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Executive Summary  
 

This deliverable presents the progress on supporting Deep Neural Network applications within the 

Textarossa project. We show developments in two different and complementary directions.  

In the first part, we present algorithms for resource optimization when executing Convolutional Neural 

Networks on a heterogeneous server. We study memory optimization when training large neural networks, 

where we propose an improved re-materialization algorithm with significantly smaller overhead, and we 

show how combining clever re-materialization strategies with model parallelism can improve the parallel 

efficiency. We also present on-going work on optimizing the resource usage for the inference process, with 

progress both on allocation algorithms and on a prototype task-based implementation based on the StarPU 

runtime. 

In the second part, we present developments within the OmpSs@FPGA framework to better support the 

DNN use-case. We show an optimized implementation of a convolution kernel within the framework which 

outperforms state-of-the-art CPU implementations. We also introduce support within the OmpSs@FPGA 

framework for mixed precision data types and for the newer C++ 11 standard. Thanks to this new support, 

we developed an initial porting of the RAIDER inference application to the OmpSs task-based programming 

model. 
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1. Introduction 

 
The unprecedented availability of data, computation and algorithms have enabled a revolution of Artificial 

Intelligence (AI), as seen in Convolutional Neural Networks (CNNs) for vision, more recently Transformers 

and Large Language Models, resulting in revolutionary applications such as automatic computer vision, 

ChatGPT and generative AI. Deep Learning approaches have enabled a large spectrum of new applications 

in many businesses with their ability to process vast amounts of data and extract meaningful patterns. In 

healthcare, deep learning is used for disease diagnosis, drug discovery, and personalized medicine. In 

finance, it aids in fraud detection, algorithmic trading, and risk management. Deep learning also powers 

advancements in autonomous vehicles, enabling them to perceive the environment and make real-time 

decisions. In natural language processing, it drives chatbots, language translation, and sentiment analysis, 

enhancing human-computer interaction. Additionally, it plays a crucial role in image and speech 

recognition, powering applications like facial recognition systems and voice assistants. Furthermore, deep 

learning is utilized in industrial automation for predictive maintenance and quality control. Its versatile 

applications continue to grow, shaping the future of technology across diverse sectors. 

Training large neural network models is usually performed at a large scale, using a large number of 

computing nodes to process the vast amount of data samples required to obtain good accuracy. However, 

optimizing at the scale of a single server is relevant for several reasons. First, the efficiency of a large-scale 

execution relies on having efficient kernels and algorithms running on each of the nodes, so that the gains 

obtained by optimizing at the server level will result in similar gains when running at scale. Secondly, many 

other use-cases exist beyond training new neural network models from scratch. Once a large model is 

trained, it is very common to specialize it for more specific tasks, by providing a smaller set of data tailored 

to the needs of a particular application. This process is called fine-tuning, and typically requires significantly 

less computing power than the main training procedure. In addition, another important aspect of deep 

learning is in the inference part. Once the model has been trained for the required task, the inference 

process consists in answering requests, where new samples are fed into the network to obtain a prediction 

according to the current model parameters. This process also requires typically much fewer resources than 

training. Both use cases, fine-tuning and inference, are less resource-heavy than training from scratch but 

happen typically much more frequently. Efficiency gains from optimizing these use-cases on a single server 

can thus be very beneficial. 

Experts from the Deep Learning community typically use python frameworks such as PyTorch [10] to 

quickly develop and evaluate new models in a rapidly evolving field. These frameworks often need to trade 

some resource efficiency to obtain the inter-operability and ease-of-use required for such rapid 

prototyping. In this deliverable, we try to provide expertise from the High-Performance Computing 

community to typical deep learning use-cases. 

When designing a TEXTAROSSA node, it is thus very natural to consider supporting Deep Learning 

applications as a possible use-case. In this document, we present some contributions in this direction, with 

two very different but complementary approaches. In Section 2, we explore algorithmic techniques to 

improve the efficiency of resource usage when using Convolutional Neural Network applications at the 

server level. In Section 3, we discuss the technical aspect of developing a set of efficient CNN kernels for 

heterogeneous architectures enhanced with FPGA. In Section 4, we present a workflow for the deployment 

of CNNs on FPGA that is used in the RAIDER application and was presented in Deliverable 6.2. 

The contributions of this Deliverable are: 
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• An improved re-materialization strategy has been designed for reducing memory usage when 

training CNNs on a single GPU. 

• A combination of re-materialization with model parallelism has been proposed for a better parallel 

efficiency when training on multiple GPUs. 

• An ongoing work is underway for increasing the efficiency of performing inference requests on a 

heterogeneous server made of a multicore CPU and GPUs. 

• A 2d convolution kernel has been ported to FPGA devices using the OmpSs task-based 

programming model, with successive performance improvements, reaching competitiveness with 

CPU state-of-the-art implementations (like PyTorch). 

• The OmpSs@FPGA framework has been evolved to support mixed precision data types usually 

present in CNN implementations. 

• An improvement of the framework to support the newer C++ 11 standard has been reached, 

allowing an initial porting of the RAIDER inference application to the OmpSs task-based 

programming model. 

 This deliverable is related to the following project objectives as stated in the DoA:  

     Objective 1 - Energy efficiency. DNN executions are power hungry and one of the main sources of 

computing power usage nowadays. Executing in FPGA has been demonstrated to be competitive with other 

computing platforms in terms of energy efficiency. Improving resource usage for DNN applications and 

being able to easily port them to FPGAs using the OmpSs@FPGA programming model will help to improve 

inference and training energy efficiency. 

     Objective 2 - Sustained application performance. The aim of the work presented in this deliverable is to 

improve the performance obtained when executing DNN applications over the IDV-E platform by using 

better resource allocation algorithms, by improving the framework and also by improving the task 

scheduling through the use of the Fast Task Scheduler developed in Task 2.5.  In this deliverable it is also 

shown how CNN kernels performance can be improved in FPGAs. 

     Objective 4 - Seamless integration of reconfigurable accelerators. One of the main concepts behind 

OmpSs@FPGA is to allow the seamless integration of reconfigurable accelerators. In this deliverable we 

study how to integrate accelerators for CNNs.  

     Objective 5 - Development of new IPs. Although the IPs developed here are designed in HLS the CNN 

kernel developed by BSC will be fully available to the public and the source code is even listed in this 

deliverable. All code developed by Inria will also be fully available to the public. 

  

The work developed here is also related to the strategic goals of the project as follows: 

     Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic Research 

Agenda (SRA) for open HW and SW architecture. The StarPU and OmpSs@FPGA software frameworks are 

open source and publicly available as all the developments done in this project.  

     Strategic Goal #3: Opening of new usage domains. The work developed in this section is strongly aligned 

with this strategic goal as although GPUs and FPGAs are already used to perform both CNN training and 

inference the usual approach doesn’t involve the use of a task-based programming model to do so. The 

advantages of task-based programming models in general and StarPU and OmpSs@FPGA in particular 

(mainly programmability, portability and performance) would pave the way to new developments in the 

DNN world if the research is successful. 
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2. Efficiency of CNNs at the server level 
We separate this section into two parts: we first discuss improving efficiency during the training process 

and then present ideas for improving the efficiency of handling inference requests on an already trained 

neural network. 

1.  

2.  

2.1. Training Efficiency 
The landscape of Neural Networks has evolved very quickly, from the first vision networks like ResNet-50 

to Natural Language Processing transformer-based models like GPT. This evolution has led to increasingly 

better results at the cost of tremendous resource requirements. One of these resource requirements is 

memory usage during training, which comes both from the number of parameters of the models and the 

size of the activations that must be kept in memory to perform back-propagation. Since training is usually 

performed on computing resources such as GPUs or TPUs on which memory is limited; these memory 

requirements often become a limitation that needs to be addressed. 

 

Figure 2.1: Data versus model parallelism (source: Data vs Model Parallelism in TensorFlow, Illia Polosukhin) 

The first category of solutions consists in relying on parallelism (see Figure 2.1). Data parallelism [16] refers 

to the distribution of the memory related to the activations, at the cost of exchanging the network weights 

between the different resources using collective communications which can be expensive for networks 

with very large weights such as GPT for example.  On the contrary, model parallelism [9] consists in 

distributing the weights of the network, at the cost of the communication of activations. Because of the 

sequential nature of most neural network models, it is necessary to pipeline the computations to use model 

parallelism efficiently. This incurs memory overheads for the activations, and significantly limits the 

scalability. 
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Figure 2.2: Reducing peak memory with activation offloading 

The second category of solutions is purely sequential. Offloading [15] makes it possible to move some 

activations computed during the forward phase from the memory of the accelerator (GPU or TPU) to the 

memory of the CPU, and then to fetch them back at the appropriate moment into the memory of the GPU 

during the backward phase (see Figure 2.2). This solution therefore consumes bandwidth on the PCI-e bus 

between the CPU and the accelerator, which is also used to load training data. Another solution, called re-

materialization [6], consists in deleting from accelerator memory some activations computed during the 

forward phase and then recomputing them during the backward phase. This approach does not consume 

communication resources, but it does induce a computational overhead (see Figure 2.3). 

 

Figure 2.3: reducing peak memory with re-materialization 

In this section, we present two contributions for improving the efficiency of training at the server level. The 

first one proposes an improved algorithm for re-materialization and obtains significant results on the well-

known GPT networks. These results have been published in the ICML conference in 2023 [7]. The second 

contribution discusses the combination of model parallelism and re-materialization. 

2.2. Re-materialization 
A large part of the memory requirements during training come from the storage of the activations 

associated with gradient descent, since (almost) all the results computed during the forward phase must 

be kept in memory until they are used by the gradient computation during the backward phase. 
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 In this part, we focus on the re-materialization approach on a single GPU or TPU. This is sufficient in 

practice for a large variety of neural networks, especially for performing fine-tuning of large networks with 

limited resources. Furthermore, re-materialization can be trivially combined with data parallelism to 

accelerate training if necessary. In this framework, for a given memory constraint, the optimization 

problem consists in finding a sequence of computing, forgetting and recomputing actions which allow one 

to perform the training for given inputs and batch sizes, while fulfilling the memory constraint and 

minimizing the computational overhead.  

Previous solutions 

 To find the optimal sequence, different approaches have been proposed. In the first approach, like in Rotor 

[6], it is assumed that the dependencies within the model have a particular structure, typically a sequence 

of operations. In this case, using dynamic programming, it is possible to find the optimal order of 

computations in reasonable time. On the other hand, in the case where the computations performed by 

the model do not naturally consist in a sequence of operations, this approach requires to aggregate 

elementary operations into complex blocks to make the chain structure emerge. In this case, re-

materialization decisions must be made at the level of blocks, which reduces optimization opportunities.  

In the case of general graphs that are not structured as a sequence of elementary operations, another 

approach has been proposed in Checkmate [8]. It consists in describing the operations corresponding to 

both forward and backward phases as a Directed Acyclic Graph (DAG) and to find the optimal solution 

through solving an Integer Linear Program (ILP). The number of integer variables is proportional to 𝑉  × 𝐸 , 

where 𝑉  is the number of operations and 𝐸  is the number of arcs of the DAG. Hence, a major shortcoming 

of this approach is the computational time induced by solving the ILP. Typically, even using commercial 

solvers such as CPLEX or Gurobi, it is not possible (in one day of computation) to consider a GPT2 models 

with more than 10 transformer blocks, while classical instances include several dozens. 

 Such GPT neural networks are not completely sequential, but can be decomposed in a sequence of blocks, 

where each block contains several operations. It is a typical example where using Rotor requires one to 

aggregate all the operations of the same block together. Rotor therefore decides at the scale of the whole 

block whether to keep all the data or to delete them all during the forward phase. Checkmate, on the other 

hand, sees the whole graph describing the model and can therefore decide, independently and at the level 

of each operation, whether to keep its data or not.  

The Rockmate algorithm 

To improve over both solutions, we have proposed a new re-materialization strategy called Rockmate, 

which combines the ideas of (i) Checkmate, which finds good solutions in the case of general graphs but is 

slow, and (ii) Rotor, which finds the optimal solution only in the case of sequential networks but is fast. In 

Rockmate, models are seen as a sequence of blocks (in the sense of Rotor), but where several optimal 

strategies are pre-computed for each block (using a Checkmate-like approach). The main idea is to apply 

Checkmate inside each block and to apply Rotor on the complete sequence of blocks.  

 As discussed above, Rotor fails to compute very good re-materialization strategies because it can only 

choose between two options: keep all or delete all activations in the block. In Rockmate, we use a refined 

version of Checkmate to generate a larger set of re-materialization strategies for each block. A re-

materialization strategy is characterized by (i) the memory peak during the execution of the block (either 

during forward or backward) and (ii) the total size of the internal activations of the block that are kept 

between the forward phase and the backward phase. The first one ensures that this strategy can be 

executed within a given memory limit. The second one allows the dynamic program to know how much 

memory will be left for the next blocks. The number of different options to consider is a parameter of 



  

textarossa.eu   D7.1 | 14 

Rockmate, and we have observed that using at most 400 different strategies in total for each block is 

enough to get good solutions in practice. Since we apply Checkmate at the level of a block (and not on the 

whole network), the corresponding graph is small enough that the runtime remains small, even for 

generating the whole family of strategies. 

In summary, we have made the following contributions: 

• We have developed a graph-building tool that automatically extracts the Directed Acyclic Graph 

(DAG) of the model, divides it into a sequence of blocks and identify all blocks with identical 

structures to avoid applying Checkmate multiple times on similar blocks. 

• We have designed an improved Checkmate formulation that can express a limit over the size of 

activations which are kept in memory between the forward and backward phases of a block (and 

thus, during the execution of the following blocks). 

• We have proposed an improved Rotor algorithm which instead of having two solutions per block, 

can exploit the different re-materialization strategies computed during the second phase. The 

output of this algorithm therefore consists in a schedule which describes which block should be 

computed, in which order, and with which re-materialization strategy. 

• We have implemented all these algorithms into a Python framework, which can be used directly 

with a large variety of PyTorch models. This implementation is open-source and available at 

https://github.com/topal-team/rockmate 

 

Figure 2.4: performance results of Rockmate on GPT2 

An example of the performance results that can be achieved with this software is provided in Figure 2.4 for 

two variants of the GPT network (medium and large). This figure shows the computational overhead 

resulting from limiting the peak memory usage. The green dot denotes the performance achieved without 

any re-materialization. For any peak memory below this threshold, the red and blue lines provide the 

overhead in terms of computation time for the Rockmate and Rotor strategies respectively. We can see 

that Rockmate can reduce the memory usage by a factor of three, for an overhead limited to about 10%, 

twice smaller than the overhead of Rotor for the same memory budget. 

2.3. Combining model parallelism and re-materialization 
 

We now consider the (very common) case of a single server which contains several GPU devices. In such a 

context, it is natural to perform the training process in parallel on all the available GPUs of the server. The 

https://github.com/topal-team/rockmate
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most standard approach is called data parallelism, where the training samples are spread across all 

available GPUs so that each GPU processes a subset of the samples. When using data parallelism, the 

parameters of the model are replicated on all the GPUs to allow them to process the samples. To update 

the weights after each iteration, it is necessary to reduce all the gradients computed on all GPUs on a single 

resource, update the weights and then broadcast the resulting weights to all GPUs. For models with a very 

large number of parameters, data parallelism has two main drawbacks: memory usage is very high because 

of the replication of the parameters, and the associated communication costs become prohibitive and 

hinder the performance. 

An alternative approach is model parallelism, where the model parameters are distributed across the GPUs 

instead of being replicated: each GPU is in charge of a different part (or stage) of the neural network. In 

that case, each sample is processed successively by all the GPUs, so that we replace the communication of 

the parameters by communications of the activations between the different stages. Parallel execution is 

achieved by pipelining the samples on the different GPUs (see Figure 2.5): the total batch size of an iteration 

is divided in several micro batches, whose number is denoted by 𝑚 . The first micro-batch goes through 

the first stage of the neural network on the first GPU and the resulting activation is sent to the next GPU. 

While the second GPU processes this first micro-batch, the first GPU is available to process the next micro-

batch, and so on. In the GPipe model parallelism strategy [9], once all micro-batches have been processed, 

the backward pass is performed in reverse order. The PyTorch framework includes an implementation of 

this GPipe model parallelism strategy [11]. 

 

Figure 2.5: Model parallelism without pipeline (top), and with pipeline (bottom). Source: GPipe [9] 

 A deeper pipeline allows for better parallel efficiency because the pipeline remains full for a longer time. 

However, deepening the pipeline increases the memory used by the activations, which becomes a limiting 

factor for efficiency. It is thus natural to combine model parallelism with re-materialization: by storing 

fewer activations, one can reduce the memory pressure and in turn increase the total batch size and use 

an even deeper pipeline. The usual approach in most implementations is to only keep the first activation 

of each stage, forget all other activations, and recompute all of them during the backward pass. This very 

aggressive solution involves a large amount of recomputation which reduces, or even negates, the 

efficiency gains. This basic re-materialization approach is included in the GPipe implementation within the 

PyTorch framework. 

In the following, we present our work on exploring the possibility of using more clever re-materialization 

approaches. For simplicity, we chose to use the Rotor algorithm for this exploration, and we selected the 
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GPT neural network examples, on a small number 𝑁 = 2  or 𝑁 = 4  GPUs. We first explored a direct 

approach where the re-materialization optimization is performed independently on each micro-batch, and 

then a more global approach where all the micro-batches are optimized together. 

Direct approach: combining Rotor and Pipe 

 In the model parallelism setting, the neural network is divided in 𝑁  successive stages of equal sizes. We 

consider the example of the GPT neural network, which is made of several dozens of transformer blocks, 

all with the same computational workload. This makes it quite easy to divide it into stages of roughly 

equivalent workload, by assigning a similar number of transformer blocks to each GPU. We divide the batch 

size into 𝑚  micro-batches, where both the batch size and 𝑚  can vary depending on the performance of 

the re-materialization strategy. 

 Our first approach is the direct combination of Rotor with the Pipe implementation included in the PyTorch 

framework. For a given stage, we decide to optimize the re-materialization of each micro-batch separately. 

Since all micro-batches of the same stage perform the same computations, it is not necessary to perform 

the optimization several times: we use the same optimized strategy for all micro-batches. If the total 

available memory for activations is 𝑀  and the total batch size is 𝐵 , we use the Rotor algorithm with an 

available memory 
𝑀

𝑚
 and a batch size 

𝐵

𝑚
.  

 The Rotor framework provides a new PyTorch module that implements this optimized strategy, and we 

can provide this new module to the Pipe framework to obtain a pipeline over all the micro-batches. This 

direct implementation ensures that the peak memory usage remains below 𝑀 , discards a limited subset 

of the activations and optimizes the recomputation overhead of each micro-batch. 

  

Global approach 

 The direct approach presented above has a drawback: to ensure that the total peak memory usage remains 

below 𝑀 , it arbitrarily divides it equally between all micro-batches. However, this might be improved, in 

two different ways. First, there might be a more efficient way of distributing the available memory than 

such an equal repartition. Second, once the backward pass of one micro-batch has been computed, the 

corresponding activations are freed from memory. This additional memory capacity can be used to improve 

the re-materialization strategy of the next micro-batches and to further reduce the computational 

overhead. 

The most natural way of addressing both of these concerns is to optimize the whole sequence of micro-

batches with the Rotor algorithm. To do that, for each stage we create a sequence of micro-batches 𝐵1 

through 𝐵𝑚, separated by dummy operations that represent receiving the input of each micro-batch. We 

modify the Rotor algorithm to ensure that these dummy operations are not allowed to be recomputed, 

and we use this modified algorithm to optimize the whole sequence 𝐵1…𝐵𝑚. 

 After the optimization, we divide the re-materialization strategy into subsequences, one for each micro-

batch. We modify the Rotor runtime to ensure that it uses the correct subsequence at each micro-batch 

when interfaced with the Pipe framework. This results in a more optimized execution and further reduces 

the computational overhead. 

 

2.4. Inference Efficiency 
We now consider the inference phase of Convolutional Neural Networks. In other words, the model has 

been previously trained, so that the weights of the model are now constant throughout the inference 



  

textarossa.eu   D7.1 | 17 

phase. The goal of that phase is to process successive inference requests, where each request consists of 

one or several input(s), which need to be classified according to the Neural Network. 

We are interested in performing this phase at the server level, on a single node made of heterogeneous 

processing elements. These processing elements are usually a multi-core CPU on one side, and one or 

several GPU accelerator(s), or an FPGA component on the other side. To efficiently process requests on 

such an architecture, the goal is to optimize the usage of both kinds of resources so that they process parts 

of the networks adapted to their computational capabilities. 

This optimization can be measured by two different criteria: one can strive to optimize the throughput of 

the system, defined as the number of requests processed per time unit; one can also be interested in 

minimizing the latency of requests, defined as the time between the arrival of a new request and the time 

at which the request is completed. Depending on the assumptions and on the choices made in the 

optimization decisions, these criteria are sometimes equivalent (optimizing one also optimizes the other), 

and sometimes antagonistic (optimizing one implies worse performance for the other). 

The following sections present several directions of optimization that can be explored in such a context. 

We first discuss the possibility of partitioning the CNN across the heterogeneous hardware and the 

expected benefits. Then we present a task-based implementation of CNN inference that allows us to easily 

implement such partitioning solutions. 

2.5. Partitioning the CNN on heterogeneous hardware 
We consider a heterogeneous server, that typically contains one or several accelerator(s) and a multi-core 

CPU. This server must process requests for inference on a fixed CNN. 

The basic approach, typically used in software like Triton [14], is to use each kind of processing element 

independently. In the most basic scheme, only the accelerators are used, with the idea that they are 

significantly more efficient at the convolutional operations required for the CNN. This approach relies on 

replicating the parameters of the model over all the processing elements (for example, in the main memory 

of the CPU, and in the memory of each GPU or each FPGA). This replication ensures that requests can be 

processed independently on any processing unit. Whether the CPU is used or not, in both cases requests 

are load-balanced among all the processing elements to ensure that all computing resources are used 

equally. 

The main advantages of this approach are its simplicity: it is very easy to implement and does not require 

communication between the different computing elements. However, with the increase in the size of the 

models, the replication of the parameters of the model can induce a high memory pressure for large 

models. The most recent models will not even fit in the memory of only one computing element.  

Another issue with the basic approach is that all processing elements perform all parts of the computational 

workload of the CNN, whereas with the heterogeneity of the platform, some elements might have different 

affinities with different parts of the CNN. For HPC applications, it has indeed been observed [12] that this 

can result in superlinear speedup if each processing element performs the computations for which it is 

more suited. For example, in a typical CNN, the tasks near the end of the computation are performed on 

significantly smaller data, for which the GPU is less suited because there is less parallelism. 

For both reasons (decrease the memory usage and take advantage of the heterogeneity of the hardware), 

it is very relevant to partition the CNN across the different processing elements. In such a solution, each 

request would go through the processing elements in sequence: for example, the first GPU would process 

this request on the first part of the CNN, send the result to the second GPU which would process the second 



  

textarossa.eu   D7.1 | 18 

part of the CNN, and the CPU would process the end of the request to obtain the final result. Several 

successive requests can be pipelined to ensure that processing elements do not remain idle. 

In terms of memory usage, with such a solution, each processing element only needs to store the 

parameters of the model corresponding to the part of the network that it will compute. The parameters 

are thus distributed over the computing elements instead of being replicated. However, ensuring a correct 

load-balance between all computing elements is more challenging than in the fully replicated case. Careful 

optimization is needed to decide which part of the model is assigned to which computing element.  

In the rest of the section, we present an example of a linear programming formulation that can help 

perform this decision. 

2.6. Linear Programming Formulation 
We start by providing some notation. For ease of presentation, we assume that the CNN consists in a 

sequence of tasks 𝑇𝑖 for 1 ≤ 𝑖 ≤ 𝑛 , such that the output of task 𝑇𝑖is the input of task 𝑇𝑖+1. The input of 

task 𝑇1 is the input data of an inference request, and the output of task 𝑇𝑛 is the result of this request. We 

denote by 𝑤𝑖 the size of the model parameters needed to compute task 𝑇𝑖, and by 𝑜𝑖 the size of the output 

of task 𝑇𝑖. 

 We consider a server with 𝑚  heterogeneous processing elements and denote by 𝑝𝑖,𝑗 the processing time 

of task 𝑇𝑖 on the computing resource 𝑗 . We denote by 𝑀𝑗 the available memory on resource 𝑗 , and by 𝛽𝑗  

the communication bandwidth out of resource 𝑗 . 

  

The goal of the optimization procedure is to assign tasks of the CNN to the computing resources to optimize 

the resulting throughput, while satisfying the memory constraint on each computing resource. We assume 

a steady-state execution of requests and express the execution of tasks as an average over an execution 

period. 

  

Our formulation uses the following variables: 

• for all 𝑖  ≤  𝑛  and 𝑗  ≤  𝑚 , 𝑥𝑖,𝑗 represents the (fractional) number of tasks of type 𝑇𝑖   performed 

on resource 𝑗  during one unit of time. 

• for all 𝑖  ≤  𝑛  and 𝑗  ≤  𝑚 , 𝑠𝑖,𝑗 is equal to one if the parameters of task 𝑇𝑖 are stored on resource 

𝑗 , and equal to zero otherwise. 

• for all 𝑖  ≤  𝑛  and 𝑗  ≤  𝑚 , 𝑐𝑖,𝑗 represents the (fractional) number of data produced by task 𝑇𝑖 and 

sent by resource 𝑗 . 

• 𝜌  represents the (fractional) throughput of the solution, equal to the number of inference   

requests that can be processed during one time unit. 

  

Constraints: 

• The time spent computing on a given resource 𝑗  during one unit of time is bounded by 1: 

∀𝑗,   ∑ 𝑥𝑖,𝑗
𝑛
𝑖=1 𝑝𝑖,𝑗 ≤ 1 (1) 

• Computing a task 𝑇𝑖 on resource 𝑗  requires the parameters to be stored in memory: 
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∀𝑖, 𝑗,  𝑝𝑖,𝑗𝑥𝑖,𝑗 ≤ 𝑠𝑖,𝑗 (2) 

This constraint ensures that if 𝑠𝑖,𝑗 is 0, then 𝑥𝑖,𝑗 is also 0: it is not possible to compute any task 𝑠𝑖,𝑗 

without the parameters of the model. If 𝑠𝑖,𝑗 is 1, then this constraint becomes 𝑝𝑖,𝑗𝑥𝑖,𝑗 ≤ 1. Since 𝑥𝑖,𝑗 

is already constrained by (1), this means that when 𝑠𝑖,𝑗 is 1, 𝑥𝑖,𝑗 can take any feasible value and is 

not limited by constraint (2). 

• The total memory size of model parameters stored on resource 𝑗  should fit within the available 

memory: 

∀𝑗,   ∑ 𝑠𝑖,𝑗
𝑛
𝑖=1 𝑤𝑖 ≤ 𝑀𝑗   (3) 

• For a given task 𝑇𝑖 and resource 𝑗 , the amount of data sent out of resource 𝑗  for that task can be 

evaluated based on the number of tasks 𝑇𝑖 and 𝑇𝑖+1 computed by resource 𝑗 . Indeed, if resource 

𝑗  computes more tasks of type 𝑇𝑖  than tasks of type 𝑇𝑖+1 , the results produced in excess on 

resource 𝑗 have to be sent out of resource 𝑗 . This gives the following constraints: 

∀𝑖, 𝑗,  𝑐𝑖,𝑗 ≥ 𝑥𝑖,𝑗𝑜𝑖 − 𝑥𝑖+1,𝑗𝑜𝑖     (4) 

∀𝑖, 𝑗,  𝑐𝑖,𝑗 ≥ 0   (5) 

• Since the link bandwidth is 𝛽𝑗, the total data that can be sent out of resource 𝑗  during one   time 

unit is bounded by 𝛽𝑗: 

∀𝑗,   ∑ 𝑐𝑖,𝑗
𝑛
𝑖=1 ≤ 𝛽𝑗       (6) 

• For any task 𝑇𝑖 , the throughput cannot be larger than the total number of tasks of type 𝑇𝑖  

processed across all resources:  

∀𝑖,   ∑ 𝑥𝑖,𝑗
𝑚
𝑗=1 ≥ 𝜌       (7) 

  

We obtain the following linear programming formulation:  

maximize 𝜌 subject to  

Constraints (1-7) 

𝑥𝑖,𝑗 ≥ 0, 𝑠𝑖,𝑗 ∈ {0,1} 

  

The discussion above shows that solving this formulation provides a way to assign the different layers of 

the model to the computing resources that allows for an optimal throughput.  This assignment considers 

both the memory constraints on each resource (with constraint (3)) and the heterogeneity of the 

computing efficiency thanks to the 𝑝𝑖,𝑗 values. The assumption of a steady state periodic schedule may not 

be realistic in practice, but it allows us to obtain a clear and efficient formulation. For a practical 

implementation, it seems more relevant to use dynamic scheduling approaches to make decisions at 

runtime for each individual request: for a given task 𝑇𝑖, we can choose the least loaded computing resource 

among all those that have the necessary model parameters to compute this task. 

 In the next section we describe how to build a task-based implementation for CNN inference that can 

perform such dynamic scheduling decisions.  
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2.7. Task-based implementation 
This section presents an ongoing work for a task-based implementation of inference for Convolutional 

Neural Networks. The goal is to be able to efficiently perform inference computations on a heterogeneous 

server, with the possibility to finely control which computing resources perform which part of the 

computation.  This implementation is based on the StarPU runtime which manages task scheduling and 

communications, and on the ONNX framework which provides efficient implementations of the neural 

network operators. Our implementation provides a link between both frameworks. 

 Since this implementation is still in development, this deliverable does not contain experimental results. 

A more detailed performance analysis will be provided later in another deliverable. 

StarPU library 

StarPU [12] is a high-performance task programming library for hybrid architectures. It is a software tool 

aiming to allow programmers to exploit the computing power of the available CPUs and accelerators, while 

relieving them from the need to specially adapt their programs to the target machine and processing units.   

At the core of StarPU is its runtime support library, which is responsible for scheduling application-provided 

tasks on heterogeneous machines. In addition, StarPU comes with programming language support, in the 

form of an OpenCL front-end.  

StarPU's runtime and programming language extensions support a task-based programming model. 

Applications submit computational tasks, with CPU and/or GPU implementations, and StarPU schedules 

these tasks and associated data transfers on available CPUs and GPUs. The data that a task manipulates 

are automatically transferred among accelerators and the main memory, so that programmers are freed 

from the scheduling issues and technical details associated with these transfers. 

StarPU takes particular care of scheduling tasks efficiently, using well-known algorithms from the literature. 

In addition, it allows scheduling experts, such as compiler or computational library developers, to 

implement custom scheduling policies in a portable fashion. 

 The main concepts of StarPU are: 

• A codelet describes a computational kernel that can possibly be implemented on multiple 

architectures such as a CPU, a CUDA device or an OpenCL device. 

• A data handle is a StarPU structure that describes a piece of data that can be accessed by the 

different computational tasks.  

• A computational task: executing a StarPU task consists in applying a codelet on a data set, on one 

of the architectures on which the codelet is implemented. A task thus describes the codelet that 

it uses, but also which data are accessed, and how they are accessed during the computation (read 

and/or write). 

• A worker is any computing resource that can process tasks. Each worker is associated with a 

memory node; processing a task on a worker might involve transferring the necessary data to the 

corresponding memory node if it is not already present. These transfers are performed 

automatically by StarPU with no user involvement. 

ONNX framework 

ONNX Runtime [13] is a cross-platform machine-learning model accelerator, with a flexible interface to 

integrate hardware-specific libraries. ONNX Runtime works with different hardware acceleration libraries 

through its extensible Execution Providers framework to optimally execute the ONNX models on the 
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hardware platform. These execution providers provide efficient implementation on different accelerators 

of most of the basic computing kernels used in neural networks. 

 Our current implementation uses the default CPU and CUDA providers and is thus able to use both kinds 

of devices. The genericity of both StarPU and ONNX make it very extensible, so that supporting other 

devices would only require minimal changes to the code.  

Software architecture 

 We start by providing a high-level view of the process of our task-based implementation. It can start from 

any neural network model trained with PyTorch. We use ONNX utility functions to obtain the 

computational graph of the neural network. We divide this graph into subgraphs, so that the workload of 

each subgraph is large enough to represent a StarPU task. These subgraphs contain several nodes of the 

computational graph of the neural network but will be seen in our implementation as a single StarPU task. 

These subgraphs are exported with the ONNX export utility function, each in a separate export file. This 

first part of the process takes place in the user's PyTorch application. 

  

The ONNX export files are opened by our task-based implementation. There is a StarPU data handle for 

each input or output tensor of these export files, identified by their name in the original computational 

graph. These data handles are registered at initialization time and will allow StarPU to identify the data 

dependencies between the different subgraphs. An ONNX session is initialized for each subgraph on each 

computing resource that should run this subgraph; this loads the model parameters into the memory of 

the device. 

 When performing an inference for a given input data, the corresponding StarPU data handle for the input 

tensor is filled with the data, and all StarPU tasks corresponding to all subgraphs are submitted to the 

StarPU runtime. StarPU identifies which task can run on which computing resource, automatically 

schedules tasks on the most efficient and/or least loaded resource, and automatically manages 

communication between all the devices. Once all tasks have been processed, the output tensor contains 

the result, which can be transferred to the user.  

Specific implementation details 

• Our solution makes use of the concept of combined workers in the StarPU runtime system: several 

CPU cores can be merged to work as a single StarPU worker. It is thus possible to use the multi-

threaded execution providers of ONNX to perform multi-core executions of tasks on the CPU. This 

requires us to carefully pin the threads on the correct CPU cores, to avoid interference between 

the different ONNX sessions.  

• For the input and output tensors of the complete neural network, the corresponding StarPU data 

handles use statically pinned memory buffers. This ensures that the transfers to and from the 

computing resources (the GPUs for example) can be performed as fast as possible, and in a 

completely asynchronous fashion. 

• Similarly, for the other tensors which carry data dependencies between the subgraphs, the 

corresponding StarPU data handles are registered with `memory_node=-1`. This means that 

StarPU can automatically allocate memory for the result of a task on the computing resource that 

processes this task. The cache management system of StarPU ensures that buffers are not freed 

after use, but reused for other similar data, so that the overhead cost of memory allocation is 

negligible after the first few inferences. 

• All our implementation is completely asynchronous and uses both the asynchronous API of ONNX 

and StarPU. This allows StarPU to monitor device status and communication progress while the 
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computation is performed on the CPU and/or GPU. We can thus achieve a very efficient overlap 

between computations and communications, avoiding unnecessary synchronizations. 

3. Efficient CNN kernels for FPGA 

3.  

3.1. Introduction 
This section explains how the OmpSs@FPGA programming model has been used in order to improve the 

execution of CNN kernels in FPGA devices. From the technical and research points of view, the following 

contributions have been carried out: 

• A 2d convolution kernel has been ported to FPGA devices using the OmpSs task-based 

programming model 

• A study on how to improve performance of a 2d convolution using OmpSs@FPGA features has 

been done 

• The 2d convolution kernel has been transformed following the findings in the previous point to 

increase its performance until it is competitive with CPU state-of-the-art implementations (like 

Pytorch) 

• The framework has been evolved in order to support mixed precision data types usually present 

in CNN implementations  

• An improvement of the framework to support newer C++ standards (as C++ 11 needed by RAIDER) 

has been reached. 

• An initial porting of the RAIDER inference application to the OmpSs task-based programming 

model has been achieved  

The developments explained in this deliverable section are also related to the ones reported in deliverables 

2.10 IP for fast task scheduling, part 1; 2.11 IP for fast task scheduling, part 2; 4.6 Task-based runtime 

systems and 4.7 HLS Flow. In particular, the IP for Fast Task Scheduling developed in task 2.5 and the 

OmpSs@FPGA task-based model developed in task 4.2 have been used here/have been developed with 

inputs from the work reported in this deliverable. 

3.2. Relationship with the project objectives and strategic goals 

This deliverable is related to the following project objectives as stated in the DoA: 

• Objective 1 - Energy efficiency. Executing in FPGA has been demonstrated to be competitive with 

other computing platforms in terms of energy efficiency. At the same time, DNN executions are 

power hungry and one of the main sources of computing power usage nowadays. To be able to 

easily port DNN applications to FPGAs using OmpSs@FPGA programming model will help to 

improve inference and training energy efficiency.  

• Objective 2 - Sustained application performance. As explained in the next sections, we aim to 

improve the performance obtained when executing applications over the IDV-E platform both by 

improving the framework and also by improving the task scheduling through the use of the Fast 

Task Scheduler developed in Task 2.5.  In this deliverable it is shown how CNN kernels performance 

can be improved in FPGAs. 

• Objective 4 - Seamless integration of reconfigurable accelerators. One of the main concepts behind 

OmpSs@FPGA is to allow the seamless integration of reconfigurable accelerators. In this 

deliverable we study how to integrate accelerators for CNNs. 
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• Objective 5 - Development of new IPs. Although the IPs developed here are designed in HLS the 

CNN kernel developed by BSC will be fully available to the public and the source code is even listed 

in this deliverable.  

The work developed here is also related to the strategic goals of the project as follows:   

• Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic 

Research Agenda (SRA) for open HW and SW architecture. The OmpSs@FPGA SW framework is 

open source and publicly available as all the developments done in this project. 

• Strategic Goal #3: Opening of new usage domains. The work developed in this section is strongly 

aligned with this strategic goal as although FPGAs are already used to perform both CNN training 

and inference the usual approach doesn’t involve the use of a task-based programming model to 

do so. The advantages of task-based programming models in general and OmpSs@FPGA in 

particular (mainly programmability, portability and performance) would pave the way to new 

developments in the DNN world if the research is successful.  

3.3. 2d convolution 
Convolution is often the most computationally expensive step in convolutional neural networks. 

Meanwhile other steps such as relu or pooling have a non-trivial cost, usually the bottleneck of those neural 

networks is the convolution. The computational cost of a convolution is determined by the product of the 

sizes of the different inputs and convolutional kernels. For a given dataset, composed of 𝑁𝐼 input channels 

of size 𝑆𝐼 , 𝑁𝑂 output channels and a kernel of size 𝐾𝑆 , the cost of a typical convolution would be 

proportional to 𝐼𝑆 ⋅ 𝑁𝐼 ⋅ 𝑁𝑂 ⋅ 𝐾𝑆 . Meanwhile a typical ReLu step would have a cost of 𝐼𝑆 ⋅ 𝑁𝐼 and the 

pooling step will also have a cost proportional to 𝐼𝑆 ⋅ 𝑁𝐼 . 

For any non-trivial input data set, convolution will be the most computationally expensive kernel of all 

three. Therefore, accelerating this kernel will provide greater performance gains than ReLu or Pooling. 

3.4. Kernel description 
Discrete convolution, 2-dimensional in our case, is implemented by applying a 𝑁𝑜 convolutional kernel over 

all elements of all channels of a 2d matrix. 𝑁𝑜 is the number of output channels in this layer of the neural 

network. 

Input matrix size, kernel size as well as number if input and output channels are defined by the model and 

can be different for each model and for each layer of a given network. 

The convolutional kernel in our case is defined by the code in listing 3.1 

for im in batch: 

  for oc in output channels: 

    for h in im.height - kernel[oc].height + 1: 

      for w in im.width - kernel[oc].width + 1: 

        result[im][oc][h][w] = bias[oc] 

        for ic in b.input_channels: 

          for y in kernel[ic][oc].height: 

            for y in kernel[ic][oc].width: 

              result[im][oc][h][w] += im[ic][h+y][w+x]*kernel[ic][oc][y][x] 

 

Listing 3.1: 2d convolution algorithm 
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Data is laid out in memory as a contiguous array of 2d row-major matrices. Figures 3.1, 3.2 and 3.3 illustrate 

the layout of the convolution kernel, input data and output data respectively. 

 

 

Figure 3.1: Kernel memory layout 

 

 

Figure 3.2: Input data memory layout 

 

Figure 3.3: Output data memory layout 

 

This data arrangement is assumed throughout the rest of the application and therefore it cannot be easily 

changed. Any layout transformations for the convolutional step of the neural network layer have to be 

carefully evaluated as any performance gains resulting from better exploiting data locality can be easily 

negated by the cost of the transformation itself. 

Given this data arrangement in Figures 3.1, 3.2, 3.3 and the algorithm in listing 3.1, some of the data sets 

have to be visited multiple times. In the case of the algorithm in listing 3.1, input and kernels are visited 

multiple times for each output. However, output data is visited only once. This scheme is known as output 

stationary. Even though the loops of the algorithm can be rearranged to an input stationary (visit input 

data only once) or weight stationary (visit a kernel only once) form, whether or not any of the schemes 

provides any performance advantages will depend on the particular data set of a given model. Therefore, 

a general solution that provides optimal performance is not possible. 
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3.5. FPGA implementation 
The 2d convolution kernel is implemented in FPGA using the OmpSs@FPGA framework. It provides a 

productive toolchain that allows quick iteration. Also, by having HLS code tightly integrated in the 

application, the framework allows quick C-based co-simulations in order to validate correctness of the 

accelerator kernel before implementing the design which it is a time-consuming operation which takes 

several hours per iteration. 

Kernel taskification 

This implementation step requires identifying application computation kernels, splitting them into 

functions, labelling them with pragma directives and defining task data dependencies. 

In this case, the kernel code size is small, and it is already implemented in a function. Besides labelling the 

task to be implemented in an FPGA, data dependencies need to be labeled. This is shown in listing 3.2. 

#pragma oss task device(fpga) \ 

    in( [bs*in_channels*in_H*in_W]input, \ 

        [out_channels*in_channels*k_H*k_W]kernel, \ 

        [out_channels]bias) \ 

    out([bs*out_channels*(in_H - k_H + 1)*(in_W - k_W + 1)]output) 

void conv2D_FPGA(int bs, 

        float* input, 

        const int in_channels, const int in_H, const int in_W, 

        float* kernel, const int k_H, const int k_W, 

        float* output, const int out_channels, 

        float* bias) { ... } 

Listing 3.2: Convolution kernel OmpSs@FPGA directives and function header 

Listing 3.2 shows the directive that defines the conv2D_FPGA function as a task. Then in() and out() 

clauses define task input and output data dependencies respectively. 

Dependencies are specified as shaping expressions. The syntax for data shaping expression in this example 

is [data_size]pointer. For instance [out_channels]bias defines the dependency to be all data 

from bias[0] to bias[out_channels]. In this case, data shapes depend on the parameters, therefore, 

they cannot be determined at compile time. 

Kernel specialization 

In order to allow an efficient FPGA implementation, the kernel has to be specified for the current use case. 

This step involves removing infrequent code paths and treating those cases in host code. Usual cases are 

prologs or epilogs that skew data alignment and cause low usage of FPGA resources or treatment of corner 

cases. This can be done in the CPU as they usually represent a very low percentage of the total problem 

size. Also, converting parameters to constants known at compile time when possible, allows better overall 

implementation as it enables some optimizations that otherwise cannot be performed. 

In our case, kernel does not have infrequent code paths. However, most of the parameters can be 

converted to constants. For a given convolution layer of a given model, input size, kernel size, input 

channels, output channels, and output size are fixed. Since we target this use case making these values 

constants known at compile time is a valid solution. 

Having constant data size allows the tools to allocate local kernel memory, usually implemented as BRAMs 

blocks. This allows much faster memory access when compared to accessing off-chip DDR memory. Also, 
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this enables partitioning of this local storage, which will allow multiple parallel accesses in later 

optimization stages. 

Listing 3.3 shows data storage created by the OmpSs@FPGA compiler in the kernel HLS wrapper, this is 

only possible when size is known at compile time since hardware resources have to be allocated and 

properly connected. 

void conv2D_FPGA_wrapper(hls::stream<ap_uint<64> >& mcxx_inPort, 

hls::stream<mcxx_outaxis>& mcxx_outPort, ap_uint<256>* mcxx_memport) { 

  static float kernel[2304]; 

  static float output[61504]; 

  static float input[65536]; 

  static float bias[32]; 

… 

} 

Listing 3.3: Local storage allocated by kernel wrapper. 

Also, minor improvements are achieved as loop control is simplified since all loop bounds are known at 

compile time. 

 

Batch parallelization 

Convolution Kernel has been parallelized by splitting the batch loop, which is the outermost loop shown in 

listing 3.1. Since loop iterations are independent in this loop, it can be easily parallelized by instantiating 

multiple accelerators implementing the same task without having to duplicate data or needing 

synchronization between kernels. Distributing iterations of the output_channels loop would require 

replicating input data as each output channel needs data from all input channels. Splitting 

input_channels loop, would require synchronization between accelerators in order to perform 

accumulations into a given output channel.  

Batch level parallelization is achieved by processing only one of the batch elements in each kernel and 

calling them for each element in the batch. Moreover, all kernel calls in a batch can be performed from an 

FPGA task. Listing 3.4 shows the code using nested FPGA tasks. 

#pragma oss task device(fpga) \ 

    in([batch_size*IN_CHANNELS*IN_H*IN_W]input, \ 

            [OUT_CHANNELS*IN_CHANNELS*K_H*K_W]kernel, \ 

            [OUT_CHANNELS]bias) \ 

    out([batch_size*OUT_CHANNELS*(IN_H - K_H + 1)*(IN_W - K_W + 1)]output) 

void conv2D_batch_FPGA( 

        float* input,  float* kernel, float* output, float* bias, int 

batch_size) { 

    const int out_H = IN_H - K_H + 1; 

    const int out_W = IN_W - K_W + 1; 

    for (int b = 0; b < batch_size; b++) { 

        conv2D_FPGA(input + b*IN_CHANNELS*IN_H*IN_W, 

                kernel, 

                output + b*OUT_CHANNELS*out_H*out_W, 
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                bias); 

    } 

    #pragma oss taskwait 

} 

 

#pragma oss task device(fpga) \ 

   in([IN_CHANNELS*IN_H*IN_W]input, \ 

    [OUT_CHANNELS*IN_CHANNELS*K_H*K_W]kernel, \ 

    [OUT_CHANNELS+16]bias) \ 

    out([OUT_CHANNELS*(IN_H - K_H + 1)*(IN_W - K_W + 1)]output) \ 

    copy_deps num_instances(FPGA_CONV_INSTANCES) 

void conv2D_FPGA( 

        float* input, 

        float* kernel, 

        float* output, 

        float* bias) { … } 

Listing 3.4: FPGA nested tasks implementing batch processing of different inputs 

Note that conv2D_batch reads the full input data and writes the full output data, but conv2D_FPGA 

needs only a subset of it. 

By creating nested tasks in the FPGA, we take advantage of the high throughput of Fast Task Scheduler 

(FTS) which allows faster task creation. Furthermore, we reduce synchronization points between FPGA and 

the CPU. When using nesting the host system only needs to synchronize with the top-level task 

(conv2D_batch) instead of synchronizing for every batch element. 

By using the num_instances() clause, we can control how many accelerators instances are going to be 

instantiated in the final design. On runtime, tasks will be dynamically distributed among different instances 

based on accelerator availability. 

Kernel pipelining 

In order to improve the convolution, the filter has been pipelined in 2 different dimensions as shown in 

figure 3.4. On one side the filter is memorized and only the front wave is read for each filter application in 

the w direction. In addition, the filter is unrolled in the h dimension so increasing the front wave by only 

one element allows the algorithm to compute two positions of the same filter each iteration. 

 

Figure 3.4: Filter pipeline in 2 dimensions 



  

textarossa.eu   D7.1 | 28 

The HLS code that implements the front wave reader shown in orange in figure x.4 can be seen in listing 

3.5. As it can be seen only the elements at w+2 are read. The remaining input elements are kept in the 

temporal input buffers (tinputXY variables). The X denotes the row (h value) while the Y denotes the 

column position (added to the w value). Each cycle in the w direction loop a new value is read and the 

previous values are cycled to apply the filter to the sliding window of input elements. 

tinput00=tinput01; 

tinput01=tinput02; 

tinput02=input[b*IN_CHANNELS*IN_W*IN_H+ channel*IN_W*IN_H+h*IN_W+(w+2)]; 

tinput10=tinput11; 

tinput11=tinput12; 

tinput12=input[b*IN_CHANNELS*IN_W*IN_H+ channel*IN_W*IN_H+(h+1)*IN_W+(w+2)]; 

tinput20=tinput21; 

tinput21=tinput22; 

tinput32=input[b*IN_CHANNELS*IN_W*IN_H+ channel*IN_W*IN_H+(h+2)*IN_W+(w+2)]; 

Listing 3.5: Front wave reading and filter sliding code 

By applying this solution, the number of data read is reduced as only kernel height input elements are read 

for each output element, instead of the full filter window. Even though this is a big improvement over the 

naïve implementation, it has a series of issues regarding data access. 

Accelerator data, as shown in listing 3.3, is stored in BRAM blocks. Each one has two ports. Therefore, only 

two elements in each block can be accessed on a given cycle. This is a clear issue if we try to access the full 

filter front wave in a single cycle. Figure 3.5 shows this effect. Red squares represent conflicting accesses 

that try to access data in the same BRAM block, represented as a blue square in Figure 3.5. 

 

Figure 3.5: Input accesses using default data layout. 

 

By partitioning input storage, we can distribute data among different BRAM blocks to allow 2 accesses to 

be performed in parallel in each cycle. However, it still would take two cycles to access the new data needed 

to process one output element. This arrangement is shown in Figure 3.6. Red squares represent conflicting 

access that will have to wait. Blue stripes represent a BRAM block, after partitioning is applied. 

 



  

textarossa.eu   D7.1 | 29 

 

Figure 3.6: Conflicting accesses in the same memory partition (vertical stripes) 

 

To work around these issues, accesses are offset so that they use a BRAM block from a different partition. 

This is illustrated in figure 3.7. 

 

Figure 3.7: Offset input accesses over different partitions. 

By doing this, all accesses can be done in parallel. All data needed to apply the filter to two positions can 

be read in the same cycle. 

3.6. Results 
Evaluation of the FPGA implementation has been carried out on a Xilinx Alveo U200 accelerator card. The 

host system is an Intel Xeon Silver 4208 CPU with 64GB of main memory. Figure 3.8 shows performance 

results. 

 

Figure 3.8: 2D convolution performance 



  

textarossa.eu   D7.1 | 30 

Chart shows the performance in Gflops for a naïve CPU implementation, the PyTorch CPU implementation, 

a naïve FPGA implementation and a pipelined implementation. CPU naïve is a straight implementation of 

pseudocode shown in listing 3.1. Pytorch implementation is a more CPU optimized implementation that 

uses all available cores in our test system. FPGA naïve, in the same fashion as the CPU naïve, is a straight 

implementation of algorithm described in listing 3.1, using OmpSs@FPGA in order to offload task execution 

to the FPGA, using a single accelerator running at 200 MHz. FPGA pipelined corresponds to the improved 

implementation using pipeline and partitioning techniques described in previous sections. In this case, 10 

accelerators instances running at 300 MHz are used. 

FPGA naïve implementation is very slow. This is because if no optimization is applied, a single operation is 

performed each 9 cycles, which running at 200 MHz does not provide a reasonable performance. 

 

 Naïve Pipelined Available 

Number % Number % Alveo U200 

BRAM 642 14.86 3378 78.19 4320 

DSP 24 0.35 462 6.75 6840 

FF   182392 7.71 425818 18.01 2364480 

LUT 157785 13.35 425818 28.35 1182240 

URAM 7 0.73 17 1.77 960 

Table 3.1; 2D convolution FPGA implementation resource usage 

Table 3.1: Shows resource usage of the different implementations of the 2D convolution kernel in FPGA. 

As it can be seen the Pipelined implementation obtains improved performance at the cost of using a high 

percentage of the board’s available BRAMs. Further optimizations that involve increasing the data reuse to 

raise even further the operations per cycle (and thus the DSPs involved in the computations) are being 

developed. 

3.7. Compiler modifications for CNN mixed precision 
As explained in deliverables 4.6 Task-based runtime models and 4.7 HLS flow, as part of the project we 

have undertaken an update of part of the OmpSs@FPGA framework. One of the biggest challenges has 

been to discard BSC in-house Mercurium compiler in favor of a llvm fork [17][18] that applies the necessary 

compiler transformations to the C/C++ source code before feeding it to the vendor tools (Vitis HLS in the 

case of IDV-E). This change allows the framework to work with more modern codes, such as the ones 

usually found in CNNs. In this section we describe the necessary llvm modifications that allow us to use 

Vitis HLS specific precision types, very useful for CNNs. All the code is distributed as open source [17]. It is 

important to highlight that the fact of using an llvm fork does not interfere with the vendor tools that also 

use an llvm fork to compile from HLS. Our part of the compiler, (detailed in deliverable 4.7 HLS flow) reads 

the C code targeting the FPGA and emits, again C source code avoiding any incompatibilities with other 

environments in the toolchain.  

Support for non-built-in data types and C++ constructions has been implemented in the clang frontend 

action that implements FPGA transformations. This is needed to support arbitrary precision data types such 

as fixed precision numbers or reduced floating point (FP16). These data types are widely used in CNN 
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applications. Some parts of such applications do not need the precision provided by standard data types, 

therefore allowing developers to save resources by using reduced precision data types in certain parts of 

the application. 

Compiler changes are closely related to support for user-defined types (i.e. classes) and constructions 

added in newer language versions. 

3.8. Support for custom data types in tasks 
Custom data types were not supported in earlier versions of the compiler toolchain, we added support for 

using them as copies, dependencies or internal (not related to kernel interfaces) computations. 

Dependency resolution of C++ types 

In order to emit valid HLS code, kernel closure must be computed. The compiler must identify which 

definitions are needed by a kernel in order to output them along with the computation kernel source code. 

In C, this is straight forward. However, in C++ the compiler ran into declaration conflicts due to template 

instantiation. This is needed in order to support vitis hls fixed point types as they are implemented as a 

templated structure.  

Listing X.6 shows how the compiler has instantiated the template due to the declaration of x. For each 

different template instantiation, the compiler creates a specialization. Sample code is correct as multiple 

definitions of myType are not conflicting. In this case, the compiler should choose the most specialized 

definition (bottom one) over the more general ones. However, even though listing 3.6 shows two 

declarations of myType, the input source code contained only the first one. 

template <typename T, int L, int M> struct myType { 

    T a[L]; 

    T b[M]; 

}; 

template <> struct myType<int, 16, 5> { 

    int a[16]; 

    int b[5]; 

}; 

… 

myType<int, 16, 5> x; 

 

Listing 3.6: HLS code containing source and instantiated templates. 

 

Internally, this is handled by the compiler by creating an AST tree representing each instantiation. However, 

comparing both trees for structural equivalence to check for violations of the One definition Rule (ODR) 

are not trivial and false positives were found when dealing with templates in the FPGA frontend action. 

To overcome this issue, a more complex type of AST import needs to be used when duplicating fragments 

of the program AST in the FPGA phase. This import method takes template parameters into account when 

computing structural equivalence to identify type declarations that should not conflict with each other. 
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Implicit Array initialization of non-standard types 

Support for declaring arrays of user-defined types without explicit initialization had to be implemented. 

Support for this use case is needed since fixed point and half precision floating point are implemented as 

user-defined types. Otherwise, the pretty printer module in clang assumes that all arrays containing C++ 

user-defined data types will have an explicit initializer. The pretty printer is the compiler module that 

outputs C++ code from an AST. Explicit initialization is not always the case. A user can define an array of 

objects and initialize them later. This is illustrated in listing 3.7, which is now supported. 

ap_fixed<16,5> layer2_out[LAYER2_SIZE]; 

Listing 3.7: Declaration of an uninitialized array of ap_fixed<16, 5> elements 

Support for custom type serialization 

Serialization and deserialization of non-trivial data types was added to the FPGA clang frontend action. 

These operations are implemented using a union to build any type from raw bits that are read from an 

interface as shown in listing 3.8. These operations are implemented in the task wrapper. 

template<class T> 

union __mcxx_cast { 

  unsigned long long int raw; 

  T typed; 

}; 

static float bias[32]; 

… 

__mcxx_cast<float> cast_tmp; 

cast_tmp.raw =  mxcc_data[I](32,0) //port[address](bit_range) 

bias[I] = tmp.typed; 

 

 

Listing 3.8: Deserialization of a floating-point number 

However, this is not valid when the destination type is not a trivial type, which is the case of fixed point 

and half-precision. In such cases a union constructor has to be emitted into the HLS code. This is shown in 

listing 3.9. 

template<class T> 

union __mcxx_cast { 

  unsigned long long int raw; 

  T typed; 

  __mcxx_cast() {} 

}; 

static half c[4096]; 

… 

__mcxx_cast<half> cast_tmp; 

cast_tmp.raw = mcxx_data[addr](16,0); 

c[I] = cast_tmp.typed; 

Listing 3.9: Deserialization of a half precision floating point number, 



  

textarossa.eu   D7.1 | 33 

Note that the constructor is in fact empty as type will not be initialized on union constructor but built using 

raw bits. Furthermore, this is a C++11 construct. Therefore, changes to the toolchain, specifically AIT, are 

needed in order to enable the proper C++ standard version in HLS. 

Support for operator calls in FPGA tasks 

Arithmetic operations such as addition or subtraction of fixed-point or half precision floating point types 

are implemented as C++ operators, therefore, support for calling overloaded operators inside FPGA tasks 

has been added. Treating them as regular function calls inside the compiler Is not enough. They are special 

for the compiler and have to be processed accordingly. We have introduced the proper processing code 

into the OmpSs@FPGA llvm fork. 

3.9. Support for C++ constructions 
Support for certain C++ constructions have been implemented to support output code generated using 

ML4HLS [19], [20]. This tool generates an HLS implementation of a convolutional neural network from a 

PyTorch model. Since the code is automatically generated, it may contain code that is not common for 

programmers to write, using some features that lacked compiler support. This tool is used in the RAIDER 

application. It uses this tool in order to implement an FPGA accelerated CNN. 

Support for templates and namespaces in function calls 
Support for calling functions that are defined inside a namespace have been implemented into the FPGA 

frontend action. An example of this use case is shown in listing 3.10 

nnet::conv_2d_cl<input_t, layer2_t, config2>(input1, layer2_out, w2, b2); 

Listing 3.10: Template call inside a namespace 

 As opposed to C, where the namespace is global, information provided by the caller has to be preserved. 

This information includes the fully qualified name, which is the function name including the namespace 

where it is defined, and the list of template parameters. 

Support for recursive constexpr 

Recursion in FPGA kernels is not supported in general. However, it is allowed inside a constexpr qualified 

function. By qualifying a function as constexpr, it guarantees that it can be evaluated at compile time and 

will be a constant at runtime. Therefore, this special case needs to be treated since it is valid code for FPGA 

kernels. An example from raider is shown in listing 3.11. When processing FPGA kernel AST, the compiler 

has to keep track of which functions it has already visited when processing function calls in order to detect 

such cases. 

constexpr int ceillog2(int x) {return (x<=2) ? 1 : 1 + ceillog2((x + 1)/2);} 

Listing 3.11: Recursion inside a constexpr from the RAIDER application 
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4. Workflow for the Deployment of CNNs on FPGA in the 

RAIDER Application  
 

RAIDER is a high throughput online streaming processing application implemented on FPGA with the 

APEIRON framework. Its task is to perform particle identification (PID) on the stream of events generated 

by the RICH (Ring Imaging CHerenkov) detector in the CERN NA62 experiment at a rate of about 10 MHz, 

using neural networks. The inference task consists in providing an estimate for the number of charged 

particles (0, 1, 2, >=3) for any event detected on the RICH detector, that corresponds to the number of ring 

tracks that can be reconstructed from the pattern of photomultipliers that have been illuminated (hit) by 

the Cherenkov light cone emitted by a charged particle traversing the detector, as shown in Figure 4.1.  

 

 

Figure 4.1: Examples of events belonging to class 2 and 3 (2 or >=3 charged particles) as detected by the array of RICH 

photomultipliers (blue dots are the hit photomultipliers, red circles are the tracks reconstructed offline by the NA62 

experiment offline analysis software framework)  

 

 

Figure 4.2 depicts the workflow for the generation of processing Kernels implementing convolutional 

neural networks designed for the inference tasks in RAIDER; these kernels are then integrated in the FPGA 

design as HLS kernels in the APEIRON framework, as described in deliverable D4.1.  

 

Figure 4.2: The workflow for the generation of CNN kernels in RAIDER  
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Using this workflow, design targets (efficiency, purity, throughput, latency) and constraints (mainly FPGA 

resource usage) must be taken into account and verified at any stage:  

1. TensorFlow/Keras [2]: on this first stage the NN architecture (number and kind of layers) and 

representation of the input is designed, then using an appropriate training strategy (class balancing, batch 

sizes, optimizer choice, learning rate, etc.), the network is trained and KPIs can be measured. If they don’t 

meet the targets the process is repeated, modifying input representation and the CNN architecture.  

2. QKeras [3]: in this second stage, the original TF/Keras NN model is modified by searching iteratively the 

minimal representation size in bits of weights, biases and activations, possibly by layer that preserves the 

expected KPIs. For the RAIDER application, the neural network generated through this quantization step, 

yielded a neural network that uses an 8-bit fixed point <8, 1> representation for weights and biases and 

16-bit fixed point <16, 6> for activations.  

3. HLS4M L[4]: the QKeras model is translated into the corresponding Vivado HLS implementation 

(annotated C++ code) by means of the HLS4ML Python package. Several handles are available at this stage 

to guide the translation, e.g. tuning of REUSE FACTOR configuration parameter (low values yield low 

latency, high throughput, high resource usage design), also clock frequency can be set.  

4. Vivado HLS [5]: C/Verilog co-simulation for rapid verification of performance and synthesis of kernel IP 

to be integrated in the APEIRON framework.  
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Figure 4.3: Details of the designed Convolutional Neural Network model  

Following this workflow, we designed a lightweight Convolutional Neural Network having just 2796 

parameters and suitable to be implemented on a FPGA, along with the corresponding representation of 

the input data. The designed CNN model, represented in Figure 4.3, has been deployed on a Xilinx Alveo 

U200 FPGA with a very limited resource usage. This CNN receives as input a compressed representation of 

the original event in form of a B&W 16x16 image, as depicted in Figure 4.4.  
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Figure 4.4: Example of input images for the CNN (left class 0, center class 1, right class 2). 

 

The relevant KPIs for the CNN implementation are its efficiency (or recall), purity (or precision), and the 

throughput (in terms of processed events per second) and energy efficiency (in terms of processed events 

per Joule) it delivers when integrated in the FPGA processing pipeline. 

These KPIs are reported in deliverable D6.2 for two different FPGA design configurations, integrating one 

or two replicas of the above-described CNN. 
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5. Conclusions 
 

This deliverable presents several contributions for improving the efficiency of CNN applications at the IDV 

level. We have presented re-materialization strategies to reduce the memory requirements of training 

large neural networks, and a combination of re-materialization and model parallelism to efficiently use 

multiple GPUs when training. We have also discussed improvements for the inference phase, by providing 

algorithmic and technical developments for better resource usage on heterogeneous servers, using both 

the CPU cores and the available accelerators. These developments are still on-going work and will be 

carefully evaluated in the upcoming months.  

We have designed and improved a 2D convolution kernel for the FPGA using the OmpSs@FPGA framework, 

competitive with CPU state-of-the-art implementations. In addition, the OmpSs@FPGA framework has 

been extended with new features added to the llvm compiler fork that compiles the FPGA code in order to 

feed it to the vendor HLS tool. The new developments have added mixed precision types support to the 

compiler to improve the processing of newly developed applications, CNNs in particular. 
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