-FPGA design includes 

two different bistreams): 

1. I/O and Preprocessing node: data are loaded from Host memory and sent through the network 

via an HLS kernel (“sender”). Data are then processed by the Imagifier HLS kernel which turns the 

PMT hitlist information into a 256bit word (16x16 B&W image) that is sent to the Computing node 

through the external links. As a second task, this node is in charge of receiving the output of the 

CNN computation and storing it on Host memory via an HLS kernel (“receiver”). The processing 

time, from the first packet sent to the last received, is measured on this node host. 

2. Computing node: images coming from external links are taken as input and dispatched to one or 

both the CNN HLS kernels (depending on the configuration) to compute the predictions. Results 

are then sent back to the I/O and preprocessing node. 

Since for each type of node we need a different bitstream, two different YAML configuration files are 

needed for APEIRON to generate the firmware to be flashed on each kind of node.  

These two files are reported below: 

 

kernels: 

 -name: sender 

    input_channels: 1 

    output_channels: 1 
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    switch_port: 0  

 

 -name: receiver 

    input_channels: 1 

    output_channels: 1 

    switch_port: 0 

 

  -name: imagifier 

    input_channels: 1 

    output_channels: 1 

    switch_port: 1 

 

config: 

  freq: 100 

  links: 2 

Listing 4.1: “Preprocessing node" YAML configuration file 

kernels: 

 -name: cnn_kernel 

    input_channels: 1 

    output_channels: 1 

    switch_port: 0  

 

 -name: cnn_kernel 

    input_channels: 1 

    output_channels: 1 

    switch_port: 1 

 

config: 

  freq: 100 

  links: 2 

Listing 4.2: “Preprocessing node" YAML configuration file 

 

The file format includes two main sections: the kernels section lists the number of computing kernels in 

the design by name, indicating the IntraNode port of the Communication IP they are connected to and 

the number of I/O channels they use, the config section is used to specify the number of InterNode ports 

and the target clock frequency for the synthesis of the overall design. 
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Note that since this version of the application is based on the preliminary version of the Communication 

IP, described in deliverable D2.8 - IP for low-latency inter-node communication links, part 1 , the clock 

frequency of the overall design to be synthesized is set to 100 MHz.  

 

extern "C" void imagifier (unsigned int nports, unsigned int nboards, 

                           message_stream_t  message_data_out[N_INPUT_CHANNELS], 

                           message_stream_t  message_data_in[N_OUTPUT_CHANNELS]) { 

#pragma HLS interface ap_ctrl_none port=return 

#pragma HLS interface axis port=message_data_in 

#pragma HLS interface axis port=message_data_out          

  

        static unsigned ch_id = 0; 

        word_t word; 

        word_t buff_out[5]; 

        ap_uint<IMAGE_SIZE*IMAGE_SIZE> image = 0; 

        size_t size=0; 

        for (int i=0; i<MAX_WORD; i++) { 

 

            //Streaming events reception ==> reading of TEXTAROSSA and event headers 

            if(size==0){ 

                   auto hd = message_data_in[ch_id].read();  //TEXTAROSSA header 

                   size = hd.range(size_start_bitpos,size_end_bitpos)/sizeof(word_t); 

                   buff_out[0] = message_data_in[ch_id].read(); //event header 

                   size--; 

            } 

            if(size>0) word = message_data_in[ch_id].read(); 

  

            for (int j=0; j<MAX_HIT_PER_WORD; j++) { 

#pragma HLS pipeline 

                if (size==0) continue; 

                unsigned short pmt = word.range((j+1)*16-1, j*16); 

                if (pmt==0) continue; 

                auto x = x_bin[pmt]; 

                auto y = y_bin[pmt]; 

                if (x>=0 && y>=0)  image.set (x+IMAGE_SIZE*y); 

            } 

            if(size>0) size--; 

 

            if (size==0){ 

                auto ftr = message_data_in[ch_id].read(); 

                break; 

            } 

        } 

 

        if(size>0){ 

            while(size>0){ 

                auto flush = message_data_in[ch_id].read(); 

                size--; 

            } 

            auto ftr = message_data_in[ch_id].read(); 

        } 

  

        buff_out[1] = image.range(127,0); 

        buff_out[2] = image.range(255,128); 

  

        static unsigned task_id = 0; 

        static unsigned dest_coord = 1; 

 

        send(buff_out, 3*sizeof(word_t), dest_coord, task_id, ch_id, message_data_out); 

   

        ch_id = (ch_id + 1) % N_OUTPUT_CHANNELS; 

        if (ch_id >= N_OUTPUT_CHANNELS-1)  task_id++;  

        if(task_id >= nports){ 

                task_id = 0; 

                dest_coord++; 

                if(dest_coord >= nboards) dest_coord=1; 

        } 

    } 

} 

Listing 4.3: Imagifier HLS kernel 
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Starting from the I/O and Preprocessing node, the “imagifier” HLS kernel is reported in Listing 4.3.  

From interfaces defined with Vitis pragmas (in particular “#pragma HLS interface ap_ctrl_none 

port=return”), we can notice that this is defined as a free-running kernel: a kernel which starts with the 

bitstream loading on the device, without any call by the CPU host (which is required by “sender” and 

“receiver” kernels, instead).  

The “imagifier” works on packets of data coming from the network with the TEXTAROSSA communication 

protocol, each of them corresponding to a single physics event. To increase the overall design 

throughput, and so to work in streaming mode, we decided to not use the HAPECOM receive() API by 

directly reading data from input channels with the Vitis read() function. However, in this way, to have the 

packet size information, we must access to a certain bit address of the TEXTAROSSA header bounded by 

size_start_bitpos and size_end_bitpos enumerations. After that, we proceed with the receiving of the 

single event header, which has the information relative to the number of words composing the event and 

the event timestamp (as can be seen in Figure 4.8), and then we work on each event word to obtain the 

PMT hitlist and to convert it to a 16x16 image.  

 

Figure 4.8 Structure of events data coming from NA62 RICH readout boards. Since in the RAIDER 

application we work on 128 bit words, we refer as “event header” to the fields: event timestamp, number 

of hits, event fine time, and reserved.  

 

As last step of the preprocessing, this image (and the event timestamp) is sent via HAPECOM send() API 

to one of the Computing nodes in a “round robin” way, selecting each CNN kernel of each node as 

possible destination. 

 

Extern "C" void cnn_kernel(message_stream_t message_data_in[N_INPUT_CHANNELS], 

                           message_stream_t message_data_out[N_OUTPUT_CHANNELS]) 

{ 

#pragma HLS interface ap_ctrl_none port=return 

#pragma HLS interface axis port=message_data_in 

#pragma HLS interface axis port=message_data_out 

#pragma HLS dataflow     

  

    hls::stream<input_t> nnet_input; 

    hls::stream<result_t> nnet_output; 

    hls::stream<ap_axis<128,0,0,0>> stream_timestamp; 

 

    read_from(message_data_in, nnet_input, stream_timestamp); 

    hwfunc(nnet_input, nnet_output); 

    get_class(nnet_output, message_data_out, stream_timestamp); 

} 

Listing 4.4: “cnn_kernel" HLS code 

As the main component of Computing nodes of the setup, the HLS code of “cnn_kernel” is reported in 

Listing 4.3. From interfaces, we can notice that this is defined as a free-running kernel (as for “imagifier” 

one) and it is composed by different task functions pipelined via HLS dataflow Vitis pragma. This allows 
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functions to overlap in their operation, increasing the overall throughput of design by increasing 

concurrency of the RTL tasks implementation. In detail: 

• “read_from” receives packets from the networks, extracting information to be streamed as CNN 

input (nnet_input, 256 bit image) and to be streamed to the get_class() function to set the 

timestamp to the processed event (stream_timestamp); 

• “hwfunc” is the task in which the FPGA implemented CNN (obtained from the HLS4ML 

framework) processes streaming input images; 

• “get_class” receives CNN output and extract the predicted ring class. This is timestamped and 

sent through the network via the HAPECOM send() API.  

 

We have scaled the system from 2 nodes (one I/O and preprocessing and one computing) up to 4 

increasing the number of computing nodes as shown in Fig.4.7 and measured the processing time per 

event and the integrated processing throughput of the system; results are tabulated for the former and 

plotted for the latter in Figure 4.8 (throughput is in millions of events per second, MHz in figure).  

 

 

Figure 4.8: Scaling of processing time per event (left) and processing throughput (right) 

with the number of deployed CNN kernels  

 

The presented results show the good scaling of system performance with the number of nodes. The 

flattening slope of the curve when the number of CNNs goes beyond 4 is mainly due to the saturation of 

the data injection rate in the “sender” on the Preprocessing node.  

The co-design of APEIRON software stack along with its Communication IP allowed reaching very low and 

deterministic latency and a high fraction of the channel raw bandwidth for communications between 

FPGAs, addressing two fundamental bottlenecks for real-time distributed streaming applications at the 

same time, while allowing for a straightforward development and deployment of multi-FPGA HLS designs. 
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5 TAFFO in the HLS 

flow  
Approximate Computing is an increasingly popular approach to achieve large performance and energy 

improvements in error-tolerant applications [1,2]. This class of techniques aims at trading off computation 

accuracy for performance and energy. Within Approximate Computing, a key issue is to perform each 

computation on the most energy and performance-efficient data type that allows to preserve the desired 

minimum accuracy. This non-trivial task is usually performed manually by embedded systems 

programmers, and in general by software developers that need to achieve high performance with limited 

resources. However, this operation is error-prone and tedious, especially when large code bases are 

involved. Thus, a significant research effort has been spent over the recent years to build compiler-based 

tools to support or entirely replace the programmer effort [3]. 

TAFFO is an autotuning framework that aims at optimising the selection of data types in C and C++ 

programs, particularly by replacing floating point operations with equivalent ones based on other 

representations, including fixed point. TAFFO has been proven to enable major speedups on most error-

tolerant classes of applications when targeting embedded microcontrollers that lack hardware support for 

floating point operations, but can also help improve performance and energy on more high-end platforms. 

TAFFO is implemented as a set of plugins for the industry-grade LLVM compiler framework, enabling its 

deployment in most modern systems. Additionally, this feature allows TAFFO to be seamlessly integrated 

within HLS tools that also are based on LLVM, such as AMD Vitis. In this section we introduce TAFFO, its 

architecture and means of operation, and how it can be used in an HLS flow in order to enable mixed-

precision tuning on FPGA-based platforms. 

5.1 Architecture of TAFFO 

TAFFO tackles all the challenges of precision tuning [3], and it does so by using safe and deterministic static 

analyses. The user is expected to annotate the source code to provide information on the dynamic value 

range for the input variables and on the scope of the optimization. In general, to achieve the best results, 

the optimization scope should be a mathematically intensive computational kernel. The annotations to 

insert depends on the input data to the program, therefore the typical user of TAFFO is a domain expert 

who has access to the required information. A static data flow analysis propagates the value ranges to all 

the intermediate values in the program and determines the set of variables that need to be changed in 

type. This analysis is able to operate across function calls and loops if required. 

Based on the fine-grained description of the dynamic value ranges produced by the data flow analyses, 

TAFFO performs the Data Type Allocation. For each dynamic value range, a constraint is derived on the 

data type such instruction can use. At this point, TAFFO determines the data type to assign to each variable 

automatically. Two different approaches are available for this task. The first one exploits a local best-fit 

algorithm that performs adjacent similar type coalescing. A customisable cost function can take into 

account the overhead introduced by type cast operations only, which varies depending on the target 

architecture. A second more complex algorithm [4] builds a partial mathematical model of the program 

that describes the variation in execution time and output error for a given architecture depending on the 

data type selection. This model is fed into an integer-linear-programming constraint solver to select the 

optimal data types for each variable that must be optimized. This new approach requires a more through 

architectural model and is more effective for embedded platforms, while the simpler local best-fit 

algorithm is more effective on superscalar architectures. 
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Once the data type has been decided, TAFFO performs the code conversion on the LLVM-IR. It 

automatically searches for instructions known to be equivalent for the target data type and -- if they exist 

-- replaces their use in the code. Whenever an equivalent instruction (or pattern of instructions) is not 

immediately available --- e.g. in the case of a function call to a generic function --- TAFFO implements a 

two-way best-effort approach. In case of called functions whose definition lives within the same file, TAFFO 

creates an ad-hoc version of the callee. Mathematical library functions with known behaviour --- e.g. sin 

and cos --- and no fixed point equivalent have their implementation generated on demand [5]. In the rest 

of unknown cases, TAFFO rejects the proposed data type and locally uses the original one. Appropriate 

type-cast operations are inserted if required. 

Finally, TAFFO performs a functional and performance estimation of the conversion's benefits via static 

analysis techniques. It is worth to mention that both the cost function from the data type allocation, and 

the performance estimator from this last stage require an architectural model of the target machine. In 

absence of such model, TAFFO uses default values which may be suboptimal for the target architecture. 

5.2 Structure of the Software 

TAFFO is shipped as a set of LLVM passes, i.e. elementary units of the compiler pipeline. In particular, the 

execution flow runs through five stages: Initialization, Value Range Analysis, Data Type Allocation, Code 

Conversion, Feedback Estimator. The outline of the compilation pipeline of TAFFO is shown in Figure 5.1. 

The passes can be inserted in any point of the optimization pipeline, but usually they are executed 

immediately after the frontend. Other normalization and analysis passes are automatically scheduled by 

LLVM as required. 

 

Figure 5.1 TAFFO compilation pipeline 

The Initialization pass processes the user annotations, and determines the scope of the transformation 

which will be performed by later passes --- in other words which instructions are affected by the type 

change of the annotated variables. This process is performed through a reverse depth-first iteration in the 

data flow graph. Annotations can be placed on any variable declaration, and contain information about the 

value range of the variable itself, and additional directives that affect TAFFO's operation. An example of 

how these annotations appear in the source code is shown in Figure 5.2, which also shows the output 

LLVM-IR after the rest of the analyses and transformations performed by TAFFO. 
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Figure 5.2: Illustration of how to use TAFFO annotations, and the resulting LLVM-IR produced by TAFFO. 

The Value Range Analysis pass performs a fine-grained requirements analysis meant to augment the 

existing LLVM-IR with additional information based on Interval Analysis [6], and a simplified symbolic 

execution framework. 

The Data Type Allocation pass decides which data type should be used for each intermediate value. It is 

designed to avoid overflow. Secondarily, it attempts to minimise accuracy loss and performance 

degradation due to type cast overhead. The data types supported by TAFFO are single and double precision 

floating point, bfloat16 and fixed point types of arbitrary size and point position. The set of types allowed 

in the optimized program can be adjusted at compile time. 

The code conversion and supplementary code generation pass modifies the program code in order to 

enforce the usage of the data types determined by the previous passes of TAFFO. It preserves code 

semantics within the given value ranges. Whenever the conversion of an unknown external procedure is 

required, the data type is retained to the original version.  

This Error Propagation Pass performs an additional code analysis which estimates the error in the output 

with respect to the original code. The error analysis is based on affine number theory [7,8] in order to 

handle cancellation errors. 

5.3 Integration with AMD Vitis 

Vitis is the platform provided by AMD for development of all software related to their hardware products, 

and it seamlessly integrates with Vivado, their hardware design toolchain. Within the overall Vitis toolchain, 

Vitis HLS is the industry-leading solution for High Level Synthesis. Vitis HLS integrates with Vivado in order 

to provide a seamless workflow for transforming C and C++ code into a hardware design suitable for AMD's 

FPGA offerings. While in the past Vivado and Vitis were bundled as a single product, AMD has modularized 

the overall toolchain, and open-sourced several of its parts, including the Vitis HLS frontend software. As 

the Vitis HLS frontend is based on LLVM, it is possible --- at least in principle --- to adapt TAFFO to behave 

like a plugin for Vitis HLS to enable mixed precision in HLS workflows. The overall compilation toolchain 

with the addition of TAFFO is shown in Figure 5.3. 

 

Figure 5.3 Mixed precision HLS compilation toolchain. Components that require modifications are shown 

in yellow, while other components are in green. 
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The integration of TAFFO with Vitis involves the insertion of TAFFO inside the standard Vitis pipeline, and 

also requires some modification to the Vitis frontend. The addition of TAFFO to the pipeline is performed 

by taking advantage of the Tcl scripting system provided by Vitis. The scripting system allows for insertion 

of additional compilation steps after the Vitis frontend, and we use this feature to insert TAFFO. The Vitis 

frontend itself needs to be adapted in order to ignore and preserve TAFFO annotations, and to produce 

debugging information that is compatible with upstream LLVM in order to enable the later processing of 

the IR by TAFFO. TAFFO itself is modified to enable the integration. First of all, TAFFO has been backported 

to LLVM 8, from LLVM 15, as Vitis still uses an out-of-date base version of the framework. Specifically, LLVM 

8 has been released in 2019. Moreover, TAFFO needs to process correctly the additional metadata inserted 

by Vitis for guiding later backend stages. This was done by appropriately modifying the Initializer pass of 

TAFFO. 

5.4 Using TAFFO with Vitis 

Optimizing an HLS application with TAFFO can be performed by following a few simple steps. First of all, it 

is necessary to install TAFFO and Vitis from their respective websites. Currently we support the version of 

Vitis HLS included in Vivado 2023.1, without additional modifications, at the expense of non-complete 

debugging information available later in the workflow. The required version of TAFFO is a customized 

release, named "TAFFO-HLS", which will be available from the TAFFO website (https://github.com/TAFFO-

org/TAFFO). Installing TAFFO also requires the installation of LLVM and Clang version 7.0.1 in a systemwide 

location. 

After all the prerequisites have been installed, a mixed-precision synthesis of an HLS application with TAFFO 

is performed by creating and running custom Tcl script. A template for this script is shown in Listing 5.1. 

The template script needs to be customized for the specific use-case. In particular, the commands 

"open_project", "open_solution", "add_files", "set_top", "set_part" and "create_clock" are fully 

customizable. When using the Vivado IDE, it is possible to automatically create a suitable Tcl file from an 

existing project which then can be modified to add the TAFFO-specific commands: "set 

::LLVM_CUSTOM_OPT" and "set ::LLVM_CUSTOM_CMD". Notice that the "set ::LLVM_CUSTOM_CMD" can 

be further modified from what is shown here to modify the options passed to TAFFO in order to more 

precisely configure the autotuning process. In a system-level perspective, this script positions TAFFO in the 

"User input LLVM IR" step of the HLS pipeline. After creating the script, it needs to be run from the Vivado 

Tcl console. 

open_project -reset 'proj_name' 

open_solution -reset 'solution1' 

add_files 'your_design.c' 

add_files -tb 'your_tb.c' 

set_top 'your_function' 

set_part 'your_device' 

create_clock -period 'your_clock' 

set ::LLVM_CUSTOM_OPT taffo 

set ::LLVM_CUSTOM_CMD {$LLVM_CUSTOM_OPT -vitis-hls -emit-bc} 

csynth_design 

Listing 5.1 Template Tcl script for TAFFO and Vitis HLS integration 

Running the script shown above will allow Vivado to automatically tune the application with TAFFO and 

then synthesize it. A separate script is needed for co-simulation, as shown in Listing 5.2. This other script is 

used just like the first one. 

open_project -reset 'proj_name' 

open_solution -reset 'solution1' 

https://github.com/TAFFO-org/TAFFO
https://github.com/TAFFO-org/TAFFO
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add_files 'your_design.c' 

add_files -tb 'your_tb.c' 

set_top 'your_function' 

set_part 'your_device' 

create_clock -period 'your_clock' 

set ::LLVM_CUSTOM_OPT taffo 

set ::LLVM_CUSTOM_CMD {$LLVM_CUSTOM_OPT -vitis-hls-cosim -emit-bc} 

cosim_design 

Listing 5.2 Template Tcl script for co-simulation with TAFFO and HLS Vitis 

5.5 Modifying an application 

Once the development environment has been set up, the C/C++ code of the HLS application needs to be 

modified to add TAFFO annotations appropriately on variable declarations. This is done by employing the 

TAFFO annotation language. The TAFFO Annotation Language is used to specify various properties on the 

variables of the program, in order to allow TAFFO to properly infer the ranges and the errors of all the other 

values involved in a computation. The overall grammar of the language is shown in Figure 5.3. 

  

Figure 5.3 TAFFO annotation grammar 

The main components of the language are attributes and data type patterns. Attributes are used to state 

a property of the variable being annotated. Data type patterns are used to bind attributes to a specific part 

of the variable; thus, most attributes are contained inside a data type pattern. Note that, except when 

explicitly specified, the syntax of the TAFFO annotation language is always case-sensitive. 

The TAFFO Annotation Language supports string and numeric literals. String literals are represented by a 

sequence of characters enclosed by single quotes ('). Any quoted character except for @ and ' is interpreted 

literally. The special sequence @' allows to include the single quote character inside the string, and the 

special sequence @@ allows to include the at-sign character. Integer-number literals are a sequence of 

one or more consecutive numeric characters. Such literals follow the same syntax as integer literals in the 

C programming language. Thus, the 0 prefix indicates that the following characters are a octal-base literal, 

and the 0x prefix indicates that the following characters are a hexadecimal-base literal. Boolean literals are 

words that specify a binary truth value. The words true and yes are used to specify a true value. The words 

false and no are used to specify a false value. It is not possible to implicitly cast an integer literal to a 

boolean literal. Real-number literals are similar to integer-number literals but also have a decimal part. The 

decimal separator is the dot (.). Again, the syntax is the same as the one used by the C programming 

language. 
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At the topmost level, an annotation string is composed by zero or more top-level attributes, and exactly 

one data type pattern except for void. The order of these elements is irrelevant, and they are optionally 

separated by any amount of whitespace. Each top-level attribute can appear only once, and each of them 

enable specific features of TAFFO which do not depend on the data type of the variable. Top level attributes 

can be "errtarget", "target" and "backtracking". 

 Data type patterns contain the attributes that relate to the actual data stored in the variable. We refer to 

such attributes as data attributes. For uniform data types, i.e. arrays and variables of primitive types, the 

"scalar" pattern is used. Instead, for arrays and variables of composed types, such as structs, the "struct" 

pattern needs to be introduced. The "scalar" pattern includes only one Data Attribute, while the "struct" 

pattern includes an attribute for each element of the struct. Notice that since TAFFO works at LLVM-IR level 

it cannot take into account the fact that certain programming languages introduce additional hidden 

members in struct types, and/or internally cast struct data to/from large integers to support specific 

Application Binary Interface (ABI) details. Therefore, the "struct" data type pattern needs to be used with 

extreme caution. TAFFO however can detect any discrepancy between the expected amount and type of 

struct members and the information specified in the annotations. When the discrepancies found do not 

allow the compilation process to continue, a detailed diagnostic is output to inform the user. 

Finally, data attributes are used to specify properties of the data stored in the variable. The range attribute 

specifies the range of the values that can be stored in the annotated variable. The first literal is the 

minimum value, the second literal is the maximum value. The disabled keyword specifies that this data 

item should not be modified by Conversion even though it is annotated. The final keyword prevents the 

value range analysis stage from widening the initial range supplied for this variable. Note that this can be 

done as far as TAFFO is able to keep track of the annotated variable in LLVM IR, so this works best for arrays 

and structs. 
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6 Efficient use of the 

HLS flow in the 

streaming model  

6.1 Fine-grain parallelism in the streaming model 

In this section, let's analyze some techniques that could be used to efficiently implement algorithms 

through the HLS flow in the streaming model. A streaming kernel is a device that receives a continuous 

sequence of input data and produces a continuous sequence of output data. Let's indicate with the ordered 

set 

IS = {dii | dii is an input data, i=1, 2, …} 

the input sequence and, similarly, with  

OS = {doi | doi is an output data, i=1, 2, …} 

the output sequence, which can have a number of data different from the input sequence. The kernel K 

implements the transformation from IS to OS. In a streaming model, indices 'i' are temporally related as 

data flow through input/output channels characterized by a certain finite bandwidth (BW). These data 

cannot be presented to the kernel simultaneously. Instead, they can be fed to 'K' in groups, with the group 

size GS depending on the BW of the input channel, which, in turn, is determined by the width W of the 

channel, 

GS =W/ sizeof(di) 

GS is the parallelism on input data available, i.e. we can read contemporaneously GS input element di. 

Let’s distinguish two different cases:  

• the output depends only on input data and 

• the output depends on input data and previous output data 

6.1.1 Output depends only on input data 
Let’s consider WSi, a subset of IS, defined as follows: 

WSi={dij | dij is used by K to produce doi} 

WSi contains the input data needed by K to produce doi. If the algorithm implemented by K is regular (i.e. 

the distance dependence is constant), we can define the buffering space to compute doi (BSi) as the set of 

all the input data belonging to IS and going from i-d- to i+d+, where d- (and d+) represents the maximal 

distance separating di from all previous (subsequent) element in WSi  

BSi={dij | dij ∈IS, j=i-d-,..., i+d+ } 

Due to the regular nature of the algorithm implemented by K, the size of the buffer set is constant: every 

time new data enters BS, the oldest element exits from BS. The number of input elements necessary to 

pass from BSi to BSi+1 represents the input that must be read to produce the new output doi+1. If the number 

of elements that can be read at each time step is greater than the number required to compute the new 

output, the computation can generate at least one new output value at each time step If 'GS' is sufficiently 
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large to allow more output values to be computed, the kernel functionality can be replicated multiple times 

to generate the number of new values permitted by the 'GS' size. In a more formal context, we can express 

this as follows: if 

 

𝐺𝑆 ≥ |𝐵𝑆𝑖+1 ∖ 𝐵𝑆𝑖| 

then, new outputs can be computed at each time step. Specifically, ‘p’ new elements can be computed at 

each time step by replicating the kernel ‘p’ times, where ‘p’ is calculated as 

𝑝 = 𝐶𝑒𝑖𝑙 (
𝐺𝑆

|𝐵𝑆𝑖+1 ∖ 𝐵𝑆𝑖|
) 

The variable 'p' serves as a measure of the data parallelism that can be harnessed in the implementation 

of kernel 'K,' given the constraint associated with the width of the input channel. This is based on the 

assumption that there are sufficient resources to implement 'p' replicas of the functionality of kernel 'K.' 

In the preceding discussion, our primary focus was on the input channel, assuming that the output channel 

had the capacity to support the required throughput. However, it's crucial to acknowledge that if the 

output channel does not possess the necessary capacity, a similar examination should be conducted on the 

output channel's capabilities. In this scenario, the most stringent condition, whether it pertains to the input 

or output channel, should be considered to determine the degree of parallelism 'p.' The degree of 

parallelism 'p' should be determined by the component (input or output) that imposes the stricter 

limitation, ensuring that the system operates efficiently and avoids bottlenecks in either data input or 

output.  

In the context of the computation Kf:IS->OS, where doi = Kf(WSi) is determined based on specific input 

values, it's important to note that the computations of two distinct output values, doi and doj, are 

independent of each other and can be parallelized. As previously mentioned, it's possible to compute up 

to 'p' output values in parallel once the sets WSi, …, WSi+p-1 have been read from the input channels. 

If the computation of the kernel functionality Kf requires more than one time step, due to the 

independence of these different Kf computations, we can leverage temporal parallelism. This can be 

achieved by implementing a pipeline structure for Kf, allowing different phases of Kf for different Kf 

computations to overlap in time during execution. 

We call fine-grained the previous two types of parallelism (data and temporal parallelism). 

6.1.2 Output depends on previous outputs data 

Let's focus on cases where the output depends on the current input data and the previous output. In such 

scenarios, the computation is typically described by the classical recurrence equation: 

doi = doi-1 ◊ f(dii) 

Here, ◊ represents an associative and commutative binary operator that combines the previous output 

with some function of the current input(s). A classic example of this is computing the scalar product 

between two vectors1: 

 
1  For a detailed description of the scalar product implemented as sketched in this paragraph, refer to 

Marongiu A., Palazzari P.: “Using High-Level Synthesis to Implement the Matrix-Vector Multiplication on FPGA”, 

Proc. Of the ISC 2020. June 22-25, 2020 
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𝑠 = ∑ 𝑎𝑖𝑏𝑖

𝑛

𝑖=0

 

This computation can be expressed through the recurrence relation: 

𝑠𝑖 = 𝑠𝑖−1 + 𝑎𝑖𝑏𝑖 ,     𝑖 = 1,2, … , 𝑛; 𝑠0 = 0;  𝑠 = 𝑠𝑛 

In the above expression, we can identify the ‘+’ operator as the associative and commutative operator and 

the product between two numbers as the function f(). 

To leverage fine-grain data and pipeline parallelism, we can partition the input data into GS subsets, for 

example, using a cyclic ordering scheme like the following: 

Vj = {vi mod GS = j , i=1, 2, …,n}  j =0, 1, …, GS-1 

Within each subset, Vj, the partial scalar product can be computed, generating GS partial results sj that can 

subsequently be merged to produce the desired result, as shown below: 

𝑠 = ∑ 𝑠𝑗

𝐺𝑆−1

𝑗=0

 

Should the ◊ operator (in the example, the ‘+’ operator) not be computable in a combinatorial way but 

should involve L cycles of latency to produce its output, we should introduce L auxiliary partial results for 

each of the GS already defined partial results; at each clock cycle a new partial result computation begins, 

while the other already started partial computations proceed. The introduction of this other dimension of 

the partial results, sized L, implies partitioning each of the GS  partial vectors Vi into L sub-vectors Vi,j. After 

L cycles, doi-L exits from the pipeline and can be accumulated with the input to compute 

doi = doi-L ◊ f(dii) 

Summarizing, input data (vectors a and b in the example considered) should be partitioned in GS×L subsets 

to compute GS×L partial results: 

𝑠𝑖,𝑗,𝑘 = 𝑠𝑖−1,𝑗,𝑘 + 𝑎𝑖,𝑗,𝑘𝑏𝑖,𝑗,𝑘 ,      𝑠0,𝑗,𝑘 = 0;    𝑖 = 1,2, … , 𝑛/𝐿;  𝑗 = 1,2, … , 𝐿;  𝑘 = 0,1, … , 𝐺𝑆 − 1  

The partial results must be merged through the associative and commutative operator, i.e. 

𝑠 = ∑ ∑ 𝑠𝑗,𝑘

𝐿

𝑘=1

𝐺𝑆−1

𝑗=0

 

Following the previous scheme, at each time instant GSxL operations are being executed: each of the GS 

parallel functions has L different instances of the ◊ operator at different stages of execution. 

 

6.2 Vitis implementation of the fine-grain parallelism 

6.2.1 Output depending only on input data 

To implement fine-grain parallelism in Vitis HLS, let’s consider as explanatory example the following simple 

code for transforming an RGB image into the corresponding Y image. 
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#define W 256   //width in bit of the I/O streams 

#define S 8     // number of bits to encode one image component (R,G,B,Y) 

typedef ap_uint<W> T; 

static void RGB2Y( hls::stream<T>& sR,  

hls::stream<T>& sG, 

hls::stream<T>& sB,  

hls::stream<T>& outStreamY,  

unsigned int ImgSize,  

unsigned int NbImages) 

{ 

 T tmpR, tmpG, tmpB, resY; 

unsigned char r, g, b, Y; 

unsigned char cY; 

for (unsigned int k=0; k<NbImages; k++) { 
for (int i = 0; i < (ImgSize*S/W); i++) { 

#pragma HLS pipeline 

tmpR = sR.read(); 

tmpG = sG.read(); 

tmpB = sB.read(); 

 

for (int j=0; j<(W/S); j++) { 

#pragma HLS unroll 

 

r = (tmpR.range(S * (j + 1) - 1, S * j).to_int()); 

g = (tmpG.range(S * (j + 1) - 1, S * j).to_int()); 

b = (tmpB.range(S * (j + 1) - 1, S * j).to_int()); 

cY = (871*r+2929*g+296*b)>>12; 

resY.range(S*(j+1)-1,S*j) = cY; 

} 

outStreamY.write(resY); 

} 

} 

} 

 
 

The T datatype represents a fixed-point integer with W=256 bits. The width of each stream is 256 bits, so 

it transports 32 image components. Let’s combine the sR, sG and sB streams into one (logical) input stream 

IStream having width W = 768 bits. WSi for the RGB2Y kernel is composed of the R, G, and B components 

of the ith pixel and the buffering space is BSi=WSi={Ri, Bi, Gi} in this case,  

𝐵𝑆𝑖+1 ∖ 𝐵𝑆𝑖   =  {𝑅𝑖+1, 𝐺𝑖+1, 𝐵𝑖+1} 

so  

GS =W/ sizeof(di) = 768/(8) = 96 

and 

𝑝 = 𝐶𝑒𝑖𝑙 (
𝐺𝑆

|𝐵𝑆𝑖+1 ∖ 𝐵𝑆𝑖|
) =

96

3
= 32 

This means that the available data parallelism is 32, which allows us to read 32 sets of 3 values <R, G, B> at 

each time step. You achieve this through the following instructions, which are scheduled in parallel because 

they reference different streams:  

tmpR = sR.read(); 

tmpG = sG.read(); 

tmpB = sB.read(); 
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These instructions effectively read the 32 components for R (R0-R31), G (G0-G31), and B (B0-B31) in 

parallel, taking full advantage of the data parallelism available in the design. 

The following loop  

for (int j=0; j<(W/S); j++)  

is fully unrolled, which means it effectively breaks down into individual operations for each value of 'j' 

without any loop control. This unrolling allows for the parallel extraction of all the 32 'r,' 'g,' and 'b' 

components from the 'tmpR,' 'tmpG,' and 'tmpB' variables. To access the 'r,' 'g,' and 'b' components, the 

.range(S * (j + 1) - 1, S * j) method is used, which retrieves the S=8 bits ranging from 'S * j' up to 'S * (j + 1) 

- 1'. 

Thanks to the complete unrolling of the loop, the instruction  

cY = (871*r+2929*g+296*b)>>12; 

instantiates 32 independent operations to compute the 32 cY components starting from the 32 just 

extracted r, g, and b components. 

The last instruction of the unrolled loop is  

resY.range(S*(j+1)-1,S*j) = cY; 

 

that inserts the 32 just computed cY components into the proper position of the resY variable. This is done 

for all 32 components in parallel, ensuring efficient processing and taking full advantage of fine-grain 

parallelism. 

Thanks to the #pragma HLS pipeline , the for (int i = 0; i < (ImgSize*S/W); i++) is pipelined, 

i.e. at each time step a new instance of its body is scheduled to be started, while the other previous 

instances are still under processing. In this case, the stages of the pipeline are 

1. Read input data from the sR, sG and sB streams 

2. Compute in parallel the 32 cy components and assign them to the resY output variable 

3. Write resY into the outStreamY stream 

The previous structure can be used as a template for many streaming regular problems. Let’s give a 

reference template structure, to be adapted to the specific function to be implemented. 

typedef ap_uint<W> T; 

static void RGB2Y( hls::stream<T>& sI1,  

…, 

hls::stream<T>& sIN,  

hls::stream<T>& outS1, 

… 

hls::stream<T>& outSM, 

… // other parameters specific to the kernel to be implemented) 

{ 

T tmp1, …, tmpN, outV1, …, outVM; 

scalarType v1, v2, …; 

scalarType res1, …, resM; 

for (int i = 0; i < NumberOfInputsToBeRead; i++) { 

#pragma HLS pipeline 

//read all input data required to produce the desired output 

tmp1 = sI1.read(); 

…  

tmpN = sIN.read(); 

 

for (int j=0; j<p; j++) { 

#pragma HLS unroll 
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// process in parallel all the p instances of the just-read inputs 

v1 = (tmpI1.range(S * (j + 1) - 1, S * j).to_int()); 

… 

vN = (tmpIN.range(S * (j + 1) - 1, S * j).to_int()); 

outV1 = f1(v1, …, vN); 

… 

outVM = fM(v1, …, vN); 

    

res1.range(S*(j+1)-1,S*j) = outV1; 

… 

resM.range(S*(j+1)-1,S*j) = outVM; 

 } 

outS1.write(res1); 

… 

outSM.write(resM); 

} 

} 

 

 

6.2.2 Output depending on previous output data 

To illustrate the implementation of fine-grain data and pipeline parallelism in the presence of computations 

involving, other than input data, previously computed outputs, we refer to the scalar product between two 

vectors. 

The function takes input data from the upStream and leftStream streams, each transporting 8 floating 

point data (thus GS = 8). The length of the vector to be multiplied is N, a function parameter. 

To accumulate the GSxL partial results the vector “float r[SUM_LATENCY][GS]” is used; this vector is 

completely unrolled in its 2nd dimensions, i.e. there are GS independent vectors, each sized SUM_LATENCY, 

used to store the partial results. 

SUM_LATENCY is the latency of the ‘+’ floating point operator (in our test SUM_LATENCY = 4). 

After the starting loop which initializes vector r[][], there is a pipelined loop that computes the GSxL 

partial results. Thanks to its structure, HLS compiler is able to instantiate 8 floating point adders and 8  

floating point multipliers, feeding into the adders, at each clock cycle, 8 different floating point values. 

After the computation loop there is the final accumulation step, which sums all the partial results to obtain 

the final result. 

void scalarProduct( hls::stream<ap_int<256>>& upStream,  

hls::stream<ap_int<256>>& leftStream,  

unsigned int N) 

{ 

    float r[SUM_LATENCY][GS]; 

    float tmp[SUM_LATENCY][GS]; 

    float scalarResult; 

#pragma HLS ARRAY_PARTITION variable=r complete dim=2 

#pragma HLS ARRAY_PARTITION variable=tmp complete dim=2 

 

 // Init the accumulator r 

 for (unsigned int j = 0; j < SUM_LATENCY; j++) { 

 #pragma HLS unroll 

  for (unsigned int k = 0; k < GS; k++) { 

  #pragma HLS unroll 

   r[j][k] = 0.0; 

  } 

 } 

 //Compute the partial scalar products stored in the r vector 

 ap_int<256> val1,val2; 
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 unsigned int a1, a2; 

 float tmp_add; 

 for (unsigned int i = 0; i <(int)N/GS-(SUM_LATENCY-1); i += SUM_LATENCY) { 

 #pragma HLS pipeline 

  for (unsigned int j = 0; j < SUM_LATENCY; j++) { 

  #pragma HLS unroll 

   val1 = upStream.read();  

   val2 = leftStream.read();  

   for (int k = 0; k < GS; k++) { 

   #pragma HLS unroll 

    a1=ap_int<32>(val1.range(32*(k+1)-1,32*k)).to_int(); 

    a2=ap_int<32>(val2.range(32*(k+1)-1,32*k)).to_int(); 

    tmp[j][k] = *(float*) ((&a1)) * *(float*) ((&a2)); 

    r[j][k] = tmp[j][k] + r[j][k]; 

   } 

  } 

 } 

// compute the scalar product through the sum of the partial scalar products 

 scalarResult = ((((r[0][0] + r[0][1]) + (r[0][2] + r[0][3]))) 

   + (((r[0][4] + r[0][5]) + (r[0][6] + r[0][7]))) 

   + (((r[1][0] + r[1][1]) + (r[1][2] + r[1][3]))) 

   + (((r[1][4] + r[1][5]) + (r[1][6] + r[1][7])))) 

   + ((((r[2][0] + r[2][1]) + (r[2][2] + r[2][3]))) 

   + (((r[2][4] + r[2][5]) + (r[2][6] + r[2][7]))) 

   + (((r[3][0] + r[3][1]) + (r[3][2] + r[3][3]))) 

   + (((r[3][4] + r[3][5]) + (r[3][6] + r[3][7])))) 

   + (((r[4][0] + r[4][1]) + (r[4][2] + r[4][3]))) 

   + (((r[4][4] + r[4][5]) + (r[4][6] + r[4][7]))); 

} 

 

 

6.3 The medium-grain parallelism 

In several cases, there is a natural increase in data granularity. Consider matrix computations, where 

individual rows (or columns) of the matrix can serve as atomic elements for expressing matrix operations. 

For instance, new matrix elements can be thought of as scalar products between rows and columns. 

Similarly, in image processing, certain computations can be viewed as operations between image lines. 

When applying a convolution filter with a radius 'r,' the new line of an image can be seen as the result of 

processing 2r+1 input lines. 

Let's formalize this concept. 

The kernel computation vKf: IS->OS operates on medium-grain I/O data, such as vectors and image lines. 

We can denote the input vector sequence as: 

IVS = {vii | vii is an input vector, i=1, 2, …} 

Similarly, the output vector sequence can be represented as: 

OVS = {voi | voi is an output vector, i=1, 2, …} 

The input and output vectors are ordered sets of input and output data (di and do) 

The vector kernel function generates one new output vector from the set VWSi which contains the input 

vectors needed, 

VWSi={vij | vij is used by vkf to produce voi} 
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The implementation of the vector kernel function can still leverage the fine-grain parallelism described in 

the previous paragraph. 

However, due to the large size of VWSi, which has constant size for uniform problems, when data are read 

from the input stream, they are not fed directly to the kernel function. Instead, they are stored in buffers 

allocated in the local memory, characterized by fast access time, typically with a data latency of 1 clock 

cycle.  

To define the structure of the pipelined medium-grain implementation, we introduce some auxiliary 

functions: 

- readVector(instream, v, vSize): This function reads vSize bytes from instream, using data 

and temporal parallelism, to read W bits per cycle from the input stream. It stores them in v in a 

pipelined manner. 

- push(v): This function inserts v into VWS, while removing the oldest vector previously stored in it. 

- writeVector(outstream, v, vSize): This function reads v from the local memory and writes 

it to outstream. Again, it employs data and temporal parallelism, writing W bits per cycle into the 

output stream. 

The vector kernel function, defined as vkf(VWS, v), reads data from the VWS to generate the output 

vector v. It follows the structure outlined in the previous paragraph to leverage data and temporal 

parallelism. The key distinction is that input data is not read or written from/to streams but instead from 

memory modules, typically the SRAM modules within FPGAs. 

The kernel algorithm is implemented in a pipelined way and is organized as a sequence of macro-steps. In 

the steady state, during each macro-step, each function (readVector(), compute vkf(), writeVector()) is 

active and processes a different input VWS. 

Let’s determine the number of vectors needed to implement the computation:  

- 1 vector is necessary to read, during each macro-step, the input vector that will be used in the next 

macro-step to compute the output vector. 

- N vectors are needed to store the VWS, with N representing the number of input vectors required 

to compute an output vector. 

- 2 vectors are essential to store the output vectors, following a double buffering scheme. One 

vector is used to store the results computed by the vector kernel function, while the other is used 

by the writeVector(...) function to send the result vector computed in the previous macro-

step to the output streams. The roles of these vectors are exchanged during each macro-step. 

Let’s give the general structure of the computation that implements the kernel which leverages the 

medium-grain pipelined parallelism: 

/* 

pipeline preamble to reach the steady state. In this preamble it is managed the 

eventual production of output vectors when input vectors are not enough to produce 

an output 

*/ 

…   

while (not all input data have been consumed) { 

readVector(instream, v1, vSize); 

if (doubleBufferingPhase == ‘A’) { 

vkf(VWS,vOutA); 

writeVector(outstream, vOutB); 

} 

else { 
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vkf(VWS,vOutB); 

writeVector(outstream, vOutA); 

} 

flip(doubleBufferingPhase); 

push(v1); 

} 

/* 

Postamble to manage the tail of the pipeline. No more data are read from the input. 

*/ 

…  

 

 

6.4 Vitis HLS implementation of the medium-grain pipeline 

In this paragraph, we give an example to show how the previous scheme could be implemented in the Vitis 

HLS flow. 

As an illustrative example, we will use the implementation of a 3x3 filter to process images received 

through the input stream. Below, you'll find the code to implement the kernel function. Within this code, 

the function  

- readline<T>(inStream, line, NbParallelInputWords) reads the image line 'line' from 

inStream. Both inStream and the vector line handle data with a datatype of T. In our example, 

T is an ap_uint<256>, meaning it is a 32-byte wide data. This function corresponds to what was 

previously referred to as readVector() in the previous paragraph. 

- filter_one_line_3x3<T,S,W>(l1, l2, l3, lout1, ,…) reads line l1, l2, l3 to produce 

the output line lout1; this function corresponds to the vkf() in the previous paragraph; in this 

case the input working set for the function is VWS={l1, l2, l3} 

- writeline<T>(outStream, line, NbParallelInputWords) writes the image line 'line' into  

outStream. Both outStream and the vector line handle data with a datatype of T. This function 

corresponds to what was previously referred to as writeVector() in the previous paragraph. 

 

The push(v) function has not been implemented, as the VWS has been explicitly managed, taking into 

account all four possible cases for the rotation of the 4 input lines. In other words, VWS is structured as 

follows: VWS = {l1, l2, l3} | {l2, l3, l4} | {l3, l4, l1} | {l4, l1, l2}. The 

filter_one_line_3x3() function is then called with the appropriate VWS configuration. 

The double buffering is achieved using the variable output_line which determines the line (lout1|lout2) 

to be passed to the writeline() function. Conversely, the complementary line is passed to the 
filter_one_line_3x3() function.  

template <typename T, int S, int W>    

// S is the size, in bits, of the pixel component.  

// W is the width, in bits, of data type T 

void do_3x3_filtering(hls::stream<T>& inStream,hls::stream<T>& out_stream, 

  unsigned short int ImgRows, unsigned short int ImgCols, 

  … // other parameters) 

{ 

int i; 

T l1[MAX_COMPONENT_LINE_SIZE]; 

T l2[MAX_COMPONENT_LINE_SIZE]; 

T l3[MAX_COMPONENT_LINE_SIZE]; 

T l4[MAX_COMPONENT_LINE_SIZE]; 

T lout1[MAX_COMPONENT_LINE_SIZE]; 

T lout2[MAX_COMPONENT_LINE_SIZE]; 
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short int new_read_line = 1; 

short int output_line = 1; 

 

// pipeline preamble 

readline<T>(inStream,line1,NbParallelInputWords); 

readline<T>(inStream,line2,NbParallelInputWords); 

readline<T>(inStream,l3,NbParallelInputWords); 

readline<T>(inStream,l4,NbParallelInputWords); 

filter_one_line_3x3<T,S,W>(l1, l2, l3, lout1, ,…); 

 

// pipeline steady state 

for (i=4; i<ImgRows; i++)  // Steady state code 

{ 

if ((new_read_line == 1) && (output_line == 1)) 

{ 

readline<T>(inStream,l1,NbParallelInputWords); 

filter_one_line_3x3<T,S,W>(l2, l3, l4, lout2 , ...); 

writeline<T>(out_stream, lout1, NbParallelInputWords); 

new_read_line = 2; output_line = 2; 

} 

else if ((new_read_line == 1) && (output_line == 2)) 

{ 

readline<T>(inStream,l1,NbParallelInputWords); 

filter_one_line_3x3<T,S,W>(l2, l3, l4, lout1 , ...); 

writeline<T>(out_stream, lout2, NbParallelInputWords); 

new_read_line = 2; output_line = 1; 

} 

else if ((new_read_line == 2) && (output_line == 1)) 

{ 

readline<T>(inStream,l2,NbParallelInputWords); 

filter_one_line_3x3<T,S,W>(l3, l4, l1, lout2 , ...); 

writeline<T>(out_stream, lout1, NbParallelInputWords); 

new_read_line = 3; output_line = 2; 

} 

else if ((new_read_line == 2) && (output_line == 2)) 

{ 

readline<T>(inStream,l2,NbParallelInputWords); 

filter_one_line_3x3<T,S,W>(l3, l4, l1, lout1 , ...); 

writeline<T>(out_stream, lout2, NbParallelInputWords); 

new_read_line = 3; output_line = 1; 

} 

else if ((new_read_line == 3) && (output_line == 1)) 

{ 

readline<T>(inStream,l3,NbParallelInputWords); 

filter_one_line_3x3<T,S,W>(l4, l1, l2, lout2 , ...); 

writeline<T>(out_stream, lout1, NbParallelInputWords); 

new_read_line = 4; output_line = 2; 

} 

else if ((new_read_line == 3) && (output_line == 2)) 

{ 

readline<T>(inStream,l3,NbParallelInputWords); 

filter_one_line_3x3<T,S,W>(l4, l1, l2, lout1 , ...); 

writeline<T>(out_stream, lout2, NbParallelInputWords); 

new_read_line = 4; output_line = 1; 

} 

else if ((new_read_line == 4) && (output_line == 1)) 

{ 

readline<T>(inStream,l4,NbParallelInputWords); 

filter_one_line_3x3<T,S,W>(l1, l2, l3, lout2 , ...); 

writeline<T>(out_stream, lout1, NbParallelInputWords); 

new_read_line = 1; output_line = 2; 

} 

else if ((new_read_line == 4) && (output_line == 2)) 

{ 

readline<T>(inStream,l4,NbParallelInputWords); 

filter_one_line_3x3<T,S,W>(l1, l2, l3, lout1 , ...); 

writeline<T>(out_stream, lout2, NbParallelInputWords); 

new_read_line = 1; output_line = 1; 
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} 

} 

// end of the pipeline steady state 

 

// first stage of the postamble - We do not read anymore new lines 

if ((new_read_line == 1) && (output_line == 1)) 

{ 

filter_one_line_3x3<T,S,W>(l2, l3, l4, lout2 , ...); 

writeline<T>(out_stream, lout1, NbParallelInputWords); 

output_line = 2; 

} 

else if ((new_read_line == 1) && (output_line == 2)) 

… 

else if ((new_read_line == 4) && (output_line == 2)) 

{ 

filter_one_line_3x3<T,S,W>(l1, l2, l3, lout1 , ...); 

writeline<T>(out_stream, lout2, NbParallelInputWords); 

output_line = 1; 

} 

 

// second stage of the postamble - We do not do more processing 

if (output_line == 1) 

writeline<T>(out_stream, lout1, NbParallelInputWords); 

else 

writeline<T>(out_stream, lout2, NbParallelInputWords); 

} 

 

 

The following figure displays the Gantt chart illustrating how the previous code is executed. The time steps 

of the pipeline are referred to as 'macro steps,' and each of them encompasses operations that require 

many clock cycles. In this figure, it is assumed that the time required to read one line from the input stream, 

write one line to the output stream, and compute the output line from the three input lines is equivalent. 

This assumption is reasonable since all the functions involved are pipelined and operate with the same data 

parallelism. If the functions had different execution times, the length of the macro step would be 

determined by the maximum of these execution times. 

 

6.5 The coarse-grain pipeline 

In some cases, the algorithm structure necessitates processing all input data before starting to transmit 

output values. This is particularly true for operations like vertical mirroring of an image, where the last line 

of the image must be received before initiating the output transmission. In such scenarios, we are in a 
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'store and forward'-like computation, where data from the input stream is first completely read (store 

phase), which may include some preprocessing, and then it is re-read for further processing and forwarding 

to the output stream (forward phase). To ensure a continuous flow of data in these situations, the 

computing kernel responsible for processing needs to be duplicated, and appropriate splitting and merging 

devices must be introduced to maintain the uninterrupted data flow towards one of the two kernels. 

The input set is still composed of (large) vector data, and we process a sequence of such vectors (for 

instance, a sequence of images) 

IVS = {vii | vii is an input vector, i=1, 2, …} 

Similarly, the output vector sequence can be represented as: 

OVS = {voi | voi is an output vector, i=1, 2, …} 

The vector kernel function generates one new output vector from the set VWSi which contains the input 

vectors needed, 

VWSi={vij | vij is used by vkf to produce voi} 

The implementation of the vector kernel function can still leverage the fine-grain and medium-grain 

parallelism described in the previous paragraph. 

In order to keep the notation simple, let’s suppose that voi = vkf(vii), meaning the output vector depends 

only on the current input vector. The more general case can be properly addressed by adding additional 

buffering to store all the necessary input vectors. However, given the use of large vectors, they cannot be 

stored in the internal SRAM of the FPGA memory but must be placed in the larger external DDR memory. 

The vkf has the following structure: 

while (there are input data to be processed) 

{ 

readVector(inStream,v); 

processAndWrite(v, outStream); 

} 

 
 

The readVector() function is responsible for reading the entire vector v from the inStream. Since the 

data processing depends on the contents of v, the processAndWrite() function is initiated only after the 

completion of readVector(). 

The processAndWrite() function employs a combination of fine-grain and medium-grain parallelism to 

read and process data from the v vector. As soon as the data is processed, it is sent to the outstream in a 

pipelined way. When analyzing the I/O streams, the kernel's behavior can be divided into two distinct 

phases: 

1. In the first phase, there is continuous data streaming through inStream, while no activity occurs 

on outstream. During this phase, the VKF kernel is executing the readVector() function. 

2. In the second phase, inStream remains inactive, and there is continuous data streaming on 

outStream. This phase corresponds to the VKF kernel's execution of the processAndWrite() 

function. 

As both readVector() and processAndWrite() functions are pipelined, their execution time, neglecting the 

initiation latency, is given by 
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𝑇𝑟𝑒𝑎𝑑𝑉𝑒𝑐𝑡𝑜𝑟 =
|𝑣𝑖𝑛| × 𝑠𝑖𝑧𝑒𝑜𝑓(𝑑𝑖)

𝑊𝑖𝑛𝑆𝑡𝑟𝑒𝑎𝑚 × 𝑓𝑐𝑘
 

𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐴𝑛𝑑𝑊𝑟𝑖𝑡𝑒 =
|𝑣𝑜𝑢𝑡| × 𝑠𝑖𝑧𝑒𝑜𝑓(𝑑𝑜)

𝑊𝑜𝑢𝑡𝑆𝑡𝑟𝑒𝑎𝑚 × 𝑓𝑐𝑘
 

In the previous expressions,  

• W indicates the bit-width of the stream,  

• |v| the number of elements d contained in vector v;  

• W×fck is the bandwidth available on the stream. 

When dealing with such coarse-grain kernels, continuous streaming on the I/O streams can be achieved by 

replicating the vkf twice and using a pair of Split/Merge functions. The Split function takes a continuous 

sequence of input vectors from instream and sends them to two output streams, in an alternate way; the 

first vector is sent, in a completely pipelined way, to the first out stream, the second vector to the second 

out stream, the third vector is sent again on the first out stream and so on, repeating the process until all 

input vectors are processed. The Merge function has a dual behavior. It receives sequences of vectors 

alternately from its two input streams and sends them to the output stream. The following picture 

explicates this behavior. 

 

Figure: behavior of the Split and Merge functions 

In order to have continuous streaming on both the input and output streams, the throughput must be 

balanced, i.e. TreadVector=TprocessAndWrite must result: this means that WinStream and WoutStream, the parameters 

controlling fine-grain data parallelism, must be properly selected, resulting  

𝑊𝑜𝑢𝑡𝑆𝑡𝑟𝑒𝑎𝑚 = 𝑊𝑖𝑛𝑆𝑡𝑟𝑒𝑎𝑚

|𝑣𝑜𝑢𝑡| × 𝑠𝑖𝑧𝑒𝑜𝑓(𝑑𝑜)

|𝑣𝑖𝑛| × 𝑠𝑖𝑧𝑒𝑜𝑓(𝑑𝑖)
 

Putting the things together, in order to have continuous streaming in the case of coarse-grain functions, 

the following scheme must be adopted: 
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Figure: structure of the vkf global kernel, allowing continuous streaming on the I/O streams 

 

6.6 Vitis HLS implementation of the coarse-grain pipeline 

To illustrate the implementation of a coarse-grain kernel, we will refer to a kernel designed to enhance the 

contrast of an image received through the input stream. The process involves receiving the entire image to 

determine the maximum and minimum values assumed by the image pixels. While receiving the image, it 

is temporarily stored in a locally allocated buffer within the external memory. 

Once the maximum and minimum values have been computed, the image is read again, and new pixel 

values are calculated using linear scaling. These processed pixel values are then transmitted in a pipelined 

way through the output stream. 

The behavior of the inner vector kernel function, here called 'contrastEnhance’, clearly falls in the 

coarse-grain model: each computation on an image is independent of other images and the entire image 

must be received before starting to output the new image. 

The code to implement the function is the following: 

template <typename T, int S, int W>  

// T is the datatype associated to input and output streams   

// S is the size, in bits, of the pixel component.  

// W is the width, in bits, of data type T 

void contrastEnhance(T* Mem,    // external memory buffer 

hls::stream<T>& inStream,  

hls::stream<T>& outStream,  

unsigned int ImgSize, unsigned int NbImages) 

{ 

T tmp, minValues, maxValues, outVal; 

ap_uint<S> minV,maxV,currV,tmpMin, tmpMax; 

unsigned short int value; 

for (unsigned int k=0; k<NbImages; k++)  { 

for (int j=0; j<(W/S); j++)  { 

#pragma HLS unroll 

minValues.range(S*(j+1)-1,S*j) = 255; 

maxValues.range(S*(j+1)-1,S*j) = 0; 

 } 

// read the image,  

// search for the maximum and the minimum, and  

// store the image in an external memory bank 

for (int i = 0; i < (ImgSize*S/W); i++) { 
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#pragma HLS pipeline 

tmp = inStream.read();   

Mem[i] = tmp; 

for (int j=0; j<(W/S); j++) { 

#pragma HLS unroll 

  

currV = (tmp.range(S*(j+1)-1, S*j).to_int()); 

tmpMin = (minValues.range(S*(j+1)-1, S*j).to_int()); 

tmpMax = (maxValues.range(S*(j+1)-1, S*j).to_int()); 

if (currV < tmpMin) 

tmpMin = currV; 

if (currV > tmpMax) 

tmpMax = currV; 

minValues.range(S*(j+1)-1, S*j) = tmpMin; 

maxValues.range(S*(j+1)-1, S*j) = tmpMax; 

  } 

} 

minV = 255; 

maxV = 0; 

for (int j=0; j<(W/S); j++) { 

#pragma HLS unroll 

tmpMin = minValues.range(S*(j+1)-1,S*j); 

tmpMax = maxValues.range(S*(j+1)-1,S*j); 

if (minV > tmpMin) 

minV = tmpMin; 

if (maxV < tmpMax) 

maxV = tmpMax; 

 }  //minV and maxV are minimum and maximum values in the image; 

  

// re-read image from memory and  

// change the pixel values to use all the pixel dynamics 

for (int i = 0; i < (ImgSize*S/W); i++) { 

#pragma HLS pipeline 

tmp = Mem[i]; 

for (int j=0; j<(W/S); j++) { 

#pragma HLS unroll 

currV = (tmp.range(S * (j + 1) - 1, S * j).to_int()); 

if (maxV != minV) 

{ 

unsigned short tmp1, tmp2, tmp3; 

tmp1 = (unsigned short)(maxV-minV); 

tmp2 = (unsigned short)(currV - minV); 

value = (((255*256)/tmp1)*tmp2)/256; 

if (value > 255) 

value = 255; 

} 

else 

value = currV; 

outVal.range(S*(j+1)-1,S*j) = value; 

} 

outStream.write(outVal); 

} 

} 

} 

 

 

The kernel starts with the loop 

for (unsigned int k=0; k<NbImages; k++) 

This loop iterates to process multiple images, demonstrating coarse-grain pipelining as it overlaps the 

storage and processing phases for these images. 

Following the fine-grain parallelism scheme, W/S (width divided by size) data elements are concurrently 

read from the stream and stored in the external memory buffer Mem. During this read and storage 
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operation, the algorithm concurrently searches for maximum and minimum values. This parallelism results 

in W/S searches happening simultaneously, yielding W/S values for both the maximum and minimum at the 

end of the loop. 

Subsequently, another loop operates on these W/S maximum and minimum values to derive the maximum 

and minimum values for the entire image. 

After previous step, the image is stored in memory and the computation of Max and Min values is 

complete. The store phase of the algorithm has concluded. 

The forward phase is performed through the following loop 

for (int i = 0; i < (ImgSize*S/W); i++) 

This loop operates in a pipelined manner (#pragma HLS pipeline) and performs the following steps 

-  reads data from the external memory buffer (Mem)  

- performs a linear scaling on the just read W/S pixels 

- writes the W/S scaled pixel values into outStream  

In the previous paragraph, we discussed the need for a continuous data stream through the I/O streams. 

To achieve this, the vector kernel function must be instantiated twice. While one instance is in the store 

phase, the other is in the forward phase, and they switch roles at the completion of each image. 

To implement the continuous switching of the flow between the two instances, the split and merge 

functions must be implemented. They both use the fine-grain parallelism, and are implemented as follows: 

template <typename T, int S, int W>    

// T is the datatype associated to input and output streams   

// S is the size, in bits, of the pixel component.  

// W is the width, in bits, of data type T 

void split2Channels(hls::stream<T>& sin,  

hls::stream<T>& soutA, hls::stream<T>& soutB,  

unsigned int ImgSize, unsigned int NbImages) 

{ 

T tmp; 

unsigned short phase = 1; 

for (int k=0; k<NbImages; k++)  { 

if (phase == 1)  { 
for (int i = 0; i < (ImgSize*S/W); i++) { 

#pragma HLS pipeline 

tmp = sin.read(); 

soutA.write(tmp); 

} 

phase = 2; 

} 

else { 

for (int i = 0; i < (ImgSize*S/W); i++) { 

#pragma HLS pipeline 

tmp = sin.read(); 

soutB.write(tmp); 

} 

phase = 1; 

} 

} 

} 

  

template <typename T, int S, int W>    

void merge2Channels(hls::stream<T>& sinA, hls::stream<T>& sinB,  

hls::stream<T>& sout,  

unsigned int ImgSize, unsigned int NbImages)  

{ 
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T tmp; 

unsigned short phase = 1; 

for (int k=0; k<NbImages; k++) { 

if (phase == 1) 

{ 

for (int i = 0; i < (ImgSize*S/W); i++) { 

#pragma HLS pipeline 

tmp = sinA.read(); 

sout.write(tmp); 

} 

phase = 2; 

} 

else 

{ 

for (int i = 0; i < (ImgSize*S/W); i++) { 

#pragma HLS pipeline 

tmp = sinB.read(); 

sout.write(tmp); 

} 

phase = 1; 

} 

} 

} 

 

 

As we see, the two functions are perfectly symmetric:  

- split2Channels iterates on NbImages and, each image is alternatively sent through one of the 

two output streams in a pipelined way, with data parallelism given by W/S pixels. 

- merge2Channels iterates on NbImages and, each image is alternatively received through one of 

the two input streams in a pipelined way, with data parallelism given by W/S pixels. 

The code snippet below outlines the implementation of the alternate behavior that allows continuous 

streaming: 

#pragma HLS dataflow 
setNbImages(NbImages, NbImagesA, NbImagesB); 

split2Channels(sin, sA, sB, ImgSize, NbImages); 

contrastEnhance(BufferA, sA, soutA, ImgSize, NbImagesA); 

contrastEnhance(BufferB, sB, soutB, ImgSize, NbImagesB); 

merge2Channels(soutA, soutB, sout, ImgSize, NbImages); 

 

The dataflow pragma instructs the compiler to execute all tasks in parallel, synchronizing based on data 

availability; 

The setNbImages() function divides the NbImages variable by two, assigning half of its value to NbImagesA 

and the other half to NbImagesB. If NbImages is odd, NbImagesA is assigned the value of NbImagesB + 1. 

The split2Channels() function reads NbImages from sin and alternately sends NbImagesA images to 

sA and NbImagesB to sB. 

The behaviour of merge2Channels() is dual: it reads alternately NbImagesA images from soutA and 

NbImagesB from soutB and sends NbImages to sout. 

 The two instances of the contrastEnhance kernel refer to two distinct temporary buffers BufferA and 

BufferB, used to store and reload images during the store and forward phases. 
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6.7 Efficient burst access to DDR banks 

As accessing external memory incurs an initial penalty cost, it's essential to optimize data access in external 

memory by performing burst accesses. In some cases, continuous reading or writing of data from adjacent 

memory locations isn't possible. For example, when data originates from a data compressing engine, it may 

not be available at every clock cycle because the output data is typically smaller than the input data. In 

such scenarios, we recommend using a small intermediate buffer allocated in the fast internal BRAM 

modules. This buffer allows for handling irregular accesses without incurring any startup penalties, and it 

can be efficiently moved to and from the external memory using burst accesses. 

To enable continuous memory access, the adoption of a double buffering scheme is essential. In this 

scheme, while one internal buffer is being burst-accessed in the external memory (either for reading or 

writing), the other buffer is utilized by the kernel for data access, and vice versa. Below, we present the 

HLS code for implementing this double buffering scheme when writing data to external memory. 

bool Stream2Buff(hls::stream<dt>& inStream,  

    dt* Buffer,  

    unsigned int *NbData) 

{ 

 dt tmp; 

 unsigned int i=0; 

 tmp = inStream.read(); 

while ((tmp.last==false)&&(i<BUF_SIZE-1)) { 

Buffer[i] = tmp.data; 

tmp = inStream.read(); 

i++; 

     } 

Buffer[i] = tmp.data; 

*NbData = i+1; 

 return tmp.last; 

} 

 

void Buff2Mem(dt* Buffer, dt* Mem, unsigned int NbData, unsigned int offset) 

{ 

 for (unsigned int i=0; i<NbData; i++) 

  Mem[offset + i] = Buffer[i]; 

} 

 

void Stream2Memory( dt* out, 

   hls::stream<dt>& inStream) { 

 unsigned int offset = 0; 

 unsigned int i=0; 

 unsigned int NbData1, NbData2; 

 bool phase = false; 

 dt Buffer1[BUF_SIZE]; 

 dt Buffer2[BUF_SIZE]; 

 bool last = false; 

 last = Stream2Buff(inStream, Buffer1, &NbData1); 

 while (last == false) 

 { 

  if (phase == false) 

  { 

   Buff2Mem(Buffer1, out, NbData1, offset); 

   last = Stream2Buff(inStream, Buffer2, &NbData2); 

   offset += NbData1; 

  } 

  else 

  { 

   Buff2Mem(Buffer2, out, NbData2, offset); 
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   last = Stream2Buff(inStream, Buffer1, &NbData1); 

   offset += NbData2; 

  } 

  phase = !phase; 

 } 

 if (phase == false) 

  Buff2Mem(Buffer1, out, NbData1, offset); 

 else 

  Buff2Mem(Buffer2, out, NbData2, offset); 

} 

 

 

As we can observe, we have defined two auxiliary functions: Stream2Buff() and Buff2Stream(). These 
functions facilitate the movement of data between an internal buffer, allocated on BRAM modules, and 
the input stream. The behavior of StreamToBuff() is controlled by the 'last' field of the input data. If 
packetized communication, controlled by the 'eop' signal, is not in use, we can rely on the message's size 
being transferred to determine the end-of-transmission condition. Both functions are easily pipelined by 
the Vitis HLS compiler, allowing each of these functions to read and write the bytes contained in the 'dt' 
data type (e.g., 16 or 32 bytes) at each clock cycle. 
The actual interfacing between the input stream 'inStream' and the external memory 'out' is carried 
out by the 'Stream2Memory()' function, which implements a double buffering scheme. In both phases of 
the 'ping-pong,' the HLS compiler detects that 'Buff2Mem()' and 'Stream2Buff()' are accessing different 
buffers, allowing them to be scheduled in parallel. This overlapping scheduling optimizes data movement 
between the stream and one internal buffer, along with the movement between the other internal buffer 
and the memory. 

6.8 Using HDL simulation to look inside FPGA parallelism 

To demonstrate the implementation of parallelism at the various levels of granularity, we've developed a 

simple image elaboration algorithm, as shown in the figure below. This algorithm incorporates two data 

mover modules (Mem2Stream and Stream2Mem), a 5x5 median filter, a split-merge pair, and two 

instances of the EnhanceContrast kernel. 

 

In the sections that follow, we present excerpts from the simulation waveforms to showcase the different 

levels of parallelism granularity. 

In the following figure, we present the I/O behavior of the median filter. As depicted, during each clock 

cycle, stream s1 reads while s2 writes a set of 16 bytes. Both signals, s1_read and s2_write, remain 
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continuously asserted, and the width of s1 and s2 is 128 bits. The module reads from the output side of s1 

(s1_dout) and writes to the input side of s2 (s2_din). 

The ability to read and process 16 bytes per clock cycle has been achieved using fine-grained data and 

pipeline parallelism. 

 

To illustrate the operation of medium-grain parallelism utilized in the median filter, we present the 

start/done signals of the readline(), writeline(), and median_filter_5x5_one_line() modules, 

which constitute the three stages of the asynchronous medium-grain pipeline. It is evident that all three 

modules are concurrently active, and the pipeline computation progresses at the pace dictated by the 

module with the longest execution time, which in this case is median_filter_5x5_one_line. Each of 

these modules is responsible for processing a different line: readline() reads the ith line, 

median_filter_5x5_one_line() processes the (i-1)th to (i-5)th lines, and writeline() writes the result 

line computed in the previous step, processing the (i-2)th to (i-6)th lines 

 

The image below illustrates the achievement of coarse-grained parallelism through the utilization of two 

identical EnhanceContrast modules in conjunction with a split/merge pair. As depicted, while 

EnhanceContrast_A reads an image from s2A, the EnhanceContrast_B module simultaneously writes the 

just-processed image to s3B (orange waveforms). Once this phase is completed, EnhanceContrast_A 

transitions to writing the just-processed image on s3A, while EnhanceContrast_B begins reading the new 

input image from s2B (green waveforms). 

 

Thanks to the fine-grained parallelism, the reading and writing of new groups of 16 bytes are executed 

during each clock cycle, as evident in the image below 

 



 TextaRossa – Deliverable D4.7 

textarossa.eu   D4.7 | 95 

 

 

 

7 Conclusions 
The significance of High-Level Synthesis (HLS) within the software framework developed in TEXTAROSSA 

for managing FPGA accelerators underscores the substantial efforts invested in leveraging existing HLS 

flows. Specifically, considerable focus has been directed towards utilizing established HLS methodologies, 

notably the Vitis HLS flow from AMD, and integrating them with both the hardware (HW) and software 

(SW) components under development within the project. 

This document outlines the interactions and utilization of various tools and Intellectual Properties (IPs) 

developed within the TEXTAROSSA project that interface with and utilize Vitis. 

For both the streaming and task-based parallel models, comprehensive discussions delve into the 

interfacing and utilization of the Vitis flow, accompanied by presented results highlighting the 

advantageous outcomes stemming from the adoption of FPGA accelerators. 

The APEIRON communication IP and its associated software stack are showcased, emphasizing their 

interfacing with the Vitis HLS flow. Additionally, the document introduces the defined API intended for 

accessing the communication hardware/software layer through the standard C++ Vitis programming style. 

Moreover, the document elucidates the integration of the TAFFO library into the Vitis flow. TAFFO's 

purpose lies in managing limited precision arithmetic, offering methods for code analysis destined for 

implementation on the accelerator. It also facilitates minimizing the size of variables used to maintain a 

specified precision level in the results. 

Lastly, recognizing that programming for High-Level Synthesis entails distinct considerations and skills 

compared to those in standard CPU/GPU programming, a dedicated section provides guidelines for 

effectively utilizing the HLS flow in the streaming model. 

 

 


