
This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

WP4 Tool chain for heterogeneous multi-node HPC

platform

D4.8 Framework for efficient CNNs inference on a

TEXTAROSSA node

http://textarossa.eu

Ref. Ares(2023)8249576 - 02/12/2023

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

TEXTAROSSA

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

Grant Agreement No.: 956831

Deliverable: D4.8 Framework for efficient CNNs inference on a TEXTAROSSA node

Project Start Date: 01/04/2021 Duration: 36 months

Coordinator: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO

SOSTENIBILE - ENEA , Italy.

Deliverable No D4.8

WP No: WP4

WP Leader: INRIA

Due date: M30

Delivery date: 30/11/2023

Dissemination Level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

textarossa.eu D7.1 | 3

DOCUMENT SUMMARY INFORMATION

Project title:
Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw
Supercomputing Applications for exascale

Short project name: TEXTAROSSA

Project No: 956831

Call Identifier: H2020-JTI-EuroHPC-2019-1

Unit: EuroHPC

Type of Action: EuroHPC - Research and Innovation Action (RIA)

Start date of the project: 01/04/2021

Duration of the project: 36 months

Project website: textarossa.eu

WP4 Tool chain for heterogeneous multi-node HPC platform

Deliverable number:
D4.8

Deliverable title: Framework for efficient CNNs inference on a TEXTAROSSA node

Due date: M30

Actual submission date: 2 December 2023

Editor:

Authors: L. Eyraud-Dubois, Antonio Filgueras, Alessandro Lonardo

Work package: WP4

Dissemination Level: Public

No. pages: 40

Authorized (date): 30/11/2023

Responsible person: L. Eyraud-Dubois

Status: Plan Draft Working Final Submitted Approved

Revision history:

Version Date Author Comment

0.1 2023-09-15 Lionel Eyraud-Dubois Draft structure

0.2 2023-10-20 Lionel Eyraud-Dubois Section Inference Efficiency

0.3 2023-10-27 Lionel Eyraud-Dubois Section Training Efficiency

0.4 2023-10-28 Alessandro Lonardo Section Workflow in RAIDER application

0.5 2023-11-03 Antonio Filgueras Section Efficient CNN kernels for FPGA

0.6 2023-11-04
Lionel Eyraud-Dubois Introduction, Conclusion, Executive

Summary

0.7 2023-11-17 Carlos Alvarez Llvm clarifications

0.8 2023-11-29 Lionel Eyraud-Dubois List of acronyms

Quality Control:

Checking process Who Date

Checked by internal reviewer Michal Kulczewski 27 nov. 2023

Checked by Task Leader Lionel Eyraud-Dubois 29 nov. 2023

textarossa.eu D7.1 | 4

Checked by WP Leader Bérenger Bramas 30 nov. 2023

Checked by Project Coordinator Massimo Celino 30 nov. 2023

textarossa.eu D7.1 | 5

COPYRIGHT

 © Copyright by the TEXTAROSSA consortium, 2021-2024

This document contains material, which is the copyright of TEXTAROSSA consortium members and the

European Commission, and may not be reproduced or copied without permission, except as mandated by

the European Commission Grant Agreement No. 956831 for reviewing and dissemination purposes.

ACKNOWLEDGEMENTS

This project has received funding from the European High-Performance Computing Joint Undertaking (JU)

under grant agreement no 956831. The JU receives support from the European Union’s Horizon 2020

research and innovation programme and Italy, Germany, France, Spain, Poland.

Please see http://textarossa.eu for more information on the TEXTAROSSA project.

The partners in the project are AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO

SVILUPPO ECONOMICO SOSTENIBILE (ENEA), FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER

ANGEWANDTEN FORSCHUNG E.V. (FHG), CONSORZIO INTERUNIVERSITARIO NAZIONALE PER

L'INFORMATICA (CINI), INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),

BULL SAS (BULL), E4 COMPUTER ENGINEERING SPA (E4), BARCELONA SUPERCOMPUTING CENTER-CENTRO

NACIONAL DE SUPERCOMPUTACION (BSC), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ AKADEMII NAUK

(PSNC), ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN), CONSIGLIO NAZIONALE DELLE RICERCHE (CNR),

IN QUATTRO SRL (in4). Linked third parties of CINI are POLITECNICO DI MILANO (CINI-POLIMI), Università

di Torino (CINI-UNITO) and Università di Pisa (CINI-UNIPI); linked third party of INRIA is Université de

Bordeaux; in-kind third party of ENEA is Consorzio CINECA (CINECA); in-kind third party of BSC is Universitat

Politècnica de Catalunya (UPC).

The content of this document is the result of extensive discussions within the TEXTAROSSA © Consortium

as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily

represent the views expressed by the European Commission or its services.

The information contained in this document is provided by the copyright holders "as is" and any express or

implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for

a particular purpose are disclaimed. In no event shall the members of the TEXTAROSSA collaboration,

including the copyright holders, or the European Commission be liable for any direct, indirect, incidental,

special, exemplary, or consequential damages (including, but not limited to, procurement of substitute

goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory

of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way

out of the use of the information contained in this document, even if advised of the possibility of such

damage.

http://textarossa.eu/

textarossa.eu D7.1 | 6

Table of contents
Table of contents .. 6

List of Acronyms .. 7

Executive Summary ... 8

1. Introduction .. 9

2. Efficiency of CNNs at the server level ...11

2.1. Training Efficiency ..11

2.2. Re-materialization ..12

2.3. Combining model parallelism and re-materialization ..14

2.4. Inference Efficiency ..16

2.5. Partitioning the CNN on heterogeneous hardware ...17

2.6. Linear Programming Formulation ..18

2.7. Task-based implementation ...20

3. Efficient CNN kernels for FPGA ...22

3.1. Introduction ...22

3.2. Relationship with the project objectives and strategic goals ..22

3.3. 2d convolution ...23

3.4. Kernel description ..23

3.5. FPGA implementation ..25

3.6. Results ..29

3.7. Compiler modifications for CNN mixed precision ..30

3.8. Support for custom data types in tasks ...31

3.9. Support for C++ constructions ...33

4. Workflow for the Deployment of CNNs on FPGA in the RAIDER Application34

5. Conclusions ...38

References ..39

textarossa.eu D7.1 | 7

List of Acronyms

Acronym Definition

AI Artificial Intelligence

AST Abstract Syntax Tree

CNN Convolutional Neural Network

DAG Directed Acyclic Graph

DNN Deep Neural Network

GPU Graphic Processing Unit

ILP Integer Linear Program

RICH Ring Imaging CHerenkov

TF TensorFlow

TPU Tensor Processing Unit

textarossa.eu D7.1 | 8

Executive Summary

This deliverable presents the progress on supporting Deep Neural Network applications within the

Textarossa project. We show developments in two different and complementary directions.

In the first part, we present algorithms for resource optimization when executing Convolutional Neural

Networks on a heterogeneous server. We study memory optimization when training large neural networks,

where we propose an improved re-materialization algorithm with significantly smaller overhead, and we

show how combining clever re-materialization strategies with model parallelism can improve the parallel

efficiency. We also present on-going work on optimizing the resource usage for the inference process, with

progress both on allocation algorithms and on a prototype task-based implementation based on the StarPU

runtime.

In the second part, we present developments within the OmpSs@FPGA framework to better support the

DNN use-case. We show an optimized implementation of a convolution kernel within the framework which

outperforms state-of-the-art CPU implementations. We also introduce support within the OmpSs@FPGA

framework for mixed precision data types and for the newer C++ 11 standard. Thanks to this new support,

we developed an initial porting of the RAIDER inference application to the OmpSs task-based programming

model.

textarossa.eu D7.1 | 9

1. Introduction

The unprecedented availability of data, computation and algorithms have enabled a revolution of Artificial

Intelligence (AI), as seen in Convolutional Neural Networks (CNNs) for vision, more recently Transformers

and Large Language Models, resulting in revolutionary applications such as automatic computer vision,

ChatGPT and generative AI. Deep Learning approaches have enabled a large spectrum of new applications

in many businesses with their ability to process vast amounts of data and extract meaningful patterns. In

healthcare, deep learning is used for disease diagnosis, drug discovery, and personalized medicine. In

finance, it aids in fraud detection, algorithmic trading, and risk management. Deep learning also powers

advancements in autonomous vehicles, enabling them to perceive the environment and make real-time

decisions. In natural language processing, it drives chatbots, language translation, and sentiment analysis,

enhancing human-computer interaction. Additionally, it plays a crucial role in image and speech

recognition, powering applications like facial recognition systems and voice assistants. Furthermore, deep

learning is utilized in industrial automation for predictive maintenance and quality control. Its versatile

applications continue to grow, shaping the future of technology across diverse sectors.

Training large neural network models is usually performed at a large scale, using a large number of

computing nodes to process the vast amount of data samples required to obtain good accuracy. However,

optimizing at the scale of a single server is relevant for several reasons. First, the efficiency of a large-scale

execution relies on having efficient kernels and algorithms running on each of the nodes, so that the gains

obtained by optimizing at the server level will result in similar gains when running at scale. Secondly, many

other use-cases exist beyond training new neural network models from scratch. Once a large model is

trained, it is very common to specialize it for more specific tasks, by providing a smaller set of data tailored

to the needs of a particular application. This process is called fine-tuning, and typically requires significantly

less computing power than the main training procedure. In addition, another important aspect of deep

learning is in the inference part. Once the model has been trained for the required task, the inference

process consists in answering requests, where new samples are fed into the network to obtain a prediction

according to the current model parameters. This process also requires typically much fewer resources than

training. Both use cases, fine-tuning and inference, are less resource-heavy than training from scratch but

happen typically much more frequently. Efficiency gains from optimizing these use-cases on a single server

can thus be very beneficial.

Experts from the Deep Learning community typically use python frameworks such as PyTorch [10] to

quickly develop and evaluate new models in a rapidly evolving field. These frameworks often need to trade

some resource efficiency to obtain the inter-operability and ease-of-use required for such rapid

prototyping. In this deliverable, we try to provide expertise from the High-Performance Computing

community to typical deep learning use-cases.

When designing a TEXTAROSSA node, it is thus very natural to consider supporting Deep Learning

applications as a possible use-case. In this document, we present some contributions in this direction, with

two very different but complementary approaches. In Section 2, we explore algorithmic techniques to

improve the efficiency of resource usage when using Convolutional Neural Network applications at the

server level. In Section 3, we discuss the technical aspect of developing a set of efficient CNN kernels for

heterogeneous architectures enhanced with FPGA. In Section 4, we present a workflow for the deployment

of CNNs on FPGA that is used in the RAIDER application and was presented in Deliverable 6.2.

The contributions of this Deliverable are:

textarossa.eu D7.1 | 10

• An improved re-materialization strategy has been designed for reducing memory usage when

training CNNs on a single GPU.

• A combination of re-materialization with model parallelism has been proposed for a better parallel

efficiency when training on multiple GPUs.

• An ongoing work is underway for increasing the efficiency of performing inference requests on a

heterogeneous server made of a multicore CPU and GPUs.

• A 2d convolution kernel has been ported to FPGA devices using the OmpSs task-based

programming model, with successive performance improvements, reaching competitiveness with

CPU state-of-the-art implementations (like PyTorch).

• The OmpSs@FPGA framework has been evolved to support mixed precision data types usually

present in CNN implementations.

• An improvement of the framework to support the newer C++ 11 standard has been reached,

allowing an initial porting of the RAIDER inference application to the OmpSs task-based

programming model.

 This deliverable is related to the following project objectives as stated in the DoA:

 Objective 1 - Energy efficiency. DNN executions are power hungry and one of the main sources of

computing power usage nowadays. Executing in FPGA has been demonstrated to be competitive with other

computing platforms in terms of energy efficiency. Improving resource usage for DNN applications and

being able to easily port them to FPGAs using the OmpSs@FPGA programming model will help to improve

inference and training energy efficiency.

 Objective 2 - Sustained application performance. The aim of the work presented in this deliverable is to

improve the performance obtained when executing DNN applications over the IDV-E platform by using

better resource allocation algorithms, by improving the framework and also by improving the task

scheduling through the use of the Fast Task Scheduler developed in Task 2.5. In this deliverable it is also

shown how CNN kernels performance can be improved in FPGAs.

 Objective 4 - Seamless integration of reconfigurable accelerators. One of the main concepts behind

OmpSs@FPGA is to allow the seamless integration of reconfigurable accelerators. In this deliverable we

study how to integrate accelerators for CNNs.

 Objective 5 - Development of new IPs. Although the IPs developed here are designed in HLS the CNN

kernel developed by BSC will be fully available to the public and the source code is even listed in this

deliverable. All code developed by Inria will also be fully available to the public.

The work developed here is also related to the strategic goals of the project as follows:

 Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic Research

Agenda (SRA) for open HW and SW architecture. The StarPU and OmpSs@FPGA software frameworks are

open source and publicly available as all the developments done in this project.

 Strategic Goal #3: Opening of new usage domains. The work developed in this section is strongly aligned

with this strategic goal as although GPUs and FPGAs are already used to perform both CNN training and

inference the usual approach doesn’t involve the use of a task-based programming model to do so. The

advantages of task-based programming models in general and StarPU and OmpSs@FPGA in particular

(mainly programmability, portability and performance) would pave the way to new developments in the

DNN world if the research is successful.

textarossa.eu D7.1 | 11

2. Efficiency of CNNs at the server level
We separate this section into two parts: we first discuss improving efficiency during the training process

and then present ideas for improving the efficiency of handling inference requests on an already trained

neural network.

1.

2.

2.1. Training Efficiency
The landscape of Neural Networks has evolved very quickly, from the first vision networks like ResNet-50

to Natural Language Processing transformer-based models like GPT. This evolution has led to increasingly

better results at the cost of tremendous resource requirements. One of these resource requirements is

memory usage during training, which comes both from the number of parameters of the models and the

size of the activations that must be kept in memory to perform back-propagation. Since training is usually

performed on computing resources such as GPUs or TPUs on which memory is limited; these memory

requirements often become a limitation that needs to be addressed.

Figure 2.1: Data versus model parallelism (source: Data vs Model Parallelism in TensorFlow, Illia Polosukhin)

The first category of solutions consists in relying on parallelism (see Figure 2.1). Data parallelism [16] refers

to the distribution of the memory related to the activations, at the cost of exchanging the network weights

between the different resources using collective communications which can be expensive for networks

with very large weights such as GPT for example. On the contrary, model parallelism [9] consists in

distributing the weights of the network, at the cost of the communication of activations. Because of the

sequential nature of most neural network models, it is necessary to pipeline the computations to use model

parallelism efficiently. This incurs memory overheads for the activations, and significantly limits the

scalability.

textarossa.eu D7.1 | 12

Figure 2.2: Reducing peak memory with activation offloading

The second category of solutions is purely sequential. Offloading [15] makes it possible to move some

activations computed during the forward phase from the memory of the accelerator (GPU or TPU) to the

memory of the CPU, and then to fetch them back at the appropriate moment into the memory of the GPU

during the backward phase (see Figure 2.2). This solution therefore consumes bandwidth on the PCI-e bus

between the CPU and the accelerator, which is also used to load training data. Another solution, called re-

materialization [6], consists in deleting from accelerator memory some activations computed during the

forward phase and then recomputing them during the backward phase. This approach does not consume

communication resources, but it does induce a computational overhead (see Figure 2.3).

Figure 2.3: reducing peak memory with re-materialization

In this section, we present two contributions for improving the efficiency of training at the server level. The

first one proposes an improved algorithm for re-materialization and obtains significant results on the well-

known GPT networks. These results have been published in the ICML conference in 2023 [7]. The second

contribution discusses the combination of model parallelism and re-materialization.

2.2. Re-materialization
A large part of the memory requirements during training come from the storage of the activations

associated with gradient descent, since (almost) all the results computed during the forward phase must

be kept in memory until they are used by the gradient computation during the backward phase.

textarossa.eu D7.1 | 13

 In this part, we focus on the re-materialization approach on a single GPU or TPU. This is sufficient in

practice for a large variety of neural networks, especially for performing fine-tuning of large networks with

limited resources. Furthermore, re-materialization can be trivially combined with data parallelism to

accelerate training if necessary. In this framework, for a given memory constraint, the optimization

problem consists in finding a sequence of computing, forgetting and recomputing actions which allow one

to perform the training for given inputs and batch sizes, while fulfilling the memory constraint and

minimizing the computational overhead.

Previous solutions

 To find the optimal sequence, different approaches have been proposed. In the first approach, like in Rotor

[6], it is assumed that the dependencies within the model have a particular structure, typically a sequence

of operations. In this case, using dynamic programming, it is possible to find the optimal order of

computations in reasonable time. On the other hand, in the case where the computations performed by

the model do not naturally consist in a sequence of operations, this approach requires to aggregate

elementary operations into complex blocks to make the chain structure emerge. In this case, re-

materialization decisions must be made at the level of blocks, which reduces optimization opportunities.

In the case of general graphs that are not structured as a sequence of elementary operations, another

approach has been proposed in Checkmate [8]. It consists in describing the operations corresponding to

both forward and backward phases as a Directed Acyclic Graph (DAG) and to find the optimal solution

through solving an Integer Linear Program (ILP). The number of integer variables is proportional to 𝑉  × 𝐸 ,

where 𝑉 is the number of operations and 𝐸 is the number of arcs of the DAG. Hence, a major shortcoming

of this approach is the computational time induced by solving the ILP. Typically, even using commercial

solvers such as CPLEX or Gurobi, it is not possible (in one day of computation) to consider a GPT2 models

with more than 10 transformer blocks, while classical instances include several dozens.

 Such GPT neural networks are not completely sequential, but can be decomposed in a sequence of blocks,

where each block contains several operations. It is a typical example where using Rotor requires one to

aggregate all the operations of the same block together. Rotor therefore decides at the scale of the whole

block whether to keep all the data or to delete them all during the forward phase. Checkmate, on the other

hand, sees the whole graph describing the model and can therefore decide, independently and at the level

of each operation, whether to keep its data or not.

The Rockmate algorithm

To improve over both solutions, we have proposed a new re-materialization strategy called Rockmate,

which combines the ideas of (i) Checkmate, which finds good solutions in the case of general graphs but is

slow, and (ii) Rotor, which finds the optimal solution only in the case of sequential networks but is fast. In

Rockmate, models are seen as a sequence of blocks (in the sense of Rotor), but where several optimal

strategies are pre-computed for each block (using a Checkmate-like approach). The main idea is to apply

Checkmate inside each block and to apply Rotor on the complete sequence of blocks.

 As discussed above, Rotor fails to compute very good re-materialization strategies because it can only

choose between two options: keep all or delete all activations in the block. In Rockmate, we use a refined

version of Checkmate to generate a larger set of re-materialization strategies for each block. A re-

materialization strategy is characterized by (i) the memory peak during the execution of the block (either

during forward or backward) and (ii) the total size of the internal activations of the block that are kept

between the forward phase and the backward phase. The first one ensures that this strategy can be

executed within a given memory limit. The second one allows the dynamic program to know how much

memory will be left for the next blocks. The number of different options to consider is a parameter of

textarossa.eu D7.1 | 14

Rockmate, and we have observed that using at most 400 different strategies in total for each block is

enough to get good solutions in practice. Since we apply Checkmate at the level of a block (and not on the

whole network), the corresponding graph is small enough that the runtime remains small, even for

generating the whole family of strategies.

In summary, we have made the following contributions:

• We have developed a graph-building tool that automatically extracts the Directed Acyclic Graph

(DAG) of the model, divides it into a sequence of blocks and identify all blocks with identical

structures to avoid applying Checkmate multiple times on similar blocks.

• We have designed an improved Checkmate formulation that can express a limit over the size of

activations which are kept in memory between the forward and backward phases of a block (and

thus, during the execution of the following blocks).

• We have proposed an improved Rotor algorithm which instead of having two solutions per block,

can exploit the different re-materialization strategies computed during the second phase. The

output of this algorithm therefore consists in a schedule which describes which block should be

computed, in which order, and with which re-materialization strategy.

• We have implemented all these algorithms into a Python framework, which can be used directly

with a large variety of PyTorch models. This implementation is open-source and available at

https://github.com/topal-team/rockmate

Figure 2.4: performance results of Rockmate on GPT2

An example of the performance results that can be achieved with this software is provided in Figure 2.4 for

two variants of the GPT network (medium and large). This figure shows the computational overhead

resulting from limiting the peak memory usage. The green dot denotes the performance achieved without

any re-materialization. For any peak memory below this threshold, the red and blue lines provide the

overhead in terms of computation time for the Rockmate and Rotor strategies respectively. We can see

that Rockmate can reduce the memory usage by a factor of three, for an overhead limited to about 10%,

twice smaller than the overhead of Rotor for the same memory budget.

2.3. Combining model parallelism and re-materialization

We now consider the (very common) case of a single server which contains several GPU devices. In such a

context, it is natural to perform the training process in parallel on all the available GPUs of the server. The

https://github.com/topal-team/rockmate

textarossa.eu D7.1 | 15

most standard approach is called data parallelism, where the training samples are spread across all

available GPUs so that each GPU processes a subset of the samples. When using data parallelism, the

parameters of the model are replicated on all the GPUs to allow them to process the samples. To update

the weights after each iteration, it is necessary to reduce all the gradients computed on all GPUs on a single

resource, update the weights and then broadcast the resulting weights to all GPUs. For models with a very

large number of parameters, data parallelism has two main drawbacks: memory usage is very high because

of the replication of the parameters, and the associated communication costs become prohibitive and

hinder the performance.

An alternative approach is model parallelism, where the model parameters are distributed across the GPUs

instead of being replicated: each GPU is in charge of a different part (or stage) of the neural network. In

that case, each sample is processed successively by all the GPUs, so that we replace the communication of

the parameters by communications of the activations between the different stages. Parallel execution is

achieved by pipelining the samples on the different GPUs (see Figure 2.5): the total batch size of an iteration

is divided in several micro batches, whose number is denoted by 𝑚 . The first micro-batch goes through

the first stage of the neural network on the first GPU and the resulting activation is sent to the next GPU.

While the second GPU processes this first micro-batch, the first GPU is available to process the next micro-

batch, and so on. In the GPipe model parallelism strategy [9], once all micro-batches have been processed,

the backward pass is performed in reverse order. The PyTorch framework includes an implementation of

this GPipe model parallelism strategy [11].

Figure 2.5: Model parallelism without pipeline (top), and with pipeline (bottom). Source: GPipe [9]

 A deeper pipeline allows for better parallel efficiency because the pipeline remains full for a longer time.

However, deepening the pipeline increases the memory used by the activations, which becomes a limiting

factor for efficiency. It is thus natural to combine model parallelism with re-materialization: by storing

fewer activations, one can reduce the memory pressure and in turn increase the total batch size and use

an even deeper pipeline. The usual approach in most implementations is to only keep the first activation

of each stage, forget all other activations, and recompute all of them during the backward pass. This very

aggressive solution involves a large amount of recomputation which reduces, or even negates, the

efficiency gains. This basic re-materialization approach is included in the GPipe implementation within the

PyTorch framework.

In the following, we present our work on exploring the possibility of using more clever re-materialization

approaches. For simplicity, we chose to use the Rotor algorithm for this exploration, and we selected the

textarossa.eu D7.1 | 16

GPT neural network examples, on a small number 𝑁 = 2 or 𝑁 = 4 GPUs. We first explored a direct

approach where the re-materialization optimization is performed independently on each micro-batch, and

then a more global approach where all the micro-batches are optimized together.

Direct approach: combining Rotor and Pipe

 In the model parallelism setting, the neural network is divided in 𝑁 successive stages of equal sizes. We

consider the example of the GPT neural network, which is made of several dozens of transformer blocks,

all with the same computational workload. This makes it quite easy to divide it into stages of roughly

equivalent workload, by assigning a similar number of transformer blocks to each GPU. We divide the batch

size into 𝑚 micro-batches, where both the batch size and 𝑚 can vary depending on the performance of

the re-materialization strategy.

 Our first approach is the direct combination of Rotor with the Pipe implementation included in the PyTorch

framework. For a given stage, we decide to optimize the re-materialization of each micro-batch separately.

Since all micro-batches of the same stage perform the same computations, it is not necessary to perform

the optimization several times: we use the same optimized strategy for all micro-batches. If the total

available memory for activations is 𝑀 and the total batch size is 𝐵 , we use the Rotor algorithm with an

available memory
𝑀

𝑚
 and a batch size

𝐵

𝑚
.

 The Rotor framework provides a new PyTorch module that implements this optimized strategy, and we

can provide this new module to the Pipe framework to obtain a pipeline over all the micro-batches. This

direct implementation ensures that the peak memory usage remains below 𝑀 , discards a limited subset

of the activations and optimizes the recomputation overhead of each micro-batch.

Global approach

 The direct approach presented above has a drawback: to ensure that the total peak memory usage remains

below 𝑀 , it arbitrarily divides it equally between all micro-batches. However, this might be improved, in

two different ways. First, there might be a more efficient way of distributing the available memory than

such an equal repartition. Second, once the backward pass of one micro-batch has been computed, the

corresponding activations are freed from memory. This additional memory capacity can be used to improve

the re-materialization strategy of the next micro-batches and to further reduce the computational

overhead.

The most natural way of addressing both of these concerns is to optimize the whole sequence of micro-

batches with the Rotor algorithm. To do that, for each stage we create a sequence of micro-batches 𝐵1

through 𝐵𝑚, separated by dummy operations that represent receiving the input of each micro-batch. We

modify the Rotor algorithm to ensure that these dummy operations are not allowed to be recomputed,

and we use this modified algorithm to optimize the whole sequence 𝐵1…𝐵𝑚.

 After the optimization, we divide the re-materialization strategy into subsequences, one for each micro-

batch. We modify the Rotor runtime to ensure that it uses the correct subsequence at each micro-batch

when interfaced with the Pipe framework. This results in a more optimized execution and further reduces

the computational overhead.

2.4. Inference Efficiency
We now consider the inference phase of Convolutional Neural Networks. In other words, the model has

been previously trained, so that the weights of the model are now constant throughout the inference

textarossa.eu D7.1 | 17

phase. The goal of that phase is to process successive inference requests, where each request consists of

one or several input(s), which need to be classified according to the Neural Network.

We are interested in performing this phase at the server level, on a single node made of heterogeneous

processing elements. These processing elements are usually a multi-core CPU on one side, and one or

several GPU accelerator(s), or an FPGA component on the other side. To efficiently process requests on

such an architecture, the goal is to optimize the usage of both kinds of resources so that they process parts

of the networks adapted to their computational capabilities.

This optimization can be measured by two different criteria: one can strive to optimize the throughput of

the system, defined as the number of requests processed per time unit; one can also be interested in

minimizing the latency of requests, defined as the time between the arrival of a new request and the time

at which the request is completed. Depending on the assumptions and on the choices made in the

optimization decisions, these criteria are sometimes equivalent (optimizing one also optimizes the other),

and sometimes antagonistic (optimizing one implies worse performance for the other).

The following sections present several directions of optimization that can be explored in such a context.

We first discuss the possibility of partitioning the CNN across the heterogeneous hardware and the

expected benefits. Then we present a task-based implementation of CNN inference that allows us to easily

implement such partitioning solutions.

2.5. Partitioning the CNN on heterogeneous hardware
We consider a heterogeneous server, that typically contains one or several accelerator(s) and a multi-core

CPU. This server must process requests for inference on a fixed CNN.

The basic approach, typically used in software like Triton [14], is to use each kind of processing element

independently. In the most basic scheme, only the accelerators are used, with the idea that they are

significantly more efficient at the convolutional operations required for the CNN. This approach relies on

replicating the parameters of the model over all the processing elements (for example, in the main memory

of the CPU, and in the memory of each GPU or each FPGA). This replication ensures that requests can be

processed independently on any processing unit. Whether the CPU is used or not, in both cases requests

are load-balanced among all the processing elements to ensure that all computing resources are used

equally.

The main advantages of this approach are its simplicity: it is very easy to implement and does not require

communication between the different computing elements. However, with the increase in the size of the

models, the replication of the parameters of the model can induce a high memory pressure for large

models. The most recent models will not even fit in the memory of only one computing element.

Another issue with the basic approach is that all processing elements perform all parts of the computational

workload of the CNN, whereas with the heterogeneity of the platform, some elements might have different

affinities with different parts of the CNN. For HPC applications, it has indeed been observed [12] that this

can result in superlinear speedup if each processing element performs the computations for which it is

more suited. For example, in a typical CNN, the tasks near the end of the computation are performed on

significantly smaller data, for which the GPU is less suited because there is less parallelism.

For both reasons (decrease the memory usage and take advantage of the heterogeneity of the hardware),

it is very relevant to partition the CNN across the different processing elements. In such a solution, each

request would go through the processing elements in sequence: for example, the first GPU would process

this request on the first part of the CNN, send the result to the second GPU which would process the second

textarossa.eu D7.1 | 18

part of the CNN, and the CPU would process the end of the request to obtain the final result. Several

successive requests can be pipelined to ensure that processing elements do not remain idle.

In terms of memory usage, with such a solution, each processing element only needs to store the

parameters of the model corresponding to the part of the network that it will compute. The parameters

are thus distributed over the computing elements instead of being replicated. However, ensuring a correct

load-balance between all computing elements is more challenging than in the fully replicated case. Careful

optimization is needed to decide which part of the model is assigned to which computing element.

In the rest of the section, we present an example of a linear programming formulation that can help

perform this decision.

2.6. Linear Programming Formulation
We start by providing some notation. For ease of presentation, we assume that the CNN consists in a

sequence of tasks 𝑇𝑖 for 1 ≤ 𝑖 ≤ 𝑛 , such that the output of task 𝑇𝑖is the input of task 𝑇𝑖+1. The input of

task 𝑇1 is the input data of an inference request, and the output of task 𝑇𝑛 is the result of this request. We

denote by 𝑤𝑖 the size of the model parameters needed to compute task 𝑇𝑖, and by 𝑜𝑖 the size of the output

of task 𝑇𝑖.

 We consider a server with 𝑚 heterogeneous processing elements and denote by 𝑝𝑖,𝑗 the processing time

of task 𝑇𝑖 on the computing resource 𝑗 . We denote by 𝑀𝑗 the available memory on resource 𝑗 , and by 𝛽𝑗

the communication bandwidth out of resource 𝑗 .

The goal of the optimization procedure is to assign tasks of the CNN to the computing resources to optimize

the resulting throughput, while satisfying the memory constraint on each computing resource. We assume

a steady-state execution of requests and express the execution of tasks as an average over an execution

period.

Our formulation uses the following variables:

• for all 𝑖  ≤  𝑛 and 𝑗  ≤  𝑚 , 𝑥𝑖,𝑗 represents the (fractional) number of tasks of type 𝑇𝑖 performed

on resource 𝑗 during one unit of time.

• for all 𝑖  ≤  𝑛 and 𝑗  ≤  𝑚 , 𝑠𝑖,𝑗 is equal to one if the parameters of task 𝑇𝑖 are stored on resource

𝑗 , and equal to zero otherwise.

• for all 𝑖  ≤  𝑛 and 𝑗  ≤  𝑚 , 𝑐𝑖,𝑗 represents the (fractional) number of data produced by task 𝑇𝑖 and

sent by resource 𝑗 .

• 𝜌 represents the (fractional) throughput of the solution, equal to the number of inference

requests that can be processed during one time unit.

Constraints:

• The time spent computing on a given resource 𝑗 during one unit of time is bounded by 1:

∀𝑗,   ∑ 𝑥𝑖,𝑗
𝑛
𝑖=1 𝑝𝑖,𝑗 ≤ 1 (1)

• Computing a task 𝑇𝑖 on resource 𝑗 requires the parameters to be stored in memory:

textarossa.eu D7.1 | 19

∀𝑖, 𝑗,  𝑝𝑖,𝑗𝑥𝑖,𝑗 ≤ 𝑠𝑖,𝑗 (2)

This constraint ensures that if 𝑠𝑖,𝑗 is 0, then 𝑥𝑖,𝑗 is also 0: it is not possible to compute any task 𝑠𝑖,𝑗

without the parameters of the model. If 𝑠𝑖,𝑗 is 1, then this constraint becomes 𝑝𝑖,𝑗𝑥𝑖,𝑗 ≤ 1. Since 𝑥𝑖,𝑗

is already constrained by (1), this means that when 𝑠𝑖,𝑗 is 1, 𝑥𝑖,𝑗 can take any feasible value and is

not limited by constraint (2).

• The total memory size of model parameters stored on resource 𝑗 should fit within the available

memory:

∀𝑗,   ∑ 𝑠𝑖,𝑗
𝑛
𝑖=1 𝑤𝑖 ≤ 𝑀𝑗 (3)

• For a given task 𝑇𝑖 and resource 𝑗 , the amount of data sent out of resource 𝑗 for that task can be

evaluated based on the number of tasks 𝑇𝑖 and 𝑇𝑖+1 computed by resource 𝑗 . Indeed, if resource

𝑗 computes more tasks of type 𝑇𝑖 than tasks of type 𝑇𝑖+1 , the results produced in excess on

resource 𝑗 have to be sent out of resource 𝑗 . This gives the following constraints:

∀𝑖, 𝑗,  𝑐𝑖,𝑗 ≥ 𝑥𝑖,𝑗𝑜𝑖 − 𝑥𝑖+1,𝑗𝑜𝑖 (4)

∀𝑖, 𝑗,  𝑐𝑖,𝑗 ≥ 0 (5)

• Since the link bandwidth is 𝛽𝑗, the total data that can be sent out of resource 𝑗 during one time

unit is bounded by 𝛽𝑗:

∀𝑗,   ∑ 𝑐𝑖,𝑗
𝑛
𝑖=1 ≤ 𝛽𝑗 (6)

• For any task 𝑇𝑖 , the throughput cannot be larger than the total number of tasks of type 𝑇𝑖

processed across all resources:

∀𝑖,   ∑ 𝑥𝑖,𝑗
𝑚
𝑗=1 ≥ 𝜌 (7)

We obtain the following linear programming formulation:

maximize 𝜌 subject to

Constraints (1-7)

𝑥𝑖,𝑗 ≥ 0, 𝑠𝑖,𝑗 ∈ {0,1}

The discussion above shows that solving this formulation provides a way to assign the different layers of

the model to the computing resources that allows for an optimal throughput. This assignment considers

both the memory constraints on each resource (with constraint (3)) and the heterogeneity of the

computing efficiency thanks to the 𝑝𝑖,𝑗 values. The assumption of a steady state periodic schedule may not

be realistic in practice, but it allows us to obtain a clear and efficient formulation. For a practical

implementation, it seems more relevant to use dynamic scheduling approaches to make decisions at

runtime for each individual request: for a given task 𝑇𝑖, we can choose the least loaded computing resource

among all those that have the necessary model parameters to compute this task.

 In the next section we describe how to build a task-based implementation for CNN inference that can

perform such dynamic scheduling decisions.

textarossa.eu D7.1 | 20

2.7. Task-based implementation
This section presents an ongoing work for a task-based implementation of inference for Convolutional

Neural Networks. The goal is to be able to efficiently perform inference computations on a heterogeneous

server, with the possibility to finely control which computing resources perform which part of the

computation. This implementation is based on the StarPU runtime which manages task scheduling and

communications, and on the ONNX framework which provides efficient implementations of the neural

network operators. Our implementation provides a link between both frameworks.

 Since this implementation is still in development, this deliverable does not contain experimental results.

A more detailed performance analysis will be provided later in another deliverable.

StarPU library

StarPU [12] is a high-performance task programming library for hybrid architectures. It is a software tool

aiming to allow programmers to exploit the computing power of the available CPUs and accelerators, while

relieving them from the need to specially adapt their programs to the target machine and processing units.

At the core of StarPU is its runtime support library, which is responsible for scheduling application-provided

tasks on heterogeneous machines. In addition, StarPU comes with programming language support, in the

form of an OpenCL front-end.

StarPU's runtime and programming language extensions support a task-based programming model.

Applications submit computational tasks, with CPU and/or GPU implementations, and StarPU schedules

these tasks and associated data transfers on available CPUs and GPUs. The data that a task manipulates

are automatically transferred among accelerators and the main memory, so that programmers are freed

from the scheduling issues and technical details associated with these transfers.

StarPU takes particular care of scheduling tasks efficiently, using well-known algorithms from the literature.

In addition, it allows scheduling experts, such as compiler or computational library developers, to

implement custom scheduling policies in a portable fashion.

 The main concepts of StarPU are:

• A codelet describes a computational kernel that can possibly be implemented on multiple

architectures such as a CPU, a CUDA device or an OpenCL device.

• A data handle is a StarPU structure that describes a piece of data that can be accessed by the

different computational tasks.

• A computational task: executing a StarPU task consists in applying a codelet on a data set, on one

of the architectures on which the codelet is implemented. A task thus describes the codelet that

it uses, but also which data are accessed, and how they are accessed during the computation (read

and/or write).

• A worker is any computing resource that can process tasks. Each worker is associated with a

memory node; processing a task on a worker might involve transferring the necessary data to the

corresponding memory node if it is not already present. These transfers are performed

automatically by StarPU with no user involvement.

ONNX framework

ONNX Runtime [13] is a cross-platform machine-learning model accelerator, with a flexible interface to

integrate hardware-specific libraries. ONNX Runtime works with different hardware acceleration libraries

through its extensible Execution Providers framework to optimally execute the ONNX models on the

textarossa.eu D7.1 | 21

hardware platform. These execution providers provide efficient implementation on different accelerators

of most of the basic computing kernels used in neural networks.

 Our current implementation uses the default CPU and CUDA providers and is thus able to use both kinds

of devices. The genericity of both StarPU and ONNX make it very extensible, so that supporting other

devices would only require minimal changes to the code.

Software architecture

 We start by providing a high-level view of the process of our task-based implementation. It can start from

any neural network model trained with PyTorch. We use ONNX utility functions to obtain the

computational graph of the neural network. We divide this graph into subgraphs, so that the workload of

each subgraph is large enough to represent a StarPU task. These subgraphs contain several nodes of the

computational graph of the neural network but will be seen in our implementation as a single StarPU task.

These subgraphs are exported with the ONNX export utility function, each in a separate export file. This

first part of the process takes place in the user's PyTorch application.

The ONNX export files are opened by our task-based implementation. There is a StarPU data handle for

each input or output tensor of these export files, identified by their name in the original computational

graph. These data handles are registered at initialization time and will allow StarPU to identify the data

dependencies between the different subgraphs. An ONNX session is initialized for each subgraph on each

computing resource that should run this subgraph; this loads the model parameters into the memory of

the device.

 When performing an inference for a given input data, the corresponding StarPU data handle for the input

tensor is filled with the data, and all StarPU tasks corresponding to all subgraphs are submitted to the

StarPU runtime. StarPU identifies which task can run on which computing resource, automatically

schedules tasks on the most efficient and/or least loaded resource, and automatically manages

communication between all the devices. Once all tasks have been processed, the output tensor contains

the result, which can be transferred to the user.

Specific implementation details

• Our solution makes use of the concept of combined workers in the StarPU runtime system: several

CPU cores can be merged to work as a single StarPU worker. It is thus possible to use the multi-

threaded execution providers of ONNX to perform multi-core executions of tasks on the CPU. This

requires us to carefully pin the threads on the correct CPU cores, to avoid interference between

the different ONNX sessions.

• For the input and output tensors of the complete neural network, the corresponding StarPU data

handles use statically pinned memory buffers. This ensures that the transfers to and from the

computing resources (the GPUs for example) can be performed as fast as possible, and in a

completely asynchronous fashion.

• Similarly, for the other tensors which carry data dependencies between the subgraphs, the

corresponding StarPU data handles are registered with `memory_node=-1`. This means that

StarPU can automatically allocate memory for the result of a task on the computing resource that

processes this task. The cache management system of StarPU ensures that buffers are not freed

after use, but reused for other similar data, so that the overhead cost of memory allocation is

negligible after the first few inferences.

• All our implementation is completely asynchronous and uses both the asynchronous API of ONNX

and StarPU. This allows StarPU to monitor device status and communication progress while the

textarossa.eu D7.1 | 22

computation is performed on the CPU and/or GPU. We can thus achieve a very efficient overlap

between computations and communications, avoiding unnecessary synchronizations.

3. Efficient CNN kernels for FPGA

3.

3.1. Introduction
This section explains how the OmpSs@FPGA programming model has been used in order to improve the

execution of CNN kernels in FPGA devices. From the technical and research points of view, the following

contributions have been carried out:

• A 2d convolution kernel has been ported to FPGA devices using the OmpSs task-based

programming model

• A study on how to improve performance of a 2d convolution using OmpSs@FPGA features has

been done

• The 2d convolution kernel has been transformed following the findings in the previous point to

increase its performance until it is competitive with CPU state-of-the-art implementations (like

Pytorch)

• The framework has been evolved in order to support mixed precision data types usually present

in CNN implementations

• An improvement of the framework to support newer C++ standards (as C++ 11 needed by RAIDER)

has been reached.

• An initial porting of the RAIDER inference application to the OmpSs task-based programming

model has been achieved

The developments explained in this deliverable section are also related to the ones reported in deliverables

2.10 IP for fast task scheduling, part 1; 2.11 IP for fast task scheduling, part 2; 4.6 Task-based runtime

systems and 4.7 HLS Flow. In particular, the IP for Fast Task Scheduling developed in task 2.5 and the

OmpSs@FPGA task-based model developed in task 4.2 have been used here/have been developed with

inputs from the work reported in this deliverable.

3.2. Relationship with the project objectives and strategic goals

This deliverable is related to the following project objectives as stated in the DoA:

• Objective 1 - Energy efficiency. Executing in FPGA has been demonstrated to be competitive with

other computing platforms in terms of energy efficiency. At the same time, DNN executions are

power hungry and one of the main sources of computing power usage nowadays. To be able to

easily port DNN applications to FPGAs using OmpSs@FPGA programming model will help to

improve inference and training energy efficiency.

• Objective 2 - Sustained application performance. As explained in the next sections, we aim to

improve the performance obtained when executing applications over the IDV-E platform both by

improving the framework and also by improving the task scheduling through the use of the Fast

Task Scheduler developed in Task 2.5. In this deliverable it is shown how CNN kernels performance

can be improved in FPGAs.

• Objective 4 - Seamless integration of reconfigurable accelerators. One of the main concepts behind

OmpSs@FPGA is to allow the seamless integration of reconfigurable accelerators. In this

deliverable we study how to integrate accelerators for CNNs.

textarossa.eu D7.1 | 23

• Objective 5 - Development of new IPs. Although the IPs developed here are designed in HLS the

CNN kernel developed by BSC will be fully available to the public and the source code is even listed

in this deliverable.

The work developed here is also related to the strategic goals of the project as follows:

• Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic

Research Agenda (SRA) for open HW and SW architecture. The OmpSs@FPGA SW framework is

open source and publicly available as all the developments done in this project.

• Strategic Goal #3: Opening of new usage domains. The work developed in this section is strongly

aligned with this strategic goal as although FPGAs are already used to perform both CNN training

and inference the usual approach doesn’t involve the use of a task-based programming model to

do so. The advantages of task-based programming models in general and OmpSs@FPGA in

particular (mainly programmability, portability and performance) would pave the way to new

developments in the DNN world if the research is successful.

3.3. 2d convolution
Convolution is often the most computationally expensive step in convolutional neural networks.

Meanwhile other steps such as relu or pooling have a non-trivial cost, usually the bottleneck of those neural

networks is the convolution. The computational cost of a convolution is determined by the product of the

sizes of the different inputs and convolutional kernels. For a given dataset, composed of 𝑁𝐼 input channels

of size 𝑆𝐼 , 𝑁𝑂 output channels and a kernel of size 𝐾𝑆 , the cost of a typical convolution would be

proportional to 𝐼𝑆 ⋅ 𝑁𝐼 ⋅ 𝑁𝑂 ⋅ 𝐾𝑆 . Meanwhile a typical ReLu step would have a cost of 𝐼𝑆 ⋅ 𝑁𝐼 and the

pooling step will also have a cost proportional to 𝐼𝑆 ⋅ 𝑁𝐼 .

For any non-trivial input data set, convolution will be the most computationally expensive kernel of all

three. Therefore, accelerating this kernel will provide greater performance gains than ReLu or Pooling.

3.4. Kernel description
Discrete convolution, 2-dimensional in our case, is implemented by applying a 𝑁𝑜 convolutional kernel over

all elements of all channels of a 2d matrix. 𝑁𝑜 is the number of output channels in this layer of the neural

network.

Input matrix size, kernel size as well as number if input and output channels are defined by the model and

can be different for each model and for each layer of a given network.

The convolutional kernel in our case is defined by the code in listing 3.1

for im in batch:

 for oc in output channels:

 for h in im.height - kernel[oc].height + 1:

 for w in im.width - kernel[oc].width + 1:

 result[im][oc][h][w] = bias[oc]

 for ic in b.input_channels:

 for y in kernel[ic][oc].height:

 for y in kernel[ic][oc].width:

 result[im][oc][h][w] += im[ic][h+y][w+x]*kernel[ic][oc][y][x]

Listing 3.1: 2d convolution algorithm

textarossa.eu D7.1 | 24

Data is laid out in memory as a contiguous array of 2d row-major matrices. Figures 3.1, 3.2 and 3.3 illustrate

the layout of the convolution kernel, input data and output data respectively.

Figure 3.1: Kernel memory layout

Figure 3.2: Input data memory layout

Figure 3.3: Output data memory layout

This data arrangement is assumed throughout the rest of the application and therefore it cannot be easily

changed. Any layout transformations for the convolutional step of the neural network layer have to be

carefully evaluated as any performance gains resulting from better exploiting data locality can be easily

negated by the cost of the transformation itself.

Given this data arrangement in Figures 3.1, 3.2, 3.3 and the algorithm in listing 3.1, some of the data sets

have to be visited multiple times. In the case of the algorithm in listing 3.1, input and kernels are visited

multiple times for each output. However, output data is visited only once. This scheme is known as output

stationary. Even though the loops of the algorithm can be rearranged to an input stationary (visit input

data only once) or weight stationary (visit a kernel only once) form, whether or not any of the schemes

provides any performance advantages will depend on the particular data set of a given model. Therefore,

a general solution that provides optimal performance is not possible.

textarossa.eu D7.1 | 25

3.5. FPGA implementation
The 2d convolution kernel is implemented in FPGA using the OmpSs@FPGA framework. It provides a

productive toolchain that allows quick iteration. Also, by having HLS code tightly integrated in the

application, the framework allows quick C-based co-simulations in order to validate correctness of the

accelerator kernel before implementing the design which it is a time-consuming operation which takes

several hours per iteration.

Kernel taskification

This implementation step requires identifying application computation kernels, splitting them into

functions, labelling them with pragma directives and defining task data dependencies.

In this case, the kernel code size is small, and it is already implemented in a function. Besides labelling the

task to be implemented in an FPGA, data dependencies need to be labeled. This is shown in listing 3.2.

#pragma oss task device(fpga) \

 in([bs*in_channels*in_H*in_W]input, \

 [out_channels*in_channels*k_H*k_W]kernel, \

 [out_channels]bias) \

 out([bs*out_channels*(in_H - k_H + 1)*(in_W - k_W + 1)]output)

void conv2D_FPGA(int bs,

 float* input,

 const int in_channels, const int in_H, const int in_W,

 float* kernel, const int k_H, const int k_W,

 float* output, const int out_channels,

 float* bias) { ... }

Listing 3.2: Convolution kernel OmpSs@FPGA directives and function header

Listing 3.2 shows the directive that defines the conv2D_FPGA function as a task. Then in() and out()

clauses define task input and output data dependencies respectively.

Dependencies are specified as shaping expressions. The syntax for data shaping expression in this example

is [data_size]pointer. For instance [out_channels]bias defines the dependency to be all data

from bias[0] to bias[out_channels]. In this case, data shapes depend on the parameters, therefore,

they cannot be determined at compile time.

Kernel specialization

In order to allow an efficient FPGA implementation, the kernel has to be specified for the current use case.

This step involves removing infrequent code paths and treating those cases in host code. Usual cases are

prologs or epilogs that skew data alignment and cause low usage of FPGA resources or treatment of corner

cases. This can be done in the CPU as they usually represent a very low percentage of the total problem

size. Also, converting parameters to constants known at compile time when possible, allows better overall

implementation as it enables some optimizations that otherwise cannot be performed.

In our case, kernel does not have infrequent code paths. However, most of the parameters can be

converted to constants. For a given convolution layer of a given model, input size, kernel size, input

channels, output channels, and output size are fixed. Since we target this use case making these values

constants known at compile time is a valid solution.

Having constant data size allows the tools to allocate local kernel memory, usually implemented as BRAMs

blocks. This allows much faster memory access when compared to accessing off-chip DDR memory. Also,

textarossa.eu D7.1 | 26

this enables partitioning of this local storage, which will allow multiple parallel accesses in later

optimization stages.

Listing 3.3 shows data storage created by the OmpSs@FPGA compiler in the kernel HLS wrapper, this is

only possible when size is known at compile time since hardware resources have to be allocated and

properly connected.

void conv2D_FPGA_wrapper(hls::stream<ap_uint<64> >& mcxx_inPort,

hls::stream<mcxx_outaxis>& mcxx_outPort, ap_uint<256>* mcxx_memport) {

 static float kernel[2304];

 static float output[61504];

 static float input[65536];

 static float bias[32];

…

}

Listing 3.3: Local storage allocated by kernel wrapper.

Also, minor improvements are achieved as loop control is simplified since all loop bounds are known at

compile time.

Batch parallelization

Convolution Kernel has been parallelized by splitting the batch loop, which is the outermost loop shown in

listing 3.1. Since loop iterations are independent in this loop, it can be easily parallelized by instantiating

multiple accelerators implementing the same task without having to duplicate data or needing

synchronization between kernels. Distributing iterations of the output_channels loop would require

replicating input data as each output channel needs data from all input channels. Splitting

input_channels loop, would require synchronization between accelerators in order to perform

accumulations into a given output channel.

Batch level parallelization is achieved by processing only one of the batch elements in each kernel and

calling them for each element in the batch. Moreover, all kernel calls in a batch can be performed from an

FPGA task. Listing 3.4 shows the code using nested FPGA tasks.

#pragma oss task device(fpga) \

 in([batch_size*IN_CHANNELS*IN_H*IN_W]input, \

 [OUT_CHANNELS*IN_CHANNELS*K_H*K_W]kernel, \

 [OUT_CHANNELS]bias) \

 out([batch_size*OUT_CHANNELS*(IN_H - K_H + 1)*(IN_W - K_W + 1)]output)

void conv2D_batch_FPGA(

 float* input, float* kernel, float* output, float* bias, int

batch_size) {

 const int out_H = IN_H - K_H + 1;

 const int out_W = IN_W - K_W + 1;

 for (int b = 0; b < batch_size; b++) {

 conv2D_FPGA(input + b*IN_CHANNELS*IN_H*IN_W,

 kernel,

 output + b*OUT_CHANNELS*out_H*out_W,

textarossa.eu D7.1 | 27

 bias);

 }

 #pragma oss taskwait

}

#pragma oss task device(fpga) \

 in([IN_CHANNELS*IN_H*IN_W]input, \

 [OUT_CHANNELS*IN_CHANNELS*K_H*K_W]kernel, \

 [OUT_CHANNELS+16]bias) \

 out([OUT_CHANNELS*(IN_H - K_H + 1)*(IN_W - K_W + 1)]output) \

 copy_deps num_instances(FPGA_CONV_INSTANCES)

void conv2D_FPGA(

 float* input,

 float* kernel,

 float* output,

 float* bias) { … }

Listing 3.4: FPGA nested tasks implementing batch processing of different inputs

Note that conv2D_batch reads the full input data and writes the full output data, but conv2D_FPGA

needs only a subset of it.

By creating nested tasks in the FPGA, we take advantage of the high throughput of Fast Task Scheduler

(FTS) which allows faster task creation. Furthermore, we reduce synchronization points between FPGA and

the CPU. When using nesting the host system only needs to synchronize with the top-level task

(conv2D_batch) instead of synchronizing for every batch element.

By using the num_instances() clause, we can control how many accelerators instances are going to be

instantiated in the final design. On runtime, tasks will be dynamically distributed among different instances

based on accelerator availability.

Kernel pipelining

In order to improve the convolution, the filter has been pipelined in 2 different dimensions as shown in

figure 3.4. On one side the filter is memorized and only the front wave is read for each filter application in

the w direction. In addition, the filter is unrolled in the h dimension so increasing the front wave by only

one element allows the algorithm to compute two positions of the same filter each iteration.

Figure 3.4: Filter pipeline in 2 dimensions

textarossa.eu D7.1 | 28

The HLS code that implements the front wave reader shown in orange in figure x.4 can be seen in listing

3.5. As it can be seen only the elements at w+2 are read. The remaining input elements are kept in the

temporal input buffers (tinputXY variables). The X denotes the row (h value) while the Y denotes the

column position (added to the w value). Each cycle in the w direction loop a new value is read and the

previous values are cycled to apply the filter to the sliding window of input elements.

tinput00=tinput01;

tinput01=tinput02;

tinput02=input[b*IN_CHANNELS*IN_W*IN_H+ channel*IN_W*IN_H+h*IN_W+(w+2)];

tinput10=tinput11;

tinput11=tinput12;

tinput12=input[b*IN_CHANNELS*IN_W*IN_H+ channel*IN_W*IN_H+(h+1)*IN_W+(w+2)];

tinput20=tinput21;

tinput21=tinput22;

tinput32=input[b*IN_CHANNELS*IN_W*IN_H+ channel*IN_W*IN_H+(h+2)*IN_W+(w+2)];

Listing 3.5: Front wave reading and filter sliding code

By applying this solution, the number of data read is reduced as only kernel height input elements are read

for each output element, instead of the full filter window. Even though this is a big improvement over the

naïve implementation, it has a series of issues regarding data access.

Accelerator data, as shown in listing 3.3, is stored in BRAM blocks. Each one has two ports. Therefore, only

two elements in each block can be accessed on a given cycle. This is a clear issue if we try to access the full

filter front wave in a single cycle. Figure 3.5 shows this effect. Red squares represent conflicting accesses

that try to access data in the same BRAM block, represented as a blue square in Figure 3.5.

Figure 3.5: Input accesses using default data layout.

By partitioning input storage, we can distribute data among different BRAM blocks to allow 2 accesses to

be performed in parallel in each cycle. However, it still would take two cycles to access the new data needed

to process one output element. This arrangement is shown in Figure 3.6. Red squares represent conflicting

access that will have to wait. Blue stripes represent a BRAM block, after partitioning is applied.

textarossa.eu D7.1 | 29

Figure 3.6: Conflicting accesses in the same memory partition (vertical stripes)

To work around these issues, accesses are offset so that they use a BRAM block from a different partition.

This is illustrated in figure 3.7.

Figure 3.7: Offset input accesses over different partitions.

By doing this, all accesses can be done in parallel. All data needed to apply the filter to two positions can

be read in the same cycle.

3.6. Results
Evaluation of the FPGA implementation has been carried out on a Xilinx Alveo U200 accelerator card. The

host system is an Intel Xeon Silver 4208 CPU with 64GB of main memory. Figure 3.8 shows performance

results.

Figure 3.8: 2D convolution performance

textarossa.eu D7.1 | 30

Chart shows the performance in Gflops for a naïve CPU implementation, the PyTorch CPU implementation,

a naïve FPGA implementation and a pipelined implementation. CPU naïve is a straight implementation of

pseudocode shown in listing 3.1. Pytorch implementation is a more CPU optimized implementation that

uses all available cores in our test system. FPGA naïve, in the same fashion as the CPU naïve, is a straight

implementation of algorithm described in listing 3.1, using OmpSs@FPGA in order to offload task execution

to the FPGA, using a single accelerator running at 200 MHz. FPGA pipelined corresponds to the improved

implementation using pipeline and partitioning techniques described in previous sections. In this case, 10

accelerators instances running at 300 MHz are used.

FPGA naïve implementation is very slow. This is because if no optimization is applied, a single operation is

performed each 9 cycles, which running at 200 MHz does not provide a reasonable performance.

 Naïve Pipelined Available

Number % Number % Alveo U200

BRAM 642 14.86 3378 78.19 4320

DSP 24 0.35 462 6.75 6840

FF 182392 7.71 425818 18.01 2364480

LUT 157785 13.35 425818 28.35 1182240

URAM 7 0.73 17 1.77 960

Table 3.1; 2D convolution FPGA implementation resource usage

Table 3.1: Shows resource usage of the different implementations of the 2D convolution kernel in FPGA.

As it can be seen the Pipelined implementation obtains improved performance at the cost of using a high

percentage of the board’s available BRAMs. Further optimizations that involve increasing the data reuse to

raise even further the operations per cycle (and thus the DSPs involved in the computations) are being

developed.

3.7. Compiler modifications for CNN mixed precision
As explained in deliverables 4.6 Task-based runtime models and 4.7 HLS flow, as part of the project we

have undertaken an update of part of the OmpSs@FPGA framework. One of the biggest challenges has

been to discard BSC in-house Mercurium compiler in favor of a llvm fork [17][18] that applies the necessary

compiler transformations to the C/C++ source code before feeding it to the vendor tools (Vitis HLS in the

case of IDV-E). This change allows the framework to work with more modern codes, such as the ones

usually found in CNNs. In this section we describe the necessary llvm modifications that allow us to use

Vitis HLS specific precision types, very useful for CNNs. All the code is distributed as open source [17]. It is

important to highlight that the fact of using an llvm fork does not interfere with the vendor tools that also

use an llvm fork to compile from HLS. Our part of the compiler, (detailed in deliverable 4.7 HLS flow) reads

the C code targeting the FPGA and emits, again C source code avoiding any incompatibilities with other

environments in the toolchain.

Support for non-built-in data types and C++ constructions has been implemented in the clang frontend

action that implements FPGA transformations. This is needed to support arbitrary precision data types such

as fixed precision numbers or reduced floating point (FP16). These data types are widely used in CNN

textarossa.eu D7.1 | 31

applications. Some parts of such applications do not need the precision provided by standard data types,

therefore allowing developers to save resources by using reduced precision data types in certain parts of

the application.

Compiler changes are closely related to support for user-defined types (i.e. classes) and constructions

added in newer language versions.

3.8. Support for custom data types in tasks
Custom data types were not supported in earlier versions of the compiler toolchain, we added support for

using them as copies, dependencies or internal (not related to kernel interfaces) computations.

Dependency resolution of C++ types

In order to emit valid HLS code, kernel closure must be computed. The compiler must identify which

definitions are needed by a kernel in order to output them along with the computation kernel source code.

In C, this is straight forward. However, in C++ the compiler ran into declaration conflicts due to template

instantiation. This is needed in order to support vitis hls fixed point types as they are implemented as a

templated structure.

Listing X.6 shows how the compiler has instantiated the template due to the declaration of x. For each

different template instantiation, the compiler creates a specialization. Sample code is correct as multiple

definitions of myType are not conflicting. In this case, the compiler should choose the most specialized

definition (bottom one) over the more general ones. However, even though listing 3.6 shows two

declarations of myType, the input source code contained only the first one.

template <typename T, int L, int M> struct myType {

 T a[L];

 T b[M];

};

template <> struct myType<int, 16, 5> {

 int a[16];

 int b[5];

};

…

myType<int, 16, 5> x;

Listing 3.6: HLS code containing source and instantiated templates.

Internally, this is handled by the compiler by creating an AST tree representing each instantiation. However,

comparing both trees for structural equivalence to check for violations of the One definition Rule (ODR)

are not trivial and false positives were found when dealing with templates in the FPGA frontend action.

To overcome this issue, a more complex type of AST import needs to be used when duplicating fragments

of the program AST in the FPGA phase. This import method takes template parameters into account when

computing structural equivalence to identify type declarations that should not conflict with each other.

textarossa.eu D7.1 | 32

Implicit Array initialization of non-standard types

Support for declaring arrays of user-defined types without explicit initialization had to be implemented.

Support for this use case is needed since fixed point and half precision floating point are implemented as

user-defined types. Otherwise, the pretty printer module in clang assumes that all arrays containing C++

user-defined data types will have an explicit initializer. The pretty printer is the compiler module that

outputs C++ code from an AST. Explicit initialization is not always the case. A user can define an array of

objects and initialize them later. This is illustrated in listing 3.7, which is now supported.

ap_fixed<16,5> layer2_out[LAYER2_SIZE];

Listing 3.7: Declaration of an uninitialized array of ap_fixed<16, 5> elements

Support for custom type serialization

Serialization and deserialization of non-trivial data types was added to the FPGA clang frontend action.

These operations are implemented using a union to build any type from raw bits that are read from an

interface as shown in listing 3.8. These operations are implemented in the task wrapper.

template<class T>

union __mcxx_cast {

 unsigned long long int raw;

 T typed;

};

static float bias[32];

…

__mcxx_cast<float> cast_tmp;

cast_tmp.raw = mxcc_data[I](32,0) //port[address](bit_range)

bias[I] = tmp.typed;

Listing 3.8: Deserialization of a floating-point number

However, this is not valid when the destination type is not a trivial type, which is the case of fixed point

and half-precision. In such cases a union constructor has to be emitted into the HLS code. This is shown in

listing 3.9.

template<class T>

union __mcxx_cast {

 unsigned long long int raw;

 T typed;

 __mcxx_cast() {}

};

static half c[4096];

…

__mcxx_cast<half> cast_tmp;

cast_tmp.raw = mcxx_data[addr](16,0);

c[I] = cast_tmp.typed;

Listing 3.9: Deserialization of a half precision floating point number,

textarossa.eu D7.1 | 33

Note that the constructor is in fact empty as type will not be initialized on union constructor but built using

raw bits. Furthermore, this is a C++11 construct. Therefore, changes to the toolchain, specifically AIT, are

needed in order to enable the proper C++ standard version in HLS.

Support for operator calls in FPGA tasks

Arithmetic operations such as addition or subtraction of fixed-point or half precision floating point types

are implemented as C++ operators, therefore, support for calling overloaded operators inside FPGA tasks

has been added. Treating them as regular function calls inside the compiler Is not enough. They are special

for the compiler and have to be processed accordingly. We have introduced the proper processing code

into the OmpSs@FPGA llvm fork.

3.9. Support for C++ constructions
Support for certain C++ constructions have been implemented to support output code generated using

ML4HLS [19], [20]. This tool generates an HLS implementation of a convolutional neural network from a

PyTorch model. Since the code is automatically generated, it may contain code that is not common for

programmers to write, using some features that lacked compiler support. This tool is used in the RAIDER

application. It uses this tool in order to implement an FPGA accelerated CNN.

Support for templates and namespaces in function calls
Support for calling functions that are defined inside a namespace have been implemented into the FPGA

frontend action. An example of this use case is shown in listing 3.10

nnet::conv_2d_cl<input_t, layer2_t, config2>(input1, layer2_out, w2, b2);

Listing 3.10: Template call inside a namespace

 As opposed to C, where the namespace is global, information provided by the caller has to be preserved.

This information includes the fully qualified name, which is the function name including the namespace

where it is defined, and the list of template parameters.

Support for recursive constexpr

Recursion in FPGA kernels is not supported in general. However, it is allowed inside a constexpr qualified

function. By qualifying a function as constexpr, it guarantees that it can be evaluated at compile time and

will be a constant at runtime. Therefore, this special case needs to be treated since it is valid code for FPGA

kernels. An example from raider is shown in listing 3.11. When processing FPGA kernel AST, the compiler

has to keep track of which functions it has already visited when processing function calls in order to detect

such cases.

constexpr int ceillog2(int x) {return (x<=2) ? 1 : 1 + ceillog2((x + 1)/2);}

Listing 3.11: Recursion inside a constexpr from the RAIDER application

textarossa.eu D7.1 | 34

4. Workflow for the Deployment of CNNs on FPGA in the

RAIDER Application

RAIDER is a high throughput online streaming processing application implemented on FPGA with the

APEIRON framework. Its task is to perform particle identification (PID) on the stream of events generated

by the RICH (Ring Imaging CHerenkov) detector in the CERN NA62 experiment at a rate of about 10 MHz,

using neural networks. The inference task consists in providing an estimate for the number of charged

particles (0, 1, 2, >=3) for any event detected on the RICH detector, that corresponds to the number of ring

tracks that can be reconstructed from the pattern of photomultipliers that have been illuminated (hit) by

the Cherenkov light cone emitted by a charged particle traversing the detector, as shown in Figure 4.1.

Figure 4.1: Examples of events belonging to class 2 and 3 (2 or >=3 charged particles) as detected by the array of RICH

photomultipliers (blue dots are the hit photomultipliers, red circles are the tracks reconstructed offline by the NA62

experiment offline analysis software framework)

Figure 4.2 depicts the workflow for the generation of processing Kernels implementing convolutional

neural networks designed for the inference tasks in RAIDER; these kernels are then integrated in the FPGA

design as HLS kernels in the APEIRON framework, as described in deliverable D4.1.

Figure 4.2: The workflow for the generation of CNN kernels in RAIDER

textarossa.eu D7.1 | 35

Using this workflow, design targets (efficiency, purity, throughput, latency) and constraints (mainly FPGA

resource usage) must be taken into account and verified at any stage:

1. TensorFlow/Keras [2]: on this first stage the NN architecture (number and kind of layers) and

representation of the input is designed, then using an appropriate training strategy (class balancing, batch

sizes, optimizer choice, learning rate, etc.), the network is trained and KPIs can be measured. If they don’t

meet the targets the process is repeated, modifying input representation and the CNN architecture.

2. QKeras [3]: in this second stage, the original TF/Keras NN model is modified by searching iteratively the

minimal representation size in bits of weights, biases and activations, possibly by layer that preserves the

expected KPIs. For the RAIDER application, the neural network generated through this quantization step,

yielded a neural network that uses an 8-bit fixed point <8, 1> representation for weights and biases and

16-bit fixed point <16, 6> for activations.

3. HLS4M L[4]: the QKeras model is translated into the corresponding Vivado HLS implementation

(annotated C++ code) by means of the HLS4ML Python package. Several handles are available at this stage

to guide the translation, e.g. tuning of REUSE FACTOR configuration parameter (low values yield low

latency, high throughput, high resource usage design), also clock frequency can be set.

4. Vivado HLS [5]: C/Verilog co-simulation for rapid verification of performance and synthesis of kernel IP

to be integrated in the APEIRON framework.

textarossa.eu D7.1 | 36

Figure 4.3: Details of the designed Convolutional Neural Network model

Following this workflow, we designed a lightweight Convolutional Neural Network having just 2796

parameters and suitable to be implemented on a FPGA, along with the corresponding representation of

the input data. The designed CNN model, represented in Figure 4.3, has been deployed on a Xilinx Alveo

U200 FPGA with a very limited resource usage. This CNN receives as input a compressed representation of

the original event in form of a B&W 16x16 image, as depicted in Figure 4.4.

textarossa.eu D7.1 | 37

Figure 4.4: Example of input images for the CNN (left class 0, center class 1, right class 2).

The relevant KPIs for the CNN implementation are its efficiency (or recall), purity (or precision), and the

throughput (in terms of processed events per second) and energy efficiency (in terms of processed events

per Joule) it delivers when integrated in the FPGA processing pipeline.

These KPIs are reported in deliverable D6.2 for two different FPGA design configurations, integrating one

or two replicas of the above-described CNN.

textarossa.eu D7.1 | 38

5. Conclusions

This deliverable presents several contributions for improving the efficiency of CNN applications at the IDV

level. We have presented re-materialization strategies to reduce the memory requirements of training

large neural networks, and a combination of re-materialization and model parallelism to efficiently use

multiple GPUs when training. We have also discussed improvements for the inference phase, by providing

algorithmic and technical developments for better resource usage on heterogeneous servers, using both

the CPU cores and the available accelerators. These developments are still on-going work and will be

carefully evaluated in the upcoming months.

We have designed and improved a 2D convolution kernel for the FPGA using the OmpSs@FPGA framework,

competitive with CPU state-of-the-art implementations. In addition, the OmpSs@FPGA framework has

been extended with new features added to the llvm compiler fork that compiles the FPGA code in order to

feed it to the vendor HLS tool. The new developments have added mixed precision types support to the

compiler to improve the processing of newly developed applications, CNNs in particular.

textarossa.eu D7.1 | 39

References
[1] E. Commission, “Grant Agreement 671668 - TEXTAROSSA: exploring Manycore Architectures for Next-

GeneratiOn HPC systems.” 2015.

[2] François Chollet et al. 2015. Keras. https://github.com/fchollet/keras

[3] Claudionor Coelho. 2019. QKeras. https://github.com/google/qkeras

[4] Duarte J, Han S, Harris P, Jindariani S, Kreinar E, Kreis B, Ngadiuba J, Pierini M, Rivera R, Tran N and Wu

Z 2018 Journal of Instrumentation 13 P07027–P07027

[5] Vivado Design Suite User Guide High-Level Synthesis UG902 (v2020.1), Xilinx, San Jose, CA, 2021

[6] Beaumont, O., Eyraud-Dubois, L., Herrmann, J., Joly, A., and Shilova, A. (2019). Optimal Checkpointing

for Heterogeneous Chains: How to Train Deep Neural Networks with Limited Memory. Research Report

RR-9302, INRIA.

[7] Zhao, X., Le Hellard, T., Eyraud-Dubois, L., Gusak, J., & Beaumont, O. (2023, July). Rockmate: an Efficient,

Fast, Automatic and Generic Tool for Re-materialization in PyTorch. In ICML (International Conference on

Machine Learning) 2023.

[8] Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P., Gonzalez, J., Keutzer, K., and Stoica, I. Checkmate:

Breaking the memory wall with optimal tensor rematerialization. Proceedings of Machine Learning and

Systems, 2:497–511, 2020.

[9] Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X., Chen, D., Lee, H. J., Ngiam, J., Le, Q. V., Wu, Y.,

and Chen, Z. (2019). GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism. In

NeurIPS.

[10] PyTorch developers, PyTorch. https://pytorch.org/

[11] PyTorch developers, Pipe implementation:

https://pytorch.org/docs/stable/pipeline.html#torch.distributed.pipeline.sync.Pipe

[12] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier StarPU: A Unified

Platform for Task Scheduling on Heterogeneous Multicore Architectures CCPE - Concurrency and

Computation: Practice and Experience, Special Issue: Euro-Par 2009, 23:187-198, February 2011

[13] ONNX Runtime developers, ONNX Runtime, 2021. https://onnxruntime.ai/

[14] NVIDIA Triton Inference Server. https://developer.nvidia.com/triton-inference-server

[15] Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., and Keckler, S. W. vDNN: Virtualized deep neural

networks for scalable, memory-efficient neural network design. In The 49th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 18. IEEE Press, 2016.

[16] Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. Parallelized stochastic gradient descent. In Advances

in neural information processing systems, pp. 2595–2603, 2010.

[17] OmpSs@FPGA framework source code. https://github.com/bsc-pm-ompss-at-fpga/

[18] OmpSs@FPGA User Guide. https://pm.bsc.es/ftp/ompss/doc/user-guide

textarossa.eu D7.1 | 40

[19] Aarrestad, Thea and others. Fast convolutional neural networks on FPGAs with hls4ml. In JINST, pp 7-

27, 2018

[20] HLS4ML https://github.com/fastmachinelearning/hls4ml

