

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No

956831

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

WP6 Applications and Use cases

D6.2 Initial Application Benchmarks and Results

Ref. Ares(2023)2413774 - 03/04/2023

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No

956831

TEXTAROSSA
Towards EXtreme scale Technologies and Accelerators for euROhpc

hw/Sw Supercomputing Applications for exascale
Grant Agreement No.: 956831

Deliverable: D6.2 Initial applications benchmarks and results

Project Start Date: 01/04/2021 Duration: 36 months

Coordinator: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO

SVILUPPO ECONOMICO SOSTENIBILE - ENEA , Italy.

Deliverable No D6.2

WP No: WP6

WP Leader: PSNC

Due date: M24 (March 31, 2023)

Delivery date: 31/03/2023

Dissemination

Level:

PU Public X

PP
Restricted to other programme participants (including the Commission

Services)

RE
Restricted to a group specified by the consortium (including the

Commission Services)

CO
Confidential, only for members of the consortium (including the

Commission Services)

textarossa.eu D6.2 | 3

DOCUMENT SUMMARY INFORMATION

Project title:
Towards EXtreme scale Technologies and Accelerators for

euROhpc hw/Sw Supercomputing Applications for exascale

Short project name: TEXTAROSSA

Project No: 956831

Call Identifier: H2020-JTI-EuroHPC-2019-1

Unit: EuroHPC

Type of Action: EuroHPC - Research and Innovation Action (RIA)

Start date of the
project:

01/04/2021

Duration of the
project:

36 months

Project website: textarossa.eu

WP6 Applications and Use cases
Deliverable number: D6.2

Deliverable title: Initial applications benchmarks and results

Due date: M24

Actual submission
date:

03/04/2023

Editor: Michał Kulczewski

Authors: Massimo Bernaschi, Berenger Bramas, Laura Cappelli, Alessandro

Celestini, Pasqua D’Ambra, Francesco Giacomini, Daniel Jaschke,

Martin Kuehn, Michał Kulczewski, Alessandro Lonardo, Alice

Pagano, Cristian Rossi, Sergio Saponara, Francesco Simula

Work package: WP6

Dissemination Level: Public

No. pages: 81

Authorized (date): 31/03/2023

Responsible person: Michał Kulczewski

Status: Plan Draft Working Final Submitted Approved

Revision history:

Version Date Author Comment

0.1 2023-01-18 Michał Kulczewski Draft structure

0.2 2023-03-03
Sergio Saponara Filled CINI part for the smart

cities use case

0.3 2023-03-10
Pasqua D’Ambra CNR-MathLib section has

been included

0.4 2023-03-16
Michał Kulczewski UrbanAir section has been

included

0.5 2023-03-22 Martin Kuehn, Laura Cappelli,

Alessandro Lonardo,

Francesco Simula, Daniel

Jaschke, Berenger Bramas,

Cristian Rossi

All sections have been

included

textarossa.eu D6.2 | 4

0.6 2023-03-23 Michał Kulczewski Ready for internal review

0.7 2023-03-29 All Addressing comments

0.8 2023-03-30 Michał Kulczewski Ready for submission

Quality Control:

Checking process Who Date

Checked by internal

reviewer 1
Francesca Lo Cicero 2023-03-27

Checked by internal

reviewer 2

Carlos Alvarez

2023-03-28

Checked by Task Leader Pasqua D’Ambra 2023-03-30

Checked by WP Leader Michał Kulczewski 2023-03-30

Checked by Project

Coordinator
Massimo Celino 2023-03-31

textarossa.eu D6.2 | 5

COPYRIGHT

 © Copyright by the TEXTAROSSA consortium, 2021-2024

This document contains material, which is the copyright of TEXTAROSSA consortium

members and the European Commission, and may not be reproduced or copied without

permission, except as mandated by the European Commission Grant Agreement No. 956831

for reviewing and dissemination purposes.

ACKNOWLEDGEMENTS

This project has received funding from the European High-Performance Computing Joint

Undertaking (JU) under grant agreement no 956831. The JU receives support from the

European Union’s Horizon 2020 research and innovation programme and Italy, Germany,

France, Spain, Poland.

Please see http://textarossa.eu for more information on the TEXTAROSSA project.

The partners in the project are AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE,

L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE (ENEA), FRAUNHOFER

GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

(FHG), CONSORZIO INTERUNIVERSITARIO NAZIONALE PER L'INFORMATICA

(CINI), INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET

AUTOMATIQUE (INRIA), BULL SAS (BULL), E4 COMPUTER ENGINEERING SPA

(E4), BARCELONA SUPERCOMPUTING CENTER-CENTRO NACIONAL DE

SUPERCOMPUTACION (BSC), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK (PSNC), ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN),

CONSIGLIO NAZIONALE DELLE RICERCHE (CNR), IN QUATTRO SRL (in4). Linked

third parties of CINI are POLITECNICO DI MILANO (CINI-POLIMI), Università di Torino

(CINI-UNITO) and Università di Pisa (CINI-UNIPI); linked third party of INRIA is

Université de Bordeaux; in-kind third party of ENEA is Consorzio CINECA (CINECA); in-

kind third party of BSC is Universitat Politècnica de Catalunya (UPC).

The content of this document is the result of extensive discussions within the TEXTAROSSA

© Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does

not necessarily represent the views expressed by the European Commission or its services.

The information contained in this document is provided by the copyright holders "as is" and

any express or implied warranties, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose are disclaimed. In no event shall the

members of the TEXTAROSSA collaboration, including the copyright holders, or the

European Commission be liable for any direct, indirect, incidental, special, exemplary, or

consequential damages (including, but not limited to, procurement of substitute goods or

services; loss of use, data, or profits; or business interruption) however caused and on any

theory of liability, whether in contract, strict liability, or tort (including negligence or

otherwise) arising in any way out of the use of the information contained in this document,

even if advised of the possibility of such damage.

http://textarossa.eu/

textarossa.eu D6.2 | 6

Table of contents
Table of contents .. 6

List of Figures .. 7

List of Tables ... 9

Executive Summary ... 10

1 Introduction .. 12

2 Methodology .. 13

2.1 Hardware ... 13

2.2 Performance and energy measurements .. 16

3 Results .. 17

3.1 Smart cities – CINI-UNIPI .. 17

3.2 MathLib – CNR ... 19

3.3 RTM – FRAUNHOFER.. 32

3.4 HEP ... 36

3.5 NEST-GPU – INFN .. 43

3.6 RAIDER – INFN ... 47

3.7 TNM – INFN ... 56

3.8 ScalFMM (Mathlibs-INRIA) .. 61

3.9 Chameleon (Mathlibs-INRIA) .. 62

3.10 UrbanAir – PSNC.. 64

4 Summary and future work ... 76

4.1 Smart Cities - CINI-UNIPI .. 76

4.2 MathLib - CNR ... 76

4.3 RTM – FRAUNHOFER.. 77

4.4 HEP - INFN ... 77

4.5 NEST-GPU - INFN ... 77

4.6 RAIDER - INFN ... 77

4.7 TNM - INFN ... 78

4.8 MathLib - INRIA .. 78

4.9 UrbanAir - PSNC .. 78

5 References .. 79

textarossa.eu D6.2 | 7

List of Figures
Figure 1 GPU blade architecture with PCIe switches .. 13

Figure 2 GPU blade architecture with embedded PCIe switches .. 14

Figure 3 Different mixed-precision format supported by accelerator in platform 7 15

Figure 4 Strong Scalability SpMV kernel .. 21

Figure 5 Strong Scalability. SpMM kernel .. 22

Figure 6 Strong Scalability. MWM kernel .. 22

Figure 7 Strong Scalability. BCMG Preconditioner setup... 23

Figure 8 Strong Scalability. BCMG Solve .. 23

Figure 9 Weak Scalability. SpMV kernel .. 24

Figure 10 Weak Scalability. SpMM kernel ... 24

Figure 11 Weak Scalability. MWM kernel .. 25

Figure 12 Weak Scalability. BCMG Preconditioner setup .. 25

Figure 13 Weak Scalability. BCMG Solve .. 25

Figure 14 SpMV kernel. Power Measurement on 1 GPU at full load 26

Figure 15 SpMM kernel. Power Measurement on 1 GPU at full load 27

Figure 16 MWM kernel. Power Measurement on 1 GPU at full load 27

Figure 17 BCMG Preconditioner Setup and Solve. Power Measurement on 1 GPU at full load

.. 28

Figure 18 BCMG Preconditioner Setup and Solve on multiple GPUs at full load.................. 29

Figure 19 BCMG Preconditioner Setup and Solve on multiple GPUs by Likwid CPU

counters .. 29

Figure 20 Weak Scalability. Number of iterations of BCMG vs AMGX 30

Figure 21 Weak Scalability. Time to solution of BCMG vs AMGX 31

Figure 22 Weak Scalability. Time per iteration of BCMG vs AMGX 31

Figure 23 Plot of relative maximum norm of difference between compression format and

float 32bit ... 33

Figure 24 Cut perpendicular the depth axis for all the compression formats 34

Figure 25 Cut of source volume perpendicular to x-axis ... 35

Figure 26 Total energy of source over time for different time step size.................................. 35

Figure 27 Total energy of source over time for different time step size.................................. 35

Figure 28 Scaling of throughput with the number of used cores for the CLUE application on

CPU .. 38

Figure 29 Scaling of energy efficiency with the number of used cores for the CLUE

application on CPU .. 39

Figure 30 Scaling of throughput with the number of used cores for the Pixeltrack application

on CPU ... 39

Figure 31 Scaling of energy efficiency with the number of used cores for the Pixeltrack

application on CPU .. 39

Figure 32 Scaling of throughput with the number of used GPUs for the CLUE application . 41

Figure 33 Scaling of energy efficiency with the number of used GPUs for the CLUE
application .. 41

Figure 34 Scaling of throughput with the number of used GPUs for the Pixeltrack application

.. 42

Figure 35 Scaling of energy efficiency with the number of used GPUs for the Pixeltrack

application .. 42

Figure 36 Power profile for 8000 simulated milliseconds in different process/cores layouts on

Ampere Altra. .. 44

file:///C:/Users/Massimo/OneDrive%20-%20enea.it/__MAXone/__Progetti/__Textarossa/Deliverables/2023_03_31_Deliverable/D6.2/D6.2-final2.docx%23_Toc131443583

textarossa.eu D6.2 | 8

Figure 37 Power profile for 8000 simulated milliseconds in different process/cores layouts on

Dibona EPYC... 46

Figure 38 Power profile for 10000 simulated milliseconds on NVIDIA A100 (the first ~4500s

of runtime are for the setup phase where the GPU is unused and were cut from the plot). 46

Figure 39 Examples of events belonging to class 2 and 3 (2 or >=3 charged particles) as

detected by the array of RICH photomultipliers .. 47

Figure 40 The workflow for the generation of NN kernels in RAIDER 47

Figure 41 Details of the designed Convolutional Neural Network model.............................. 48

Figure 42 Example of input images for the CNN .. 49

Figure 43 Testbench for the RAIDER ... 49

Figure 44 Power profiling of model.predict() function performed via LIKWID tool 51

Figure 45 Power profiling of model.predict() function for the CPU 51

Figure 46 Power profiling of model.predict() function for the GPU 52

Figure 47 CNN RAIDER testbench integrating 2 inference processing pipelines 53

Figure 48 Power profiling of 1CNN RAIDER design configuration 54

Figure 49 Power profiling of 2CNN RAIDER design ... 54

Figure 50 Quantum Fourier Transformation (QFT) algorithm acting on a block of N

entangled qubits. .. 56

Figure 51 Power measurement for a single-core double-precision simulation of a quantum

Fourier transformation of 100 qubits on blocks of six entangled qubits. 57

Figure 52 Power measurement for a single-core double-precision simulation of a quantum

Fourier transformation of 100 qubits on blocks of eight entangled qubits. 57

Figure 53 Power measurement for a single-precision (C) and double-precision (Z) simulation

.. 59

Figure 54 Power measurement for a single-precision (C) and double-precision (Z) simulation

on a single core of a quantum Fourier transformation of 100 qubits on blocks of eight

entangled qubits. .. 59

Figure 55 Interactions/s of a n-body simulation using ScalfMM and StarPU on two different

hardware configurations... 61

Figure 56 Flops/s for the Cholesky and Qr factorization (Chameleon) and StarPU on two

different hardware configurations. ... 63

Figure 57 GCRK strong scalability on a single node. ... 65

Figure 58 GCRK strong scalability on multiple nodes. ... 66

Figure 59 GCRK strong scalability on multiple A100 GPUs. ... 67

Figure 60 GCRK strong scalability on multiple NVIDIA V100 GPUs................................... 67

Figure 61 GCRK weak scalability on CPUs. ... 68

Figure 62 GCRK weak scalability on GPUs.. 69

Figure 63 GCRK weak scalability on GPUs – comparison between 1M and 59M grid points

problem .. 69

Figure 64 GCRK power consumption on GPUs, 1M grid points per GPU. 70

Figure 65 GCRK power consumption on GPUs, 15M grid points per GPU. 70

Figure 66 GCRK power consumption on GPUs, 59M grid points per job. 71

Figure 67 GCRK CPU power consumption when running on GPUs 71

Figure 68 GCRK energy consumption on GPUs ... 72

Figure 69 GCRK strong scalability iterations per second ... 73

Figure 70 GCRK weak scalability iterations per second ... 74

Figure 71 GCRK iterations/Watt ... 74

Figure 72 GCRK KPIs on a single node for CPUs and GPUs... 75

textarossa.eu D6.2 | 9

List of Tables
Table 1 Results of target application (Yolo+DeepSort) on the 7 target platforms 18
Table 2 KPIs for MathLib .. 20
Table 3 Energy KPIs on 1 GPU ... 28
Table 4 Energy KPIs when multiple GPUs are used in a weak scaling setting 29
Table 5 List of reduced precision formats. .. 32
Table 6 Comparison of different compression formats. .. 32
Table 7 Scaling of KPIs for the CLUE application on CPU.. 37
Table 8 Scaling of KPIs for the Pixeltrack application on CPU .. 38
Table 9 Scaling of KPIs for the CLUE application on GPU ... 40
Table 10 Scaling of KPIs for the Pixeltrack application on GPU... 41
Table 11 Runtimes for the last leg (4000ms) of simulation on different process/cores layouts

on Ampere Altra. ... 43
Table 12 Power, runtime and wattage per configuration over total simulation (8000ms) on

Ampera Altra. .. 44
Table 13 Runtimes for the last leg (4000ms) of simulation on different process/cores layouts

on Dibona EPYC.. 45
Table 14 Power, runtime and wattage per configuration over total simulation (8000ms) on

Dibona EPYC... 45
Table 15 Baseline KPIs evaluated on the execution of the Keras model.predict() function ... 52
Table 16 Percentage of FPGA resources used by the 1CNN RAIDER design configuration . 53
Table 17 Percentage of FPGA resources used by the 2CNN RAIDER design configuration . 53
Table 18 KPIs for the two design configurations of RAIDER .. 55
Table 19 Improvement factors of the KPI for the 1CNN and 2CNN designs over the baseline

.. 55
Table 20 Properties for single-core double-precision simulations of a quantum Fourier

transformation of 100 qubits on blocks of N entangled qubits. ... 58
Table 21 Comparison of single-precision (C) versus double-precision (Z) simulations on a

single core for a quantum Fourier transformation on blocks of N entangled qubits. 58
Table 22 UrbanAir KPIs .. 73

textarossa.eu D6.2 | 10

Executive Summary
This deliverable provides initial benchmarks and results of the applications. In particular, the

document discusses outcomes with respect to KPIs defined for each use case in the previous

D6.1 deliverable. All use cases applied common methodology for performance and energy

measurements, discussed in detail in D1.4. The tests were conducted among others on

Textarossa available testbeds, including IDV-A (Dibona node with GPU accelerators from

Atos) and IDV-E (node with FGPA accelerators from E4). The applications represent wide

range of application types (HPC, AI/HDPA), scientific domains, approaches to parallelization

(OpenMP, CUDA, MPI, …). In particular, the use cases benefit from developments around

one of the three main pillars defined: heterogenous resources, mixed precision and dynamic

runtime systems.

The work carried out correspond directly to the following overall project objectives:

- Energy efficiency, by the application developments;

- Sustained application performance, by the application developments;

- Seamless integration of reconfigurable accelerators, by using the APEIRON

framework;

- Development of new IPs, by using INFN intra/inter-FPGA communication IP behind

the APEIRON framework;

- Integrated Development Platform, by using existing IDV-A and IDV-E;

- Opening of new usage domain, by the application developments.

CINI-UNIPI provides application of smart cities is useful in case of disaster (e.g. earthquakes)

or terrorist attacks or war scenarios. It contains an AI+video algorithm to detect people in a

scene and then detecting and tracking people that are laying down. Input images acquired by

video-camera are passed to a YOLOv5 (You-look-only-once) detection system, and its outputs

are passed then to a filtering step detecting people that are laying down. A DeepSORT

algorithm that implements tracking and counting tasks is finally applied. DeepSORT is an

extension of the SORT (Simple Online Realtime Tracking) algorithm. This algorithm is tested

on several HPC platforms using ARM and INTEL GPPs, with and without accelerators, some

of them supporting mixed-precision.

CNR designed and implemented a large part of the proposed Mathlib kernels, which includes

widely used building-blocks for physics-driven simulation models in traditional HPC

applications. Some new algorithms specifically thought for heterogeneous computing nodes

hosting Nvidia GPUs have been proposed and efficient parallel design patterns have been

applied to obtain high performance at the node level and large scalability. Measured KPIs on

some Textarossa platforms and some Top 500 supercomputers demonstrate the validity of our

approaches. A prototype of the CNR Mathlib is already available in a public repository and it

can be considered one of the key innovations of the Textarossa software toolchain for

performance/energy efficient computations.

Fraunhofer extended a basic implementation of a 3D isotropic RTM Kernel using 5 different

floating point formats of reduced precision to compress the domain and the model as well. The

focus is to save memory bandwidth to increase runtime performance while keeping up the

image quality. Images calculated with 6 different approaches have been compared

quantitatively and qualitatively. Some formats like Bfloat16 proved not suitable for seismic

applications while other formats like Posit16 or ZFP provided an acceptable image quality.

Furthermore the numerical stability of the suitable implementations have been tested versus

textarossa.eu D6.2 | 11

the applied timestep including two difficulty levels in the velocity model. Most

implementations revealed less than 5% drop in the stable timestep size.

INFN provides one HPDA (RAIDER) and three HPC (TNM, NEST-GPU, HEP) applications

as benchmarks to drive the co-design and characterization activities of project IDVs.

We tailored the RAIDER (Real-time AI-based Data analytics on hEteRogeneous distributed

systems) application for the use case of the CERN NA62 High Energy Physics experiment in

order to demonstrate the effectiveness (in terms of processing throughput and energy efficiency

KPIs) of our scalable streaming based framework (APEIRON) in addressing three project

objectives: i) Seamless integration of reconfigurable accelerators: the APEIRON framework

allows to integrate a number of communicating HLS kernels (coded in C++) both on a single

FPGA or on a set of several interconnected FPGAs, ii) Energy efficiency: first results on energy

efficiency show a O(10) improvement when compared to CPU or CPU+GPU implementations,

and iii) Sustained application performance: first results on processing throughput show a x3

and x2 improvement respect to CPU and CPU+GPU respectively with a limited exploitation

of the scalability features offered by the APEIRON framework and using just 20% of a single

Alveo U200 FPGA resources. The key enabling technology behind the APEIRON framework

is the INFN intra/inter-FPGA communication IP, developed according to the project objective

Development of new IPs.

Tensor Network Methods (TNM) application for the simulation of quantum systems is used

to emulate the behaviour of quantum computers.

NEST-GPU is a GPU-accelerated neural network simulator engine for in-silico experiments

which aims for easy reconfigurability and usage by the neurophysiology practitioner while

striving for high efficiency and performance. While being self-standing production-ready code,

the very significant gains in power consumption and reduced runtimes that it has demonstrated

against its sibling application NEST (which is CPU-only) have motivated the current effort for

its integration into the larger environment managed by the NEST Initiative and are fostering

its employment in a larger number of hybrid HPC platforms.

Finally, regarding High-Energy Physics (HEP) codes on heterogeneous architectures we have

selected two representative applications: Pixeltrack, a track reconstruction algorithm for the

CERN CMS experiment, and CLUE, a cluster algorithm for high-granularity calorimeters.

The topics related to the three HPC applications are important in current and future HPC

scenarios, and the applications represent relevant benchmarks to characterize and possibly

shape the architecture of TEXTAROSSA IDVs.

INRIA created a new scheduler called Multreeprio within StarPU. This scheduler is highly

modular, as each task can have several priorities, one for each type of processing unit, allowing

for the creation of compact heuristics to favor locality, makespan, or energy efficiency. We

evaluated this scheduler on two applications, ScalFMM and Chameleon, using different types

of heterogeneous computing nodes. We measured two key performance indicators (KPIs):

Flops/s and Flops/Watt.

PSNC provides GCRK kernel, one of the main routin of EULAG model. It was tailored towards

the use in UrbanAir application, dealing with air quality forecasting. The work focused on

addressing two objectives: energy efficiency and application performance by measuring

proposed KPIs: iterations/s and iterations/Watt. In the former case, we are able to achieve 3.5-

9x speedup comparing CPUs to GPUs, but it depends on the problem size and amount of

hardware resources used. In the latter case, we can achieve at least 2x more energy efficient

run, although the number depends on the problem size and amount of hardware resources used.

textarossa.eu D6.2 | 12

1 Introduction

Work performed in WP6 is essential to demonstrate the Textarossa outcomes in both hardware

and software perspective. The applications need to use these for the final evaluation of the

project, but far more important is to come up with conclusions if and how new hardware and

software development paradigms can improve computation and energy efficiency of

applications coming different domains.

In the Textarossa we focus on applications related to AI (Artificial Intelligence), HPDA (High

Performance Data Analytics) and HPC (High Performance Computing). Provided software

represents quite a comprehensive set of different hardware used (CPU, GPU, FPGA),

programming models and problems to be solved. Use cases are developed based on three

distinctive approaches: i) adaptation to heterogenous resources, ii) applying posit and mixed

precision, and iii) using dynamic runtime systems. Therefore, there is a different set of

computational, energy efficiency and accuracy metrics defined (KPI – key performance

indicator) for each of the applications, though some naturally overlaps. The KPIs were

discussed in the previous D6.1 deliverable. In this document we focus on advancements in

applications development, and on reporting initial benchmarks and results to steer further

development. The work carried out is related to the following project objectives:

- energy efficiency, by applications developments to adapt to heterogeneous resources,

energy efficient accelerators or using mixed precision;

- Sustained application performance, by applications development to adapt to more

computational efficient accelerators, using scheduler of streaming framework;

- Seamless integration of reconfigurable accelerators, by using the Apeiron framework;

- Development of new IPs, by testing INFN intra/inter-FPGA communication IP which

works behind the APEIRON framework;

- Integrated Development Platform, by using the available IDV-A (Dibona) and IDV-E

platforms for initial benchmark results;

- Opening of new usage domains, by developing application in many different domains,

e.g. climate, oil&gas, high energy physics.

This document is organized as follows. In Section 2, methodology for benchmarking

applications from computational and energy efficiency perspective is discussed. It also details

hardware architectures being used for testing. In Section 3, each use case is described in details,

providing its status, development advancements, and initial benchmarking results including

KPIs. Section 4 provides a summary and discusses next steps.

textarossa.eu D6.2 | 13

2 Methodology
For the consistency of benchmarks results across different applications in the project, a

common methodology is proposed to be obeyed by each of the use case. Each application

provides results on the currently available testbeds, IDV-A (Dibona) equipped with GPUs, and

IDV-E equipped with FGPA accelerators. Additionally, some applications performed

additional benchmarks on external to the project hardware, which is detailed in Section 2.1 and

within individual applications results. In Section 2.2, methodology to measure computational

performance and energy efficiency is discussed.

2.1 Hardware

2.1.1 IDV-A

The IDV-A prototype defined in Textarossa is a GPU blade provided by Atos for two-phase

liquid cooling adaptation. This prototype has been described in Deliverable D1.2 Chapter 3

(GPU platforms requirements). It will be available when this new liquid cooling is installed

and validated on this blade. Unfortunately, the cooling design is still ongoing, and the prototype

delivery targeted in M18 (Deliverable D5.1) has been delayed. Meantime access has been

provided to a GPU node of previous generation in the Dibona cluster accessible to Atos partners

in several funded projects.

This node is implemented in a CRRM blade in BullSequana XH2000 platform. The

architecture of this node, described in Figure 1, is based on the following components:

- One bi-socket host with AMD EPYC 7402, codename "Rome" (8 DDR4 memory

channel @3200 MT/s and 2 x16 PCIe Gen4 slots per socket).

- 4 Nvidia GPU Ampere A100, interconnected with NVlink

- Two 96-port PCIe Gen3 switches to provide direct access between CPU and GPU,

CPU and NIC, GPU and NIC (GPU direct)

- Up to four NICs (Network Interface Controller) to connect to a HPC high speed

interconnect (Infiniband HDR technology).

Figure 1 GPU blade architecture with PCIe switches

In the case of Dibona platform, only one blade is provided, then there is no connection to high-

speed interconnect. The only access is the 1Gb/s link of the CPU host.

textarossa.eu D6.2 | 14

The architecture of final IDV-A is similar, except that the PCIe switch is embedded in the

Infiniband NDR NIC (ConnectX 7 ou CX7), as described in Figure 2.

Figure 2 GPU blade architecture with embedded PCIe switches

This architecture change has no impact on the blade performance. But the performance will

increase with these two main evolutions:

- Nvidia GPU is the next generation Hopper H100, interconnected with Nvlink.

- In the host node, the AMD Rome CPU is replaced with Intel Sapphire Rapids CPU,

with 8 DDR5 memory channels @4800 MT/s and 2 x16 PCIe Gen5 slots per socket.

This blade will be hosted on the new BullSequana XH3000 platform. As this blade remains

isolated, the node will also be accessed with the 1Gb/s Ethernet link of the host.

More details can be found in D1.4.

2.1.2 IDV-E

IDV-E system is delivered by E4 and it is currently available with remote access to project

partners. The nodes are equipped with ARM64 and FPGAs.The choice of the system to which

to apply the two-phase cooling system fell on the Ampere Mt.Collins 2U system with Ampere

Altra Max processor; the main reasons are: (i) it supports a number of PCIe slots providing the

possibility of adding FPGA boards (up to 3) and/or other boards if needed, (ii) it has the

physical space for adding the cooling system, (iii) it presents a good match between the amount

of heat to be removed and the design point of the cooling system developed in the project, (iv)

it has an architecture (ARM) compatible with that of the EPI project, (v) the possibility of

receiving the system in times compatible with the project (an aspect not taken for granted given

the current state of shortage worldwide). As for the FPGA, the choice fell on the U280 Xilinx

Passive Model, it is able to provide significant computing power and the flexibility of memory

access via HBM2 or DDR protocol with a maximum consumption of 225W. This device also

guarantees the use of the VITIS software stack. More details are described in D5.2 and D1.4.

textarossa.eu D6.2 | 15

2.1.3 Other architectures

For CNR-MathLib, Piz Daint system is used, operated by the Swiss National Supercomputing

Center. That system is based on the Cray XC40/XC50 architecture with 5704 hybrid compute

nodes (Intel Xeon E5-2690 v3 with Nvidia Tesla P100 accelerator) and 1813 multicore

compute nodes (Intel Xeon E5-2695 v4), using the Cray Aries routing and communications

ASIC with Dragonfly network topology. It is ranked 26th in the November 2022 Top 500 list.

For the Smart Cities applications by CINI in Section 3.1, CINI has considered multiple

platforms:

- platform 1 --> Quad core ARM Cortex-A72 on a Raspberry PI4 board

- platform 2 --> ARM Neoverse N1 (80 cores) on Ampera Altra blade

- platform 3 --> Fujitsu A64FX (ARMv8-A based) on an Apollo HPE cluster

- platform 4 --> NVIDIA Jetson AGX Orin

- platform 5 --> Intel i7-10750H with NVIDIA GeForce GTX 1650 Ti

- platform 6 --> Intel Xeon with NVIDIA Tesla T4

- platform 7 --> Intel Xeon with NVIDIA A100

The platforms include processors based on ARM64 architecture (platform 2 and platform 3)

with and without SVE extension.

The platforms include also Intel i7 and Xeon processors, and use also of different type of

accelerators (T4, A100, Orin).

The platform with A100 supports mixed arithmetic like BF16/FP16/FP32/T32.

T different formats of the mixed-precision are presented in Figure 3.

Figure 3 Different mixed-precision format supported by accelerator in platform 7

(with A100)

FP16/FP32 mixed-precision is also supported by GPU T4 that is one of the used platforms.

Missing an HW support to Posit in the available accelerators, the mixed-precision included

BF16/FP16/FP32 but not Posit.

All accelerator architectures considered for the smart cities CINI use cases also support

INT4/INT8.

textarossa.eu D6.2 | 16

Being the platform equipped with a FPGA, IDV-E is the reference platform of the RAIDER

application by INFN in the context of the TEXTAROSSA project. Since the RAIDER

application is developed using the INFN APEIRON framework, which is based on the Vitis

flow, it relies on the XRT runtime libraries and the corresponding XOCL/ZOCL device driver.

Xilinx does not support XRT on ARM platforms other than ZynQ, as is the case for IDV-E that

integrates a Xilinx Alveo U280 on an ARM server. An activity from project partner BSC is

finished to add the needed support, as reported in deliverable D4.1-Proof-of-concept

Textarossa IDV-E Test support. However, the issues were solved too late to be accounted in

this deliverable. Therefore results reported in this deliverable have been collected using a

development platform available in the INFN Roma APE Lab, a dual socket server with two

X86_64 processors (Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz) equipped with a Xilinx

Alveo U200 FPGA card. In section 3.6 we compare the KPIs obtained on the CPU+FPGA

setup with a baseline given by the execution of the inference task on the Tensorflow model

running both on CPU only and in combination with a GPU accelerator. These baseline KPIs

have been collected using a workstation sporting a single socket Intel(R) Xeon(R) W-2145

CPU @ 3.70GHz 8 core processor (with Hyper Threading support) and a NVIDIA GeForce

RTX 2080 Ti GPU accelerator.

For the UrbanAir application, PSNC Altair supercomputer is used. It is a CPU and GPU cluster

equipped with Intel processors: Xeon E5-2697 (2342), Xeon E5-2682 (110), Xeon Platinium

8268 (2640), Xeon Gold 5115 (6), Xeon 6242 (18), and Nvidia V100 cards. The Altair is ranked

158th in TOP500 list.

2.2 Performance and energy measurements

In order to have meaningful and consistent benchmarking results across different use cases, a

common methodology for measuring the performance and energy efficiency is proposed and

discussed in detail in D1.4 deliverable. Some of the approaches are described in this document

in Section 3, where each use case presents in detail the approach to obtain results and measure

application-specific KPIs (proposed in D6.1).

textarossa.eu D6.2 | 17

3 Results

3.1 Smart cities – CINI-UNIPI
The application of smart cities contains a video-based algorithm to detect people in a scene and

then detecting and tracking people that are laying down. This application is useful in case of

disaster (e.g. earthquakes) or terrorist attacks or war scenarios. The input images acquired by

video-camera operating in the visual domain are passed to a YOLOv5 (You-look-only-once)

detection system, that is one of the most popular object detection algorithms. The outputs of

YOLOv5 are passed then to a filtering step detecting people that are laying down. Then a

DeepSORT algorithm that implements tracking and counting tasks is applied.

DeepSORT is an extension of the SORT (Simple Online Realtime Tracking) algorithm.

Algorithm inputs are:

- YOLOv5 model weights

- Re-Identification model weights

- Source path (path of the video file that should be processed)

Algorithm outputs:

- videos processed with detected and tracked people

The platforms tested are:

- platform 1 --> Quad core ARM Cortex-A72 on a Raspberry PI4 board

- platform 2 --> ARM Neoverse N1 (80 cores on Ampera Altra blade)

- platform 3 --> Fujitsu A64FX (ARMv8-A based) on an Apollo HPE cluster

- platform 4 --> NVIDIA Jetson AGX Orin (12-core Arm Cortex-A78AE plus GPU

NVIDIA Ampere)

- platform 5 --> Intel i7-10750H with NVIDIA GeForce GTX 1650 Ti

- platform 6 --> Intel Xeon with NVIDIA Tesla T4

- platform 7 --> Intel Xeon with NVIDIA A100

Platforms 1, 2 and 3 are homogenous multi-core platforms using different types of ARM cores.

Platforms 4, 5, 6 and 7 are heterogenous platforms with multi-core ARM or Intel GPP plus a

GPU-based accelerator.

Table 1 reports the achieved results. In this tasble we use this legend to clarify if for the

heterogenous platforms (4 to 7) we have used CPU-only or both CPU and the GPU accelerator:

Table 1 🐢 execution on CPU only

🚀 execution on CPU and GPU

NM --> Not Measured

To be noted that the results in terms of processing time for one frame are splitted among the

YOLO inference phase, the mandown classifier and the DeepSORTphase. The frame per

seconds is calculated as inverse of total time to process one frame. The temperature and power

consumption of the chips (CPU and/or GPU) are also reported.

The results achieved demonstrate for video surveillance application the importance of

accelerating the GPP with e.g., a GPU.

textarossa.eu D6.2 | 18

Indeed, the only platforms achieving a real-time are those with a GPP (e.g. Intel Xeon) plus

GPU T4 or A100.

To be noted that platforms 2 and 3 are representative of the ARM HPC cores that will be

available in the GPP of the European Processor Initiative. Comparing speed results of platform

2 and platform 3, is clear that the support of the Scalable Vector Extension in ARM (present in

the Fujitsu A64FX of platform 3, while missing in the ARM Neoverse of Platform 2) allows

for a speed increase by a factor at least 2.

In terms of used arithmetics:

- platforms 1,2 and 3 adopt a classic fp32 floating-approach;

- platform 7 sustains fp32, fp16 and bfloat16;

- platform 4 sustains float32 and int8 for platform;

- platform 6 sustains ; fp32, fp16, int8, int4 for platform 6.

Platform FPS YOLO

Inference

Speed

(ms)

Man Down

Classifier

Speed

(ms)

Deep

SORT

Speed

(ms)

CPU

Temp

(°C)

CPU

Power

Consumpt
ion(W)

GPU

Temp

(°C)

GPU Power

Consumptio

n(W)

1 0.1 7632 1.2 1032 82.0 NM - -

2 0.2 879 0.6 3794 51.6 NM - -

3 0.4 1221 1.1 1233 NM NM - -

4 🐢 0.05 2084 0.5 18155 58.2 16.8 - -

4 🚀 7.7 38.8 0.5 54.9 52.2 6.7 47.0 16.0

5 🐢 1.0 794 0.3 200 95 NM - -

5 🚀 6.5 82.9 0.3 37.9 NM NM 74.7 38.2

6 🐢 1.8 336 0.3 197 NM NM - -

6 🚀 11.7 33.9 0.3 28.3 NM NM 48.9 57.1

7 🐢 2.0 328 0.3 191 NM NM - -

7 🚀 16.3 16.2 0.3 25.3 NM NM 30.8 44.4

Table 1 Results of target application (Yolo+DeepSort) on the 7 target platforms (with those with accelerator data with GPP
only or GPP+accelerator are reported)

textarossa.eu D6.2 | 19

3.2 MathLib – CNR
In this section we discuss some preliminary results obtained by using the mathematical

software library for heterogeneous architectures, featuring NVIDIA GPUs at node level. As
already described in D6.1, the CNR team is developing computational kernels required in

sparse matrix computations and iterative linear solvers, which are widely exploited in Scientific

Computing and Data Analysis. Main focus is both on node-level efficiency and on scalability

when multiple nodes are needed for computations because dimensions largely exceed the

memory resources of a single computing node. The MathLib computational kernels developed

and tested in the first phase of the project are the following:

1. Sparse matrix – vector multiplication (SpMV);

2. Sparse matrix – matrix multiplication (SpMM);

3. Maximum Weight Matching in undirected graphs (MWM);

4. Preconditioned Conjugate Gradient (PCG) method coupled with a matching-based

Algebraic MultiGrid preconditioner (BCMG).

We point out that the BCMG solver is implemented on the base of all the other computational

kernels, which are the main blocks for AMG setup (SpMM and MWM) and for solving by

PCG (SpMV). In the following we first discuss preliminary results obtained on the CRRM

Blade for the Textarossa project, named Dibona and operated by ATOS. Then, in order to

analyze the scalability potential of our main kernel, that is the sparse linear solver based on the

AMG-PCG method (BCMG), we also show weak scalability results obtained on Piz Daint. As

benchmark datasets we consider matrices and right-hand sides of algebraic systems required

for the solution of the Poisson equation in 3D with homogeneous Dirichlet boundary conditions

and right-hand side equal to the unit vector. This is a standard benchmark test case for sparse

matrix computation because it represents the computational kernel of many scientific and

engineering applications, and indeed is also used in the HPCG benchmark [1]. In our case, the

discretization of the problem is obtained by the classic 7-points finite-difference stencil for the

left-hand side operator (the Laplacian operator), which results in a symmetric positive definite

(s.p.d) matrix of coefficients well suited for PCG. All the data are real and represented in

double-precision format. Note that, in all the experiments made with the BCMG solver and

discussed in the following, we stop PCG iterations when the relative residual in the Euclidean

norm is less than 10-6 or the number of iterations reaches the maximum value fixed to 1000

(actually, in all the experiments with the linear solver, the required accuracy is obtained with

no need to stop for the limit on the maximum number of iterations).

In the case of the SpMV kernel, we consider, as vector operand, a vector of all ones,

whereas in the case of the SpMM kernel, both the operands are the same, so that we compute

the square of a Laplacian matrix. Finally, for the MWM kernel, we consider the undirected

adjacency graphs of the Laplacian matrices to which suitable real weights are associated, as

applied in the BCMG aggregation algorithm for the preconditioner setup.

We note that our baseline was a mono-GPU version of all the kernels, while in this

project we focused on a hybrid parallel version leveraging multi-GPUs computing nodes. We

are interested in analyzing both strong scalability, i.e., the reduction in the execution times

when a problem with a fixed size is considered on an increasing number of parallel resources,

and weak scalability properties of our kernels, i.e. when dealing with problems of increasing

size, while parallel resources increase.

Parallel design pattern is based on Single Program Multiple Data (SPMD) programming

model relying on a row-block distribution of the system matrix and the related right-hand sides

among the MPI tasks. Blocks of contiguous rows are assigned to each task according to the

textarossa.eu D6.2 | 20

order defined by the MPI rank. We observe that each MPI task is associated to one GPU

accelerator which is in charge of all the computation phases. Details on the algorithms and

parallel design patterns implemented for all kernels of the MathLib are discussed in [2]. Here

we just mention that some approximations in some original (mono-GPU) numerical algorithms

have been required, so that the combination of communication-avoiding techniques, fine-

grained parallelism, and overlapping between computation and data communication could

allow us to design a scalable version of the BCMG linear solver. In the paper we also included

details on the algorithmic parameters which characterize the AMG preconditioner which for

the sake of brevity we omit in this deliverable.

3.2.1 Preliminary results on Dibona

In this section we discuss results of different kernels, in terms of both parallel performance and

power consumption. For strong scalability analysis of the kernels, we always consider matrices

with size 3003=27M, whereas for weak scalability we consider different matrix dimension per

each kernel, so that each GPU can be used at full load, as detailed in the following. Power

consumption measures have been obtained for all the kernels when they run on 1 GPU,

while in the case of multi-GPU executions, we obtained measures only for the whole BCMG

solver in the weak scaling approach, when the GPUs are used at their full load. As also

described in deliverable D6.1, our main KPIs are grouped in 3 main categories, as classified in

Table 2.

KPI for computational

efficiency

KPI for energy KPI for accuracy

- execution time

- (strong and weak) speedup

- number of iterations/time

per iteration (only for

iterative linear solver)

-accuracy

- iterations/Watt (only for

iterative linear solver)

- Dof (Degrees of Freedom

or unknowns)/Watt

Yes (User’s parameter

dependent for iterative linear

solver)

Table 2 KPIs for MathLib

3.2.1.1 Strong Scalability on Dibona

In the following, we discuss KPIs for computational efficiency, in particular we focus

on execution time and strong speedup scalability, having as baseline the mono-GPU version of

the kernel. Accuracy of the results of all, but the linear solver, kernels is up to the machine

precision in double precision floating-point arithmetic. In the case of the BCMG linear solver,

as already said, an accuracy on the solution up to 6 digits is achieved. Different tolerances in

the stopping criterion can be set up to reduce or increase solution accuracy.

We first discuss performance of the SpMV kernel. It is a BLAS-2 operation involving

a sparse matrix. BLAS-2 operations are characterized by a low intensity operation, indeed the

ratio between number of flops and data access is constant for increasing matrix dimension.

Therefore, their performance is limited much more by memory and communication bandwidth

than the floating-point capabilities of the architecture. On the other hand, this feature is

emphasized when the matrices are sparse, with a very small number of non-zero entries per

row. In Figure 4 (top) we can observe that the execution time of the SpMV kernel decreases

textarossa.eu D6.2 | 21

with increasing number of GPUs resulting in a speedup (bottom of Figure 4) of 1.44x on 2

GPUs and of 2.80x on 4 GPUs.

Figure 4 Strong Scalability SpMV kernel: Execution time (top) and Speedup (bottom)

In Figure 5 we show execution time (top) and speedup (bottom) of the SpMM kernel.

Here the main issue is represented by the number of non-zero entries as well as the sparsity

pattern of the resulting matrix product that are not predictable in advance. A so-called symbolic

phase is in general applied, in which the number of nonzeros in the result matrix is computed,

postponing the actual calculations of the values to a following numeric phase. For the single

GPU version, we resorted to the nsparse [3] package, which revealed much more efficient of

any combination of primitives provided by Nvidia's cuSparse library. Assumed that both

operands are distributed in a consecutive row-block setting assigned to parallel tasks with

consecutive MPI ranks, a straightforward solution to split the product computation among the

GPUs is that each GPU computes the corresponding block of rows of the product matrix. In

this setting, data communication among all the tasks is needed. The data communication

volume and pattern depend on the nonzeros entries of the local rows, whose column indices

correspond to rows, owned by other tasks, which have to be communicated to finalize the local

computation on each GPU. We exchange all the data necessary to complete the product on each

GPU before starting the computation, so that the product appears as if it were completely local

from the viewpoint of the nsparse CUDA kernel. From Figure 5 we can see that execution time

of SpMM, as expected, decreases for increasing number of GPUs and the speedup is 1.43x on

2 GPUs and 1.69 on 4 GPUs. The reduced speedup on 4 GPUs is due to the increased impact

of data communication in this kernel with respect to the SpMV kernel.

In Figure 6 we show execution time (top) and speedup (bottom) of the MWM kernel,

that is the computation of an approximate maximum weight matching in undirected weighted

graphs. In this case we applied an embarrassingly parallel approach, where non-local edges are

neglected, so that each task can compute an MWM approximation to the local sub-graph.

Therefore, we can see that almost ideal speedup of about 2x and 4x, respectively on 2 and 4

GPUs, is obtained.

In Figure 7 and Figure 8 we show performance of the BCMG code which includes the

setup of an AMG preconditioner and of the application of the corresponding preconditioned

Conjugate Gradient method for solving linear systems arising from the Poisson problem, when

a fixed number of 27M unknowns is considered. We can observe that in both cases the

textarossa.eu D6.2 | 22

execution time is reduced for increasing number of GPUs and that a speedup of 1.39x and

1.67x, respectively on 2 GPUs and 4 GPUs, is obtained for the preconditioner setup, while a

speedup of 1.30x and 1.87x, respectively on 2 GPUs and 4 GPUs, is obtained for the

preconditioned Conjugate Gradient application.

Figure 5 Strong Scalability. SpMM kernel: Execution time (top) and Speedup (bottom)

Figure 6 Strong Scalability. MWM kernel: Execution time (top) and Speedup (bottom)

textarossa.eu D6.2 | 23

Figure 7 Strong Scalability. BCMG Preconditioner setup: Execution time (top) and Speedup (bottom)

Figure 8 Strong Scalability. BCMG Solve: Execution time (top) and Speedup (bottom)

3.2.1.2 Weak Scalability on Dibona

As already mentioned, here we present some weak scalability results in using up to 4

GPUs available on the Dibona cluster for all the kernels of our MathLib. We used different

problem sizes per each GPU for the different kernels, so that, per each kernel, the GPU are

used at the full load. As in the strong scalability analysis, we discuss KPIs for computational

efficiency, in particular we focus on execution time and weak (scaled) speedup, having as

baseline the mono-GPU version of the kernel. In more details, we defined the scaled speedup

as the ratio T_1(N)*np/T_np(np*N), where T_1(N) is the execution time for solving a problem

with dimension N on 1 GPU and T_np(np*N) is the execution time for solving a problem with

dimension np*N on np GPUs. Accuracy of the results of all but the linear solver, kernels is up

textarossa.eu D6.2 | 24

to the machine precision in double precision floating-point arithmetic. In the case of the BCMG

linear solver, an accuracy on the solution up to 6 digits is achieved. Different tolerances in the

stopping criterion can be set up to reduce or increase solution accuracy.

The SpMV kernel obtains very good scaled speedup (Figure 9, bottom) of 1.76x and

3.32x, respectively on 2 and 4 GPUs. On the other hand, SpMM has a good scaled speedup

(Figure 10, bottom) of 1.78x on 2 GPUs, while a scaled speedup of 2.23x is observed on 4

GPUs, showing that with this data sets, the data communication impact increases for increasing

number of GPUs. MWM, as expected, shows an ideal speedup (Figure 11, bottom) of 2x and

4x, respectively on 2 and 4 GPUs, due to its embarrassingly parallel nature. As to the BCMG

preconditioner setup we observe a scaled speedup (Figure 12, bottom) of 1.75x on 2 GPUs and

of 3.28x on 4 GPUs. Finally, in the solve phase of BCMG, we observe a scaled speedup (Figure

13, bottom) of 1.50x on 2 GPUs for solving a sparse linear system with 78M of unknowns, and

of 2.24x on 4 GPUs for solving a linear system with 156M of unknowns.

Figure 9 Weak Scalability. SpMV kernel: Execution time (top) and Speedup (bottom)

Figure 10 Weak Scalability. SpMM kernel: Execution time (top) and Speedup (bottom)

textarossa.eu D6.2 | 25

Figure 11 Weak Scalability. MWM kernel: Execution time (top) and Speedup (bottom)

Figure 12 Weak Scalability. BCMG Preconditioner setup: Execution time (top) and Speedup (bottom)

Figure 13 Weak Scalability. BCMG Solve: Execution time (top) and Speedup (bottom)

textarossa.eu D6.2 | 26

3.2.1.3 Preliminary measures of Power Consumption on Dibona

In this section we show some preliminary results of power consumption required by our

kernels. The measures were obtained by applying the methodology defined by the Textarossa

Working Group on Power Measurement and included in deliverable D1.4. In more details, we

were able to use the tool developed by INFN relying on the NVML Nvidia library, when our

kernels run on 1 GPU at full load. Note that for the BCMG solver, we show in the same picture

both the preconditioner setup phase and the solve phase. Furthermore, in order to analyze the

possible gain in power consumption, when all the 4 GPUs of the Dibona cluster are used at full

load, we did some measures by using the nvidia-smi tool, which is able to show counters from

all the GPUs available on a single node. Finally, we also analyze the CPU-core power

consumption measures obtained by the likwid tool accessing the RAPL counters, when our

BCMG solve was running, in a weak scalability setting, on 1, 2 and 4 GPUs available on the

Dibona node. For the sake of reproducibility, we report in the following the Command Line

used for obtaining the measures.

Likwid + INFN tool:

Likwid + nvidia-smi:

1. Nvidia-smi activation:

2. Application run (4 GPUs):

A different <likwid_output_file> is created for each used core (-C S0:X)

Figure 14 SpMV kernel. Power Measurement on 1 GPU at full load

likwid-perfctr -C S0:1 -g ENERGY -t 1ms -O -o <likwid_output_file>

<application>

nvidia-smi dmon -s pucvt -o DT -d 1 -f <nvidiasmi_output_file>

mpirun -np 1 likwid-perfctr -C S0:1 -g ENERGY -t 1ms -O -o

<likwid_output_file> <application> : -np 1 likwid-perfctr -C S0:2 -g ENERGY -t

1ms -O -o <likwid_output_file> <application> : -np 1 likwid-perfctr -C S0:3 -g

ENERGY -t 1ms -O -o <likwid_output_file> <application> : -np 1 likwid-perfctr -C

S0:4 -g ENERGY -t 1ms -O -o <likwid_output_file> <application>

textarossa.eu D6.2 | 27

In Figure 14 we can observe a very sharp phase of increasing power consumption after about

9 sec. from the starting of the SpMV kernel. The measured peak value is about 240 W, while

an integral of about 1.2 kW of total power is measured for the global run.

Figure 15 SpMM kernel. Power Measurement on 1 GPU at full load

In Figure 15, we can clearly observe two different increasing phases in the computation,

corresponding to the two different computation phases of the SpMM kernel on the GPU. Here

we reach two peaks of about 220 W after about 4 sec. from the starting. The integral of the

power consumption over the global run is about 861 W.

Figure 16 MWM kernel. Power Measurement on 1 GPU at full load

In Figure 16, for the MWM kernel we have a rapid increase after 10 sec. from starting and we

see a peak of about 240 W as in the case of SpMV. A global power consumption of 1.4 kW is

measured for MWM.

textarossa.eu D6.2 | 28

Figure 17 BCMG Preconditioner Setup and Solve. Power Measurement on 1 GPU at full load

In Figure 17 we show power consumption of the BCMG solver. Here we can clearly recognize

the two different phases of the computation, that is the preconditioner setup in the interval

between 2 and 4 sec. from starting, where a peak of about 250 W is observed, while a longer

solve phase in the interval between 4 and 8 sec. is observed, where a power consumption of

about 300 W is measured. Here the global run requires about 1.9 kW power consumption.

In Table 3 we summarize Energy KPIs obtained by our kernels, as defined in Table 2, when

one GPU is used. In this case, as power consumption value, we consider the integral values of

the overall execution period of the kernel.

Kernel name Dofs/Watt Iterations/Watt

SpMV 1.75 x 105 Not applicable

SpMM 4.17 x 104 Not applicable

MWM 1.88 x 105 Not applicable

BCMG 2.07 x 104 0.02

Table 3 Energy KPIs on 1 GPU

In Figure 18 we show the measures of power consumption when the overall BCMG solver is

run on an increasing number of GPUs, while the problem size linearly increases with the

number of GPUs, as in the weak scalability setting previously discussed. We can observe that

when 4 GPUs are involved in the computation, a smaller peak of about 240 W is observed for

all the GPUs, while larger peaks of about 280 W and 300 W are observed when 2 GPUs and 1

GPU are used. This result on 1 GPU is in a perfect agreement with that already showed in

Figure 17. If we compute the integral of the power consumption of all the 4 GPUs in the 3

different configurations, i.e., when the solver run on 1, 2 and 4 GPUs respectively, for solving

systems with 39M, 78M and 156M unknowns, respectively, we measure a global power

consumption of about 2.3 kW, 2.2 kW and 2.5 kW, respectively. This result demonstrates that,

if we are able to use in an efficient way all the devices integrated on the single node at full load,

we can solve larger problems by an almost constant energy consumption, leading to achieve

energy scalability in addition to performance scalability of the computation.

textarossa.eu D6.2 | 29

Figure 18 BCMG Preconditioner Setup and Solve on multiple GPUs at full load

In Table 4 we summarize Energy KPIs obtained by BCMG when more than 1 GPU are used in

a weak scaling setting. As we can see, running our solver on more than 1 GPUs increases the

energy efficiency, indeed, we can deal with a larger number of Dofs and solve iterations at the

same energy power.

 Dofs/Watt Iterations/Watt

BCMG on 2 GPUs 3.54 x 104 0.03

BCMG on 4 GPUs 6.39 x 104 0.03

Table 4 Energy KPIs when multiple GPUs are used in a weak scaling setting

For the sake of completeness, in Figure 19 we show the power consumption measures obtained

by the likwid tool when BCMG is running on 1, 2 and 4 GPUs. The very small and almost

stable power consumption, during all the computation, demonstrates that in all the cases, CPU

cores are not involved in a significant way in the computation.

Figure 19 BCMG Preconditioner Setup and Solve on multiple GPUs by Likwid CPU counters

textarossa.eu D6.2 | 30

3.2.2 Weak Scalability results of BCMG and Comparison with the State of
the Art on the Piz Daint Supercomputers

In this section, we analyze the scalability potential of our BCMG solver when the number

of GPUs largely increases; the fixed matrix size per node is equal to 1303=~2.2M Dofs, going

from 1 to 100 nodes. Therefore, we solve problems up to 220M unknowns. We analyze the

performance of the linear solver looking also at the number of iterations of the PCG, in order

to analyze the algorithmic scalability, i.e., the potential to have an almost constant or slowly

increasing number of iterations for increasing number of unknowns and computing resources.

The execution time to solve the system and the execution time per each PCG iteration are also

discussed to characterize the application phase from the viewpoint of the implementation

scalability. Therefore, in this case, in the following Figures, we report all KPIs which

characterize a linear solver.

Our hybrid BCMG, is compared with the hybrid version of Nvidia AmgX [4,5]. AmgX

makes available various AMG preconditioners, based on different well known coarsening

approaches already available in other libraries, and producing AMG hierarchies with different

computational complexities. For a fair comparison, we selected the input configuration which

defines AMG hierarchies based on a similar coarsening approach and having complexities

comparable with our preconditioner.

In Figure 20, we show number of iterations of BCMG versus AMGX. We can see that in

all cases the number of iterations required by AMGX in the solve phase is always higher than

that of BCMG. After an initial increase for both the solvers, they have a similar more stable

behavior, but the increase in the number of iterations for AMGX is ~50% going from 1 to 100

nodes, whereas the increase for BCMG is ~36%, showing that BCMG has better algorithmic

scalability.

Figure 20 Weak Scalability. Number of iterations of BCMG vs AMGX

This better quality of our preconditioner is confirmed by the solve time (see Figure 21).

textarossa.eu D6.2 | 31

Figure 21 Weak Scalability. Time to solution of BCMG vs AMGX

BCMG solve times are always significantly smaller than that of AMGX. In many cases

AMGX requires a solve time that is double than that of BCMG. Finally, if we look at the time

per iteration, measured as the ratio between the time to solution and the number of iterations

needed to converge (see Figure 22), we see that BCMG always has smaller time than AMGX.

On the other hand, BCMG also shows a smaller increase ratio for increasing number of nodes,

showing that all the computational kernels in the application phase of the preconditioner are

efficiently implemented.

Figure 22 Weak Scalability. Time per iteration of BCMG vs AMGX

textarossa.eu D6.2 | 32

3.3 RTM – FRAUNHOFER
In this project a simple implementation of the 3D isotropic RTM Kernel has been extended

using different formats of reduced precision to compress the domain and the model to save

memory bandwidth. The kernels are still computed in float32, but the domains and velocity

model are kept in the compression format. Conversions are done within the kernel to switch

between float 32 bit and the compression format. The imaging condition and aggregation is

done also in float 32bit. The domains are converted to 32 bit to do so. Implementation D is

special because not only the domains and model are kept in the compression format, but also

the computational steps in the kernel are done in the compression format. However, even in

this implementation the imaging condition is calculated in float 32bit format. The formats are

detailed in Table 5.

Label Description

A 10 bit floating point, implemented by GNU MPFR library, emulating float 16 bit

B 7 bit floating point, implemented by GNU MPFR library, emulating bfloat 16 bit

C Posit 16 bit, one exponent bit, implemented by SoftPosit library

D Posit 16 bit, one exponent bit, implemented by SoftPosit library, including kernel
computing

E ZFP array1f 1D, 16 bit per element, implemented by ZFP library

F ZFP array3f 3D, 16 bit per element, implemented by ZFP library

Table 5 List of reduced precision formats.

Please note that in case A and B the exponent is unlimited, other than in floating point and

bfloat formats.
Further the RTM implementation has been extended to calculate and to document the total

energy of the source volume over time in form as the sum of squares on the domain. These

outputs are used to verify the numerical stability.

3.3.1 Results
The following table depicts the results of a single shot calculated in 3D. The model has two

horizontal layers of constant velocity. The images of the two versions are compared by voxel

vise numerical difference followed by a maximum norm. Perfect outcome would be zero. See

the results in Table 6.

Floating Point Format Maximum norm Maximum norm of difference to

Floating Point 32 Bit

 Float 32 bit 3857 0

A Float 16 bit 3683 460

B Bfloat 16 bit 691520 691616

C Posit 16 bit 3687 647

D Posit 16 bit + kernel 4270 2356

E ZFP, 1D 3869 157

F ZFP, 3D 3863 21

Table 6 Comparison of different compression formats.

textarossa.eu D6.2 | 33

Figure 23 plots the ratio of the fourth column and the third column. The bfloat format does not

give useful results. Format A and C end up with roughly 10% deviation. Calculating the kernel

in posit 16 bit ends up with 60%. ZFP 1D yields 4% deviation while ZFP 3D yields below 1%

deviation.

Figure 23 Plot of relative maximum norm of difference between compression format and float 32bit. Normalized on

float 32 bit. Bfloat exceeds 100% deviation.

However, the numerical differences only give a rough idea of image quality. Figure 24 presents

slices perpendicular to the depth axis for each implementation. The resulting slice and the

reference slice are plotted side by side. The third column depicts the difference of the previous

columns.
General criteria of quality are qualitative similarity and the absence of structure in the

difference plot.
Implementation A shows very few visible differences but the difference plot shows an

unsymmetric and unphysical structure. Implementation B shows unusable results.

Implementation C shows few differences and a very symmetric difference plot. Implementation

D shows significant and also unsymmetric differences. The same goes for the difference plot.

Implementations E and F both show very good similarity but very unsymmetric and unphysical

difference plots.

To verify stability the total energy of the source volume is plotted over time for different time

steps, namely 2.1ms, 2.2ms and 2.3ms. The velocity model is constant. Figure 25 depicts a

slice perpendicular to the depth axis of the source volume. In Figure 26 all implementations

show stability up to 2.2ms and unstability for 2.3ms. The only exception is implementation D

which is unstable at 2.2ms but stable at 2.1ms. So the usage of compression formats has no

significant influence on stability. All implementations except D have less than 5% loss in stable

time steps.

textarossa.eu D6.2 | 34

A second and more challenging stability test uses a velocity model filled with random numbers

equally distributed between 1250m/s and 2750m/s. Figure 27 on the left side proves stability

for float 32 bit implementation up to 1.9ms and instability at 2.0ms timestep. All the

compression implementations show stability at a timestep of 1.9ms as depicted on the right

side. So even using a very rough velocity model the stable time step is kept within a 5% range

around the floating-point implementation.

Figure 24 Cut perpendicular the depth axis for all the

compression formats

First column compression format, second column
reference Float 32bit, third column difference between
first column and second column. Compression formats (top
to bottom): A: Float 16 bit, B: Bfloat 16 bit, C: Posit 16 bit
with 1 exponent, D: Posit 16bit storage and computation,
E: ZFP 1D 16 bit, F: ZFP 3D 16bit

textarossa.eu D6.2 | 35

Figure 25 Cut of source volume perpendicular to x-axis

Figure 26 Total energy of source over time for different time step size Constant velocity model. Left: dt=2.1ms, Middle:
dt=2.2ms, Right. 2.3ms.

Figure 27 Total energy of source over time for different time step size Non constant velocity model. Left: Different time

steps for float 32 bit. Right: All the compression formats for dt=1.9ms.

textarossa.eu D6.2 | 36

3.4 HEP
As we described in Deliverable 6.1, it is important to execute High-Energy Physics (HEP) code

on heterogeneous architectures due to the evolution of the computing solution offered by

accelerator technologies.

For the TEXTAROSSA project we have worked on two different applications: Pixeltrack [6],

a track reconstruction algorithm for the CMS detector, and CLUE [7], a cluster algorithm for

high-granularity calorimeters. Both applications are mainly developed by the CERN Patatrack

team.

Our first task was to rewrite the abovementioned applications on top of a portability layer, with

the purpose to obtain a single source code per application that can be run in parallel on multiple

heterogeneous backends; in fact, it is not affordable to redesign and reimplement the algorithms

for each different architecture of every vendor. The next goal has been the evaluation of the

application in terms of:

• throughput: number of reconstructed events per second;

• energy efficiency: number of reconstructed events per Joule, obtained from the ratio

between throughput and power.

Our main interest is the comparison of those two metrics between the heterogeneous version

of the application and the corresponding serial one.

Our initial plan was to use SYCL [8], the standard abstraction layer based on ISO C++. More

specifically, we planned to use the SYCL implementation coming with Intel oneAPI, since it

is the most complete implementation of the standard. We have obtained a SYCL version of

CLUE and a SYCL version of Pixeltrack correctly working on CPUs, Intel GPUs, and Intel

FPGAs. We have also tried to port the heterogeneous code on other architectures of different

vendors, such as NVIDIA GPUs and AMD GPUs, but we have not obtained an executable code

yet. The results we achieved have required a lot of effort because the compiler is not stable yet:

Intel is still working on it with the goal of extending the supported hardware.

Some results of this work were presented at the 21st International Workshop on Advanced

Computing and Analysis Techniques in Physics Research (ACAT 2022), with a poster called

“Experience in SYCL/oneAPI for event reconstruction at the CMS experiment” [9]. As shown

in the poster, the performance achieved with the SYCL version of CLUE on an NVIDIA Tesla

T4 is promising and in line with other technologies.

For the purpose of the TEXTAROSSA project, we conclude that SYCL is a very promising

abstraction layer but its implementation in oneAPI is not stable enough and not ready yet to be

used for our purposes, that is, run the applications used to acquire and elaborate the data

collected from the HEP detectors on different heterogeneous hardware. For that reason, we

have decided to collect the data for the TEXTAROSSA project with a different abstraction

layer, Alpaka [10]. From the documentation: “The Alpaka library is a header-only C++14

abstraction library for accelerator development. Its aim is to provide performance portability

across accelerators through the abstraction (not hiding!) of the underlying levels of

parallelism”. Although coding with Alpaka is more complicated than coding with SYCL, this

library is supported for a wider range of devices of different vendors than oneAPI, making it

more appropriate for our goal.

textarossa.eu D6.2 | 37

Parallel to SYCL, we have implemented the Alpaka version of Pixeltrack and the Alpaka

version of CLUE. The same version of the source code can run on different devices without

any modification. We have decided to perform all the measurements with that version of our

applications. The architecture we used for the TEXTAROSSA tests was the IDV-A. We use

both the CPU and the GPUs that this architecture provides.

3.4.1 Tests on CPU
On the CPU we are interested in demonstrating that our code scales with the number of

resources we use for the execution; we would also investigate how the energy efficiency

changes with respect to the same parameter.

We ran both our applications increasing the number of cores and the number of CPU threads

in order to execute them with one thread per core. For the power consumption measurements,

we use the likwid-perfctr tool; it also helps us in specifying the correct number of cores we

want to use. The number of threads could be indicated in the command we use to run the

application, instead. In the same command we also specified how long the applications must

run. Every test was 3-minute long and the likwid-perfctr tool extracted the power consumption

values every second. An example of one of those execution command is:

The results we achieved are reported in the section below. Table 7 and Table 8 showed the

measures of throughput (events/second), Power (W) end Energy Efficiency (events/J) for the

CLUE application and for the Pixeltrack application when they run on CPU, scaling the

number of cores.

CLUE on CPU

cores thread Throughput

(events/second)

Power (W) Energy efficiency

(events/J)

1 1 4.33347

81.140

0.053

2 2 8.5591

84.338

0.102

4

4

16.8088

91.589

0.184

8

8

33.5036

105.825

0.317

16

16

66.2713

134.687

0.492

32

32

118.869

173.500

0.685

48 48

156.511

191.146

0.819

64

64

216.123

321.966

0.671

96 96

271.130

235.522

1.151

Table 7 Scaling of KPIs for the CLUE application on CPU

likwid-perfctr -f -C S<socket_id>:<cores> -g ENERGY -t 1s -O -o <output-

file>.csv ./alpaka --serial --runForMinutes 3 --numberOfThreads <threads>

textarossa.eu D6.2 | 38

Pixeltrack on CPU

cores thread Throughput

(events/second)

Power (W) Energy efficiency

(events/J)

1 1 30.8127 81.944 0.376

2 2 59.9623

86.431

0.694

6 6 180.194

103.412

1.742

12 12 360.465

128.886

2.797

24 24 726.897

181.967

3.995

36 on 1

socket

36 860.592

198.681

4.332

36 on 2

sockets

36 1068.88

305.188

3.502

48 48 1418.03

354.890

3.996

72 72 1636.91

390.303

4.194

96 96 1756.96

233.529

7.524

Table 8 Scaling of KPIs for the Pixeltrack application on CPU

Figure 28 and Figure 30 show the scaling of throughput for the two applications; Figure 29 and

Figure 31 represent the correlation between the cores and the energy efficiency. Note that in

the figures the data are normalized with respect to the values obtained with 1 thread on 1 core.

Figure 28 Scaling of throughput with the number of used cores for the CLUE application on CPU

textarossa.eu D6.2 | 39

Figure 29 Scaling of energy efficiency with the number of used cores for the CLUE application on CPU

Figure 30 Scaling of throughput with the number of used cores for the Pixeltrack application on CPU

Figure 31 Scaling of energy efficiency with the number of used cores for the Pixeltrack application on CPU

Figure 28 and Figure 30 show that the performance grows linearly when we run one thread per

core using one socket. This trend remains constant until we use entirely the first processor.

textarossa.eu D6.2 | 40

When we run more threads per core using two sockets, the performance continues to increase

but the increment starts to be slower. The same behavior is evident also with two processors

(more than 48 cores).

Regarding Figure 29 and Figure 31, we notice that there is an increment of the energy

efficiency, even if it is not linear, until we use 48 threads on 48 logical cores. After that point,

the efficiency gets worse; this is due to the fact that scaling beyond that number we start using

two sockets and we incur in the overhead of using the second CPU but at a fraction of its

processing capabilities. The penalty is evident in Figure 31 where we report two values for the

energy efficiency for 36 logical cores: the higher value corresponds to using just one socket,

the lower when using 24 cores on one socket and 12 on the other one.

3.4.2 Tests on GPU
On the GPU we are interested in demonstrating that our code scales with the number of GPUs

we use; we would also investigate how the energy efficiency changes with respect to the same

parameter.

We decided to fix to 12 the number of CPU threads per GPU, mapping each of them on one

different core. In this way, with 4 GPUs all the 48 physical cores are busy. The number of CPU

threads, as in the previous case, could be indicated in the command we use to run the

application. Also, the mapping between GPU, CPU threads and cores could be set in the same

command. We executed all our tests for 2 minutes. Summing all these considerations, we report

for example the command we use to run on 2 GPUs:

For the power consumption measurements, we use the nvidia-smi tool; we read the value from

the GPUs every 5 seconds to not affect their performance. As example:

The results we achieved are reported in the section below. Table 9 and Table 10 show the

measures of throughput (events/second), Power (W) and Energy Efficiency (events/J) for the

CLUE application and for the Pixeltrack application when they run on one or more GPUs.

CLUE on GPU

gpu total throughput

(events/second)

power (W) power efficiency

(events/J)

1 1485.64 183.333 8.103

2 2843.05 362.708 7.839

3 4248.17 541.583 7.844

4 5680.66 729.708 7.785

Table 9 Scaling of KPIs for the CLUE application on GPU

(CUDA_VISIBLE_DEVICES=0 taskset -c 0-11 ./alpaka --cuda --runForMinutes 2 --

numberOfThreads 12) & (CUDA_VISIBLE_DEVICES=1 taskset -c 12-23 ./alpaka --cuda -

-runForMinutes 2 --numberOfThreads 12)

nvidia-smi dmon -i <id_gpus> -d <time>

textarossa.eu D6.2 | 41

Pixeltrack on GPU

gpu total throughput

(events/second)

power (W) power efficiency

(events/J)

1 2174.26 150.375 14.459

2 4386.89 303.261 14.466

3 6515.27 450.750 14.454

4 8711.73 606.458 14.365

Table 10 Scaling of KPIs for the Pixeltrack application on GPU

Figure 32 and Figure 34 and show the scaling of throughput for the two applications when we

increment the number of GPUs; Figure 33 and Figure 35 represent the correlation between the

GPU number and the energy efficiency. Note that in the figures the data are normalized with

respect to the values obtained with 1 GPU.

Figure 32 Scaling of throughput with the number of used GPUs for the CLUE application

Figure 33 Scaling of energy efficiency with the number of used GPUs for the CLUE application

textarossa.eu D6.2 | 42

Figure 34 Scaling of throughput with the number of used GPUs for the Pixeltrack application

Figure 35 Scaling of energy efficiency with the number of used GPUs for the Pixeltrack application

From the Figure 32 and Figure 34 we notice that, as we expected, both the applications scale

linearly with the number of GPUs: every GPU has the same throughput, so doubling the GPUs

doubles the total throughput. Regarding energy efficiency, we notice that it remains almost

constant. That behavior shows that, even if we introduce hardware, it allows us to increase the

throughput, but the number of events processed per Joule remains constant.

textarossa.eu D6.2 | 43

3.5 NEST-GPU – INFN
The neural simulation application is considered production-ready and is being used in recently

published papers [11], but it is being modified in order to be in compliance with the rules of
the NEST application building framework; this means that the activities currently being

performed regarding Textarossa are a number of syntactical adjustments in the scripts that

complement the application in the project set of benchmarks in order to keep them working as

when the application was still NeuronGPU.

The first trials were performed with a setup that simulates a section of mouse cortex with

neurophysiological details inferred from experiments. This was initially run on the CPU-only

version of the NEST simulator on the Ampere Altra platform made available by E4; the tests

take as reference a schedule made of 1000 simulated milliseconds which are discarded (to let

the network reach a reasonably steady and homogeneous state among all cortical columns),

then a 1000-2000-4000 timeline, in order to check that no large differences in runtime among

different MPI processes occur (so that load is evenly distributed) and the runtime scales with

the simulated time. This network appears to have a level of average activity of 5M spikes per

simulated second, so we use the number of Spike Updates per Joule (SUs/J) in the simulated

time interval as another performance index.

The scaling results on the Ampere Altra (for the final leg of simulation, 4000ms) are in the

Table 11 Runtimes for the last leg (4000ms) of simulation on different process/cores layouts

on Ampere Altra..

32 cores tot 64 cores tot 128 cores tot 256 cores tot

1 MPI prc

32 cores/prc

2 MPI prc

32 cores/prc

4 MPI prc

16 cores/prc

8 MPI prc

8 cores/prc

16 MPI prc

8 cores/prc

32 MPI prc

8 cores/prc

156.91s 126.83s 107.43s 88.86s 78.04s 138.83s

Table 11 Runtimes for the last leg (4000ms) of simulation on different process/cores layouts on Ampere Altra.

We can see that some consideration must be taken when choosing how to distribute the

available cores for the run – the application can take significantly longer when the same number

of cores (64) is employed (from 126.83s when using 2 MPI processes and 32 OpenMP threads

per process against 88.04s for the same cores allocated in 8 MPI processes with 8 OpenMP

threads per process) or the scaling limit is reached when trying to push to 256 cores (138.83s)

makes the application actually take longer than when using just 128 cores (78.04s).

The significant KPI here is the simulated seconds per second, which on this platform in the

best case (with 128 cores) is 4000/78.04 = 51.26 simulated milliseconds per second.

Table 12 presents the power readings on the Ampere Altra; given that there is no support for

the processor in LIKWID, the sensors utility was used with 0.7s sampling interval between

calls over the entire 8000 simulated milliseconds timeline. In this table we report the energy

spent (in kJ) during this simulation phase, the actual runtime and the average wattage for every

configuration.

32 cores tot 64 cores tot 128 cores tot

256 cores tot

1 MPI prc

32 cores/prc

2 MPI prc

32 cores/prc

4 MPI prc

16 cores/prc

8 MPI prc

8 cores/prc

16 MPI prc

8 cores/prc

32 MPI prc

8 cores/prc

textarossa.eu D6.2 | 44

47.9kJ 32.7kJ 37.6kJ 33.0kJ 35.9kJ 62.9kJ

461s 243s 253s 191s 166s 283s

104W 135W 149W 173W 216W 222W

Table 12 Power, runtime and wattage per configuration over total simulation (8000ms) on Ampera Altra.

Figure 36 (time in seconds on the X-axis, power in Watts on the Y-axis as read by the sensors

command and summed over the reading for the two CPU sockets) is to be read as follows: for

the different processes/cores arrangements, the application has a brief startup phase (the first

few seconds-long pedestal), then a longer (a few hundred seconds, depending on how many

OpenMP cores were assigned to the process), higher plateau where some setup operations for

the cortical areas are performed, then the actual simulation, with the mentioned 1000ms

(discarded) – 1000ms – 2000ms – 4000ms, for a total of 8000 simulated milliseconds (the

plateau on the right).

It can be seen this second plateau to become shorter and higher as the cores are increased; an

interesting and unexpected finding for this platform is that while the highest power

consumption is expected to occur in this phase, this does NOT happen when pushing all 256

cores, when the most power is drawn in the setup phase (the first plateau for the yellow line is

higher than the second one).

It is also worth mentioning that the actual minimum for the energy at 32.7kJ does not appear

to be achieved by the configuration taking the shortest time (the 128 total cores configuration)

but by an intermediate one (the 2 MPI processes/32 cores per process, 64 total cores

configuration). Given the estimated level of activity of 5M spikes per simulated second, another

KPI is 5M spikes per simulated second * 8 simulated seconds / 32.7kJ = 1223 SUP/J.

Figure 36 Power profile for 8000 simulated milliseconds in different process/cores layouts on Ampere Altra.

The very same trials were performed on the EPYC CPUs of the Textarossa partition on the

Dibona cluster by ATOS; the scaling results (for the 4000ms leg of the schedule) are reported

in Table 13.

textarossa.eu D6.2 | 45

12 cores tot 24 cores tot 48 cores tot

2 MPI prc

6 cores/prc

2 MPI prc

12 cores/prc

4 MPI prc

6 cores/prc

2 MPI prc

24 cores/prc

4 MPI prc

12 cores/prc

376.61s 192.67s 192.51s 104.98s 104.13s

Table 13 Runtimes for the last leg (4000ms) of simulation on different process/cores layouts on Dibona EPYC.

Here we see that the runtimes spread times for different configurations of processes and threads

are much smaller while the KPI of simulated milliseconds per second is at best 4000/104.13 =

38.41.

Being a standard x86_64 platform, the Dibona EPYC is therefore supported by LIKWID

utility; the power readings tabulated below were taken via LIKWID with a 0.5s sampling

interval for the entirety of the 8000ms schedule, presented in Table 14.

12 cores tot 24 cores tot 48 cores tot

2 MPI prc

6 cores/prc

2 MPI prc

12 cores/prc

4 MPI prc

6 cores/prc

2 MPI prc

24 cores/prc

4 MPI prc

12 cores/prc

150.6kJ 95.4kJ 94.9kJ 72.7kJ 72.1kJ

755s 392s 390s 214s 213s

200W 244W 243W 340W 338W

Table 14 Power, runtime and wattage per configuration over total simulation (8000ms) on Dibona EPYC.

Here the situation is different compared to the Ampere Altra: besides cutting the runtime, using

more cores of course increases the wattage but not as much as compared to the Ampere Altra,

so that the least energy here is drawn for the configuration with most cores and the shortest

runtime. With the estimated level of activity of 5M spikes per simulated second, the relevant

KPI is at best 5M spikes per simulated second * 8 simulated seconds / 72.1kJ = 554 SUP/J.

As for the Ampere Altra (the colors in the plot distinguish the different configurations

described in Table 14), Figure 37 (time in seconds on the X-axis, power in Watts on the Y-axis

as reported by LIKWID and summed over the reading for the two CPU sockets) gives an idea

of the power profile. The setup phase (the plateau on the left) increases in power consumption

adding more cores without being significantly shortened while the simulation phase scales very

well (halving the runtime when doubling the cores) while wattage ramps up from 200W to

338W.

textarossa.eu D6.2 | 46

Figure 37 Power profile for 8000 simulated milliseconds in different process/cores layouts on Dibona EPYC.

The actual GPU version of the NEST application was run on a platform sibling of the Dibona

EPYC and equipped with the same GPU, an NVIDIA A100 that we had more handily available

for testing; we do not expect significant changes to the results.

Performing a scaling test for the NEST-GPU application requires a multi-GPU and multi-node

setup that we did not have available; at the same time, the testing script is being reworked to

operate in such an environment. For the time being we tried the same test described above in a

single GPU configuration test in order to gauge the power consumption while developing the

GPowerU tool and have a ballpark figure of the runtimes.

Figure 38 shows the results: it is the output of the GPowerU tool (time in seconds on the X-

axis, power in Watts on the Y-axis, sampling period of 0.01s) on a run of 10000 simulated

milliseconds executed on an NVIDIA A100 with the setup phase cut from the plot.

The actual duration of the simulation is 33.1s with an average wattage of 118W and a total

energy draw of a little less than 4kJ; the derived KPIs result 10000/33.1 = 302 simulated

milliseconds per second and 5M spikes per simulated second * 10 simulated seconds / 4kJ =

12500 SUP/J.

Figure 38 Power profile for 10000 simulated milliseconds on NVIDIA A100 (the first ~4500s of runtime are for the

setup phase where the GPU is unused and were cut from the plot).

textarossa.eu D6.2 | 47

3.6 RAIDER – INFN

RAIDER is a high throughput online streaming processing application implemented on FPGA
with the APEIRON framework and belongs to the HPDA domain. Its task is to perform particle

identification (PID) on the stream of events generated by the RICH (Ring Imaging CHerenkov)

detector in the CERN NA62 experiment at a rate of about 10 MHz, using neural networks.

In this preliminary version of the RAIDER application, the inference task consists in providing

an estimate for the number of charged particles (0, 1, 2, >=3) for any RICH detector event, that

corresponds to the number of ring tracks that can be reconstructed from the pattern of

photomultipliers that have been illuminated (hit) by the Cherenkov light cone emitted by a

charged particle traversing the detector, as shown in Figure 39.

Figure 39 Examples of events belonging to class 2 and 3 (2 or >=3 charged particles) as detected by the array of RICH

photomultipliers (blu dots are the hit photomultipliers, red circles are the tracks reconstructed offline by the NA62

experiment analysis software framework)

Figure 40 depicts the workflow for the generation of processing Kernels implementing neural

networks designed for the inference tasks in RAIDER; these kernels are then integrated in the

FPGA design as HLS kernels in the APEIRON framework, as described in deliverable D4.1.

Figure 40 The workflow for the generation of NN kernels in RAIDER

Using this workflow, design targets (efficiency, purity, throughput, latency) and constraints

(mainly FPGA resource usage) must be taken into account and verified at any stage:

1. TensorFlow/KERAS[12]: on this first stage the NN architecture (number and kind of

layers) and representation of the input is designed, then using an appropriate training

strategy (class balancing, batch sizes, optimizer choice, learning rate, etc.), the network

textarossa.eu D6.2 | 48

is trained and KPIs can be measured. If they don’t meet the targets the process is

repeated, modifying input representation and the NN architecture.

2. QKeras[13]: in this second stage, the original TF/Keras NN model is modified by

searching iteratively the minimal representation size in bits of weights, biases and

activations, possibly by layer that preserves the expected KPIs. For the RAIDER

application, the neural network generated through this quantization step, yielded a

neural network that uses an 8-bit fixed point <8, 1> representation for weights and

biases and 16-bit fixed point <16, 6> for activations.

3. HLS4ML[14]: the QKeras model is translated into the corresponding Vivado HLS

implementation (annotated C++ code). Several handles are available at this stage to

guide the translation, e.g. tuning of REUSE FACTOR configuration parameter (low

values yield low latency, high throughput, high resource usage design), also clock

frequency can be set.

4. Vivado HLS[15]: C/Verilog co-simulation for rapid verification of performance and

synthesis of kernel IP to be integrated in the APEIRON framework.

Figure 41 Details of the designed Convolutional Neural Network model

Following this workflow, we designed a lightweight Convolutional Neural Network having

just 2796 parameters and suitable to be implemented on a FPGA, along with the corresponding

representation of the input data. The designed CNN model, represented in Figure 41, has been

deployed on a Xilinx Alveo U200 FPGA with a very limited resource usage. This CNN receives

textarossa.eu D6.2 | 49

as input a compressed representation of the original event in form of a B&W 16x16 image, as

depicted in Figure 42.

Figure 42 Example of input images for the CNN (left class 0, center class 1, right class 2).

3.6.1 Results
We report KPIs for three different configurations of processing devices (CPU, CPU+GPU and

CPU+FPGA): KPIs evaluated on CPU and CPU+GPU represent the baseline for those

evaluated from measurements on the CPU+FPGA reference configuration.

The application computational kernel is represented by the forward pass of the CNN, to infer

the number of charged particles present in the input events. In detail, the performance of the

three configuration of devices was measured by taking 2.7M events, extracted from those

collected during past runs of the NA62 experiment, as neural network input and profiling the

time to solution and the energy to solution to execute the inference task on the full dataset.

In the application testbench we setup to measure the application KPIs, shown in Figure 43, the

host is in charge of moving events from its memory to the FPGA memory, then Krnl_sender

HLS kernel on FPGA forwards them to the inference pipeline Top_nnet, finally inference

results are stored in host memory by the Krnl_receiver HLS kernel.

The Top_nnet pipeline includes two stages: the first implementing the compressed encoding of

events in 16x16 B&W images and the second executing the Convolutional Neural Network.

Interconnection between the sender and receiver kernels and the inference pipeline on FPGA

is accomplished via the TEXTAROSSA communication IP (see deliverable D2.8 - IP for low-

latency internode communication links, part 1).

Figure 43 Testbench for the RAIDER The host is in charge of streaming events from its memory through

Krnl_sender to the processing pipeline Top_nnet on FPGA and to collect results from Krnl_receiver.

textarossa.eu D6.2 | 50

3.6.1.1 Power measurement methods

To perform power measurements on each we used different methods, in detail:

1. CPU: LIKWID toolsuite (in particular the likwid-perfctr CLI), as described in

deliverable D1.4 - Power Measurement on CPUs (x86_64 Architectures: Running

Average Power Limit (RAPL) interface). The total power for the processor (Cores plus

DRAM domain values) has been recorded.

2. GPU: GPowerU tool developed internally and based on the NVIDIA NVML library,

available on github (https://github.com/crrossi/GPowerU).

GPowerU is a simple tool able to measure the power consumption of a CUDA kernel

in specific points of the device code and to generate the complete power profile, with

timestamp values correlated with the start and end of the application’s execution,

differently from nvidia-smi –query functionality which runs “application blind”, and

with a finer time resolutions (tens of milliseconds vs. seconds). For additional

information refer to deliverable D1.4 - Power Measurement on GPU (NVML Library).

3. FPGA: Xilinx Power Monitor Tools as described in D1.4 - Power Measurement on

FPGA (Xilinx Power Monitoring Tools).

3.6.1.2 Impact of using alternative hardware platforms on presented results

In the application testbench we setup to measure the application KPIs, shown in Figure 43, the

stream processing happens entirely in the FPGA and processing performance is not affected by

the host system as long as it can sustain the PCIe Gen3 x16 bandwidth between its main

memory and the FPGA accelerator. For these reasons we are confident that using our lab server

instead the IDV-E system does not alter the measured KPI n.1 (throughput) significantly. Also,

we do not expect appreciable differences in this regard using the Alveo U200 instead of the

Alveo U280 FPGA card, since our application does not make use of the distinctive features of

the latter (namely HBM memory).

For what concerns KPI n.2 (energy efficiency), the task demanded to the host in this version

of the application testbench is to feed the FPGA design with data read from its main memory

and to store the produced results. The host side will be set aside from the data stream handling

in the final version of RAIDER, with data arriving from one FPGA network channel and results

send to a consumer again through a network channel, and its tasks will be limited to platform

management. Taking into account these considerations, we include the energy consumption of

the host in reporting results for this version of the application, knowing that using our lab

X86_64 server instead of the ARM based IDV-E yields a higher contribution to the total energy

consumption, and reported KPI n.2 (energy efficiency) will be most likely slightly

underestimated compared to the one reachable on IDV-E.

3.6.1.3 Baseline KPIs

Referring to the CPU only and CPU+GPU measurements, they were performed on the CNN

Keras model invoking the Tensorflow model.predict() library call on the input data loaded on

the CPU/GPU memory. By using the tf.device() function we were able to select the execution

of the model.predict() function to be performed on CPU or GPU.

The execution time of the inference task on the full 2.7M events dataset was collected

bracketing the model.predict() call with two calls to the python time() function and evaluating

the difference between the second and first returned values, measured values are reported in

Table 15 along with the corresponding throughput KPI.

https://github.com/crrossi/GPowerU

textarossa.eu D6.2 | 51

The CPU and GPU power measurements, concurrent with the model.predict() execution, were

performed respectively using the LIKWID and GPowerU profiling tools and then the integral

of the power profile was used to compute the application energy-to-solution and energy

efficiency. These power profiles are presented in Figure 44 for the CPU only configuration,

Figure 45 and Figure 46 for CPU+GPU configuration, while the corresponding energy-to-

solution and energy efficiency KPI values are reported in Table 15.

For the CPU+GPU configuration, the sum of the energy consumption of both devices is

reported for the energy-to-solution.

Figure 44 Power profiling of model.predict() function performed via LIKWID tool

Figure 45 Power profiling of model.predict() function for the CPU

textarossa.eu D6.2 | 52

Figure 46 Power profiling of model.predict() function for the GPU

KPI CNN CPU

tensorflow

CNN CPU+GPU

tensorflow

purity/efficiency (per

class)

efficiency:

- 0: 93%

- 1: 83%

- 2: 75%

- 3+: 83%

purity:

- 0: 88%

- 1: 90%

- 2: 71%

- 3+: 78%

efficiency:

- 0: 93%

- 1: 83%

- 2: 75%

- 3+: 83%

purity:

- 0: 88%

- 1: 90%

- 2: 71%

- 3+: 78%

time to solution [s] 158.521 125.963

throughput

[events/s]

189250 238165

energy to solution [J] 11091.919 17497.783

(8724.648 GPU)

energy efficiency

[events/J]

270.467 154.305

Table 15 Baseline KPIs evaluated on the execution of the Keras model.predict() function 2.7M events for the CPU

only and CPU+GPU configurations

3.6.1.4 KPIs for the FPGA implementation

In the CPU+FPGA testbench configuration, the inference task is performed by the CNN

deployed on FPGA through the workflow depicted in Figure 40 and using the same

tensorflow/Keras model used to collect the two sets of baseline KPIs.

Besides the testbench configuration described above sporting a single Top_nnet inference

processing pipeline (1CNN) and depicted in Figure 43, we considered the opportunity of

deploying multiple instances of the pipeline given its limited usage of FPGA resources and the

intra-device scalability offered natively by the APEIRON framework.

textarossa.eu D6.2 | 53

So we deployed and measured KPIs also for a configuration of the design that includes 2

inference processing pipelines (2CNN), as represented in Figure 47.

Figure 47 CNN RAIDER testbench integrating 2 inference processing pipelines

Percentage of the FPGA resources usage for the two design configurations are reported in Table

16 and Table 17.

Table 16 Percentage of FPGA resources used by the 1CNN RAIDER design configuration

Table 17 Percentage of FPGA resources used by the 2CNN RAIDER design configuration

In both configurations, input data are loaded on the FPGA memory from the CPU HOST

memory via XRT functions then, they are sent through the intra-FPGA network via an HLS

kernel (krnl_sender) which, in multiple CNN case, takes care of the load balancing by sending

data Round-Robin to the multiple kernel replicas. Lastly, after the inference processing, another

HLS kernel (krnl_receiver) receives data coming from the network and stores them back to the

textarossa.eu D6.2 | 54

CPU HOST memory, where they are collected in order to evaluate efficiency and purity results

for each of the labeled classes.

Both setups share the same clock frequency of 100 MHz.

The execution time has been measured on the host using the

std::chrono::high_resolution_clock::now() method, with the start time corresponding to the

launch of the krnl_sender (immediately after the completion of events data loading on FPGA

memory) and with the end time at the completion of the krnl_receiver writing of inference data

back to the host memory.

The throughput and time-to-solution values for the two configurations, which are reported in

Table 18.

The FPGA setups power measurements, concurrent with the CNN kernel(s) execution, were

extrapolated from the XRT summary .csv output file in order to produce the power profiles

depicted in Figure 48 and Figure 49 respectively for the 1CCN and 2CCN design

configurations.

The integrals of the power profiles have been used to compute the energy-to-solution and

energy efficiency values for both setups, which are reported in Table 18.

Figure 48 Power profiling of 1CNN RAIDER design configuration CPU (left) and FPGA (right)

Figure 49 Power profiling of 2CNN RAIDER design CPU (left) and FPGA (right)

textarossa.eu D6.2 | 55

KPI CPU+FPGA (1CNN)

RAIDER

CPU+FPGA (2CNN)

RAIDER

purity/efficiency (per class) efficiency:

- 0: 92%

- 1: 79%

- 2: 75%

- 3+: 76%

purity:

- 0: 83%

- 1: 88%

- 2: 70%

- 3+: 80%

efficiency:

- 0: 92%

- 1: 79%

- 2: 75%

- 3+: 76%

purity:

- 0: 83%

- 1: 88%

- 2: 70%

- 3+: 80%

time to solution [s] 9.701 4.898

throughput

[events/s]

278324.152 551245.410

energy to solution [J] 563.174

(262.090 FPGA)

267.831

(137.902 FPGA)

energy efficiency [events/J] 4794.255 10079.328

Table 18 KPIs for the two design configurations of RAIDER

Finally, in Table 19, we consider the improvement of the measured KPIs on the two design

configurations (1CCN, 2CCN) over the two sets of baseline KPIs (CPU only and CPU+GPU).

Design/KPI Improvement factor over CPU Improvement factor over

CPU + GPU

1CNN/

throughput

1.473 1.169

1CNN/

energy efficiency

17.726 31.070

2CNN/

throughput

2.913 2.135

2CNN/

energy efficiency

37.267 65.332

Table 19 Improvement factors of the KPI for the 1CNN and 2CNN designs over the baseline

textarossa.eu D6.2 | 56

3.7 TNM – INFN
The Quantum TEA is a suite of applications that utilizes tensor network methods (TNM) to

simulate quantum systems and solve machine learning problems. Among these applications is
the Quantum Matcha TEA, which is an emulator for quantum computers that is powered by

matrix product states. To assess the performance of our application, we tested it with a

Quantum Fourier Transform (QFT) algorithm on a set of entangled qubit blocks, with each

block consisting of N entangled qubits. The total number of qubits for the QFT algorithm

consists always of 100 qubits to evaluate its effectiveness on non-trivial states.

Figure 50 Quantum Fourier Transformation (QFT) algorithm acting on a block of N entangled qubits. Here in the

example, we show N=3 where each qubit is represented by one vertical line and the entangling blocks are displayed in

orange.

Here in the Figure 50, we show N=3 where each qubit is represented by one vertical line and

the entangling blocks are displayed in orange. The timeline from the perspective of each qubit,

represented by a vertical black line, goes from the top downwards: first, the qubit is entangled

with (N-1) neighbors via an entangling block and then the QFT is executed on all 100 qubits..

Apart from the boundary effects, we have around 100 / N entangling blocks.

We present results obtained using the Dibona configuration's computing node. The

performance of the system is measured by using LIKWID, which determines energy

consumption as an indicator of efficiency. To measure the effectiveness of our results, we have

chosen the number of gates per second (Gates/s) and the number of gates per Watts (Gate/Ws)

as the key performance indicators (KPIs). This metric allows us to evaluate the efficiency of

our execution when dealing with entangling blocks of different sizes N. In particular, we have

conducted tests on circuits with N=6 and N=8.

The setup ‘likwid-perfctr -f -C 0 -g ENERGY -t 100ms -O -o data.likwid ./qmatchatea.exe’

executes the simulation on one core with a measurement frequency of 100ms. The quantum

matcha tea executable is compiled with gfortran v8.4 and quantum match tea itself is based

on version v0.3.7.

In Figure 51 and Figure 52, we have included plots that display the energy consumption data we

have collected for single-CPU baseline. These plots offer a visual depiction of our system's

energy consumption over time for N=6 and N=8, enabling us to observe that the energy usage

remains relatively constant, except for minor fluctuations in both cases.

textarossa.eu D6.2 | 57

Figure 51 Power measurement for a single-core double-precision simulation of a quantum Fourier transformation of 100

qubits on blocks of six entangled qubits.

Figure 52 Power measurement for a single-core double-precision simulation of a quantum Fourier transformation of 100

qubits on blocks of eight entangled qubits.

We have provided a summary of the results in the Table 20. This table outlines the key metrics

we have collected and provides an overview of the performance of our system. In addition to

the energy measurements, we have executed the single-CPU baseline without power

measurement to obtain an unbiased computation time.

textarossa.eu D6.2 | 58

Description N = 6, data type = Z N = 8, data type = Z

Number of gates 11850 10995

Time (mm:ss) 1:25 21:52

Gates/s (KPI from D6.1) 139.4 9.0

Power consumption Ws 504.8 8200.5

Gates/Ws (KPI from D6.1) 23.5 1.3
Table 20 Properties for single-core double-precision simulations of a quantum Fourier transformation of 100 qubits on

blocks of N entangled qubits. The number of gates executed during the algorithm together with the execution time and

power consumption leads to two KPIs defined for tensor network simulations.

We see the difference between the results with different N both in execution time and in power

consumption. As expected from a quantum physics point of view, the computation time, and

thus energy consumption, depends drastically on the amount of entanglement present in the

system, where the entanglement increases with even numbers of N. For future benchmark, it is

important to compare the same protocol, i.e., the number of entangling blocks controlling the

entanglement and the QFT algorithm running thereafter..

The results shown so far have been for double precision simulation where we truncate singular

values below 10-9 in the compression scheme, which is a key part of our algorithm.

As our next step of analysis, we compare the performance of single precision (C) and double

precision (Z) data types. We adapt the truncation threshold to 10-5 for both data types which

guarantees to truncate numerical noise also for single precision simulations. The Figure 53,

Figure 54 and Table 21 compare the data types.

Description N=6, C N=6, Z N=8, C N=8, Z

Number gates 11850 11850 10995 10995

Time (mm:ss) 0:30 0:32 7:36 7:51

Gates/s 395.0 370.3 24.1 23.3

Power Ws 170.7 183.5 2665.4 2883.1

Gates/Ws 69.4 64.6 4.1 3.8
Table 21 Comparison of single-precision (C) versus double-precision (Z) simulations on a single core for a quantum Fourier

transformation on blocks of N entangled qubits. The comparison shows minor benefits for using single precision in terms of
computation time and energy consumption.

textarossa.eu D6.2 | 59

Figure 53 Power measurement for a single-precision (C) and double-precision (Z) simulation on a single core of a quantum

Fourier transformation of 100 qubits on blocks of six entangled qubits.

Figure 54 Power measurement for a single-precision (C) and double-precision (Z) simulation on a single core of a quantum

Fourier transformation of 100 qubits on blocks of eight entangled qubits.

The comparison between the single and double precision shows a slight advantage of the single

precision in terms of runtime and energy consumption. Together, they add up to around 7%

fewer energy consumption for single precision simulations. For the plot of the power

measurement for N=8, we apply a moving average to suppress fluctuations in the energy

textarossa.eu D6.2 | 60

consumption and distinguish single precision versus double precision data. A possible next step

is to compare the convergence of both simulations with respect to their results.

This benchmarking process allowed us to evaluate the effectiveness of our emulator under

different conditions and identify areas where further improvements could be made. Additional

KPIs defined in D6.1 as Qbits/s or Qbits/Ws are not shown here. These KPIs are more

applicable to condensed matter problems where one wants to study the properties of the system

while scaling in the number of qubits. The benchmarks of these simulations for condensed

matter problems are not yet available. The energy measurements and benchmarks with GPUs

are also not available yet.

textarossa.eu D6.2 | 61

3.8 ScalFMM (Mathlibs-INRIA)

ScalFMM is an HPC application developed at Inria that implements the fast multipole method
(FMM), which enables computing pairwise interactions between N particles with quasi-linear

complexity. Before the current project, ScalFMM was already parallelized with StarPU and

had GPU capability.

Like Chameleon, we are using ScalFMM to validate our scheduler multreeprio, and we plan to

extend it to study the exploitation of FPGA with StarPU.

We provide results obtained on computing nodes of older generations compared to Dibona (2

× 16-core Intel Skylake + 2 × V100 and 2 × 12-core Intel Haswell + 4 × K40). Our work here

does not focus on the efficient implementation of computational kernels (i.e. optimizing for a

given processing unit), but rather on the flexibility and robustness of the multreeprio scheduler.

What matters in a configuration is not just the raw performance of the processing units, but

also their number and the performance difference between the different types.

Since this is still ongoing work, we show results for two variants of the scheduler called

lamtp{1,2} in Figure 55 that shows the number of particle interactions per second for different

StarPU schedulers. As the simulation relies on the FMM, many of the interactions are

computed approximately. Our scheduler is competitive with DMDA (a modified version of the

Heft scheduler [16]), which is considered the most efficient StarPU scheduler, as well as the

(la)heteroprio scheduler, a scheduler that was originally designed for the FMM [17,18].

We want to remind you that configuring the heteroprio scheduler manually is required, which

is not necessary for laheteroprio or multreeprio, making things easier for developers.

On the V100 configuration, we obtain an efficiency of 230.10^9 interactions/Watt using the

two GPUs and the two CPUs with multreeprio. We currently do not have a comparison with

the other schedulers, but the related paper will include it.

Our next steps will be: 1) to port some FMM kernels to FPGA and 2) to adapt the multreeprio

scheduler to consider energy in its decision-making process.

Figure 55 Interactions/s of a n-body simulation using ScalfMM and StarPU on two different hardware

configurations. We compare our new scheduler (lamtp) against its legacy version (heteroprio) and the most used

scheduler (DMDA).

textarossa.eu D6.2 | 62

3.9 Chameleon (Mathlibs-INRIA)
Chameleon is a C library that provides parallel algorithms to perform BLAS/LAPACK

operations, fully exploiting modern architectures. It had already been parallelized with StarPU
before the start of the current project.

Similar to ScalFMM, we use Chameleon to validate our scheduler and plan to test it on FPGA

and energy optimization. In Figure 56, we provide the Flops/s, for the Cholesky factorization

(POTRF) and the QR factorization (GEQRF) on three different hardware configurations and

different schedulers. DMDA is the most effective scheduler known for executing Chameleon.

Our results show that our scheduler multreeprio (lamtp) is competitive with DMDA when the

performance difference between CPU and GPU is low (K40), but is not as efficient as DMDA

when the GPU is much more efficient than the CPU (V100).

On the V100 configuration, we obtain an efficiency of 21GFlops/Watt using the two GPUs and

the two CPUs using multreeprio.

Similar as with ScalFMM, our next steps will be: 1) to port some GEMM kernels to FPGA and

2) to adapt the multreeprio scheduler to consider energy in its decision-making process.

Additionally, we are currently investigating ways to improve execution on this type of

configuration by offloading more tasks to the GPU.

textarossa.eu D6.2 | 63

Figure 56 Flops/s for the Cholesky and Qr factorization (Chameleon) and StarPU on two different hardware

configurations. We compare our new scheduler (lamtp) against its legacy version (heteroprio) and the most used

scheduler (DMDA).

textarossa.eu D6.2 | 64

3.10 UrbanAir – PSNC

The UrbanAir application is tailored towards assessing and predicting air quality over complex
urban areas. It is a multiscale model which benefits from coupling between WRF and EULAG.

WRF is a community mesoscale weather prediction model, and its purpose in UrbanAir is to

feed the latter model with meteorological fields. EULAG, the all-scale geophysical flow solver,

is used to precisely model the wind flow over complex buildings shapes using immersed

boundary method, and to calculate transport of contaminants. In the scope of the project we are

focusing on the EULAG and exploiting heterogeneous resources in particular.

The dynamical core of EULAG constists of the MPDATA method and GCR solver. The latter

consists of five routines: prforc, divrhs, laplc, precon and reduction:

Prforc – used to initialize the solver, applies boundary conditions and guesses the first updated

velocity;

Divrhs – initializes the solver and computes the initial residual error of the elliptic problem;

Laplc – iteratively evaluates the generalized Laplacian operator;

Precon – accelerates the convergence of the variational scheme.

The original code written in Fortran 77 was previously rewritten to C++ in order to be able to

run on different hardware architectures and proof-of-concept adaptation to heterogeneous

resources was made [19]. The original code uses MPI parallelization. In order to support

heterogeneous resources, including GPUs and many-cores, a stencil framework was introduced

being responsible for parallelization and communication. Each kernel can be provided in either

CPU or GPU realization (or both), and it is up to the framework to orchestrate proper execution.

The kernels were adapted to GPUs by the means of CUDA. To exploit intra-node

parallelization, OpenMP was used. Thus, within a node, CPU code is parallelized using

OpenMP, and for GPU code using CUDA. The communication between GPUs and nodes is

done via MPI. The computational domain is divided between all given hardware resources,

where each process receives it’s part of the global domain called subdomain. Important to say,

we decided to keep the static decomposition of the domain, i.e. partitioning is done before

compilation process, as it allows the compiler to optimize the stencil loops.

Within Textarossa, a new testcase has been introduced which corresponds to the air quality use

case. In contrast to previous studies, the computational domain is latter flat, as the domain

increases horizontally in each direction, but not vertically. The testcase is about modelling air

quality in urban environments, therefore 64 grid points (corresponding to domain height) is

enough to model flows at buildings height. Improvements in communication framework were

required to allow for efficient data exchange between multiple accelerators available within a

single node and between multiple nodes. To efficiently exploit multi-core and multi-GPU

within a node, automating mapping for cores and GPUs were provided for the most efficient

realization. Finally, improvements in GPU kernels were made to improve correctness of results

and their efficiency.

The baseline for benchmarks is a CPU version running on single and multiple nodes, combining

MPI and OpenMP for inter- and intra-node communication respectively. Tests were conducted

on currently available architectures, including testbed developed in Textarossa project. We

used Altair, a PSNC’s cluster equipped with Intel Intel Xeon Platinium 8268 processors (2x24

CPU cores) and NVIDIA V100 cards. The Textarossa testbed is Dibona machine equipped

with AMD processors and NVIDA GPU cards, see Section 2 for details. As described in D6.1

deliverable, our interest is to measure and improve in terms of GCRK number of iterations per

textarossa.eu D6.2 | 65

second and per Watt. With the developed new architectures, we do not expect only

improvement in computational performance and energy savings, but also a possibility to run

larger domains on accelerators.

The tests are divided into strong scalability, weak scalability and energy consumption. If not

explicitly stated, each test runs 100 iterations over 59M grid points domain (for strong

scalability) or 1M grid points domain (for weak scalability). It corresponds to 960x960x64 and

128x128x64 domains respectively. For the energy measurements tests were additionally

conducted using 500 iterations and over 15M grid points domain (for weak scalability).

3.10.1 Strong scalability

The parallelization on a single CPU node is done via OpenMP. Before running tests in

multinode environment, the most efficient number of OpenMP threads needs to be chosen. In

Figure 57, strong scalability within a single node is presented. The top compares execution

time for different number of OpenMP cores used, while the bottom depicts achieved speedup.

Increasing the number of threads lowers the execution time, although the more threads are used

the less speedup is achieved. The optimal number of threads for a single node is 32 threads,

although Altair and Dibona are equipped with 48 physical cores.

Figure 57 GCRK strong scalability on a single node. Top: execution time. Bottom: speedup.

The strong scalability study in multinode environment is conducted on Altair system up to 64

nodes. Within a node, code is parallelized using OpenMP paradigm with number of threads set

to 32 CPU cores. The computational job is divided between the nodes, where each node

textarossa.eu D6.2 | 66

receives its own and equal subdomain to calculate over, and the data is exchanged via MPI.

The strong scalability results are presented in Figure 58. The top chart depicts execution time,

while the bottom achieved speedup. Adding more nodes results in shorter execution time, but

again the more nodes are used the less speedup is achieved. However, required time for

obtaining results is getting shorter.

Figure 58 GCRK strong scalability on multiple nodes. Top: execution time. Bottom: speedup.

The strong scalability tests for the GPUs were performed on Altair and Dibona systems. It is

important to say that the parameters for tests are different for each testbed. On Altair, a single

GPU V100 is able to handle 15M grid points domain, while Dibona GPU computes over 59M

grid points domain. Nonetheless, we would like to study whether the speedup characteristic is

similar on different GPU architectures.

In Figure 59, strong scalability of the GCRK running up to 4 A100 GPUs is presented, which

the achieved speedup closed to a linear one. In Figure 60, results for strong scalability up to 8

NVIDIA V100 GPUs is presented. On both figures the top chart presents how execution time

changes when adding more GPU cards, while the bottom one depicts achieved speedup. On the

older GPU architecture, the speedup is not as exceptional as on a modern one.

textarossa.eu D6.2 | 67

Figure 59 GCRK strong scalability on multiple A100 GPUs. Top: execution time. Bottom: speedup.

Figure 60 GCRK strong scalability on multiple NVIDIA V100 GPUs. Top: execution time. Bottom: speedup.

Errore. L'origine riferimento non è stata trovata.

textarossa.eu D6.2 | 68

3.10.2 Weak scalability

To compare weak scalability across different available hardware, 1M grid points problem per

node or per GPU was selected. Figure 61 and Figure 62 presents results for CPUs and GPUs

respectively. The top chart presents how execution time changes when more CPUs and GPUs

are used, while the bottom depicts efficiency. In both cases, the more CPU nodes or GPUs are

used, the weak efficiency drops more. Interestingly for Dibona GPU, while strong scale

speedup is close to linear, the weak efficiency is the worst one among tested GPUs. The reason

for this is the fact the chosen number of grid points (1M per node or GPU) is far from this GPU

capabilities. This is why we conducted another weak scalability tests, aiming at solving 59M

grid points per node or GPU. The results are presented in Figure 63, and one can observe that

fitting GPU accelerator with more work (larger job to do) results in better efficiency.

Figure 61 GCRK weak scalability on CPUs. Top: execution time. Bottom: efficiency.

textarossa.eu D6.2 | 69

Figure 62 GCRK weak scalability on GPUs. Top: execution time. Bottom: efficiency.

Figure 63 GCRK weak scalability on GPUs – comparison between 1M and 59M grid points problem

textarossa.eu D6.2 | 70

3.10.3 Energy measurements
Energy measurements were conducted on Dibona system using methodology described in

D1.4. These experiments are to analyze energy and power consumption to find the sweet spot

between computational performance and energy efficiency.

Figure 64 and Figure 65 present power consumption characteristic for the fixed amount of grid

points per GPU, 1M and 15M points respectively. Each subfigure depicts what is the power

consumption during GCRK execution when 1, 2 or 4 GPUs cards are used. For individual

accelerators, the power consumption remains at the same level when more than one GPU is

used, which means they are occupied with work at the same level. The power consumption is

larger when a single GPU is used.

Figure 64 GCRK power consumption on GPUs, 1M grid points per GPU. Top: 1GPU, middle: 2 GPUs, bottom:

4GPUs

Figure 65 GCRK power consumption on GPUs, 15M grid points per GPU. Top: 1GPU, middle: 2 GPUs, bottom:

4GPUs

textarossa.eu D6.2 | 71

The same test was applied to a fixed problem size of 59M gridpoints, which is then equally

divided between available GPUs. Results presented in Figure 66 demonstrates that power

consumption characteristic is the same, no matter a strong or weak scalability problem is

solved. Each subfigure presents power consumption during the execution for each GPU

accelerator used.

Figure 66 GCRK power consumption on GPUs, 59M grid points per job. Top: 1GPU, middle: 2 GPUs, bottom:

4GPUs

Next, we provide a study on what is the CPU energy power consumption when running kernels

on GPU. Figure 67 presents such comparison for a 59M grid points size problem run on GPUs

(up to 4) and OpenMP version of GCRK (up to 32 physical CPU cores). The power usage for

CPU cores for OpenMP and GPU version is alike, and it is worth doing more tests in the future

to check whether further increase in number of GPUs will results in similar increase in CPU

power consumption. The energy accounted to package is constant for GPU realization of the

GCRK. For the CPU implementation, package power consumption is significantly lower when

less CPU cores are used, but when the optimal number of cores is used (32), package power

consumption is even greater comparing to GPU realization.

Figure 67 GCRK CPU power consumption when running on GPUs

textarossa.eu D6.2 | 72

Because the power consumption characteristic is the same for every GPU involved, we may

expect the energy consumption to be constant for the fixed problem size (strong scaling) and

increasing for the same size problem per GPU (weak scaling). In Figure 68, we correlate

execution time to energy consumption for a strong and weak scalability. The top graph presents

results for a fixed problem size (59M of grid points) and 500 iterations, and the bottom one for

a constant problem size for each GPU accelerator (15M of grid points, 100 iterations). In both

graphs, the blue line corresponds to exection time, which is plotted against left y-axis. The red

line indicates energy consumption (in Joules), which is plotted against right y-axis. While the

weak scaling allows to solve larger problems within more or less the same amount of time

(problem size is fixed per accelerator), the energy consumption naturally increases by the

number of accelerators being used. For strong scaling the situation is quite the opposite –

increasing number of accelerators used results in shorter execution time and in lower energy

consumption. We can achieve energy scalability and solve larger problems with almost

constant energy consumption.

Figure 68 GCRK energy consumption on GPUs, strong (top) vs. weak (bottom) scaling

textarossa.eu D6.2 | 73

3.10.4 Measuring KPIs

In D6.1 we proposed KPIs to be measured for the UrbanAir kernels, which are reminded in

Errore. L'origine riferimento non è stata trovata..

KPI for computational efficiency KPI for energy

- execution time

- (strong and weak) speedup

- number of iterations/time per iteration

- iterations/Watt

Table 22 UrbanAir KPIs

Let’s discuss how execution on CPUs compares to those on GPUs. For this test, we ran GCRK

100 iterations on a 59M grid points domain. The CPU code was run on multinode Altair

environment, while Dibona was used for measurements on GPUS, as only these cards make it

possible to run on such large domain. Figure 69 presents the results in terms of number of

iterations per second. While increasing the number of nodes makes more iterations to be

computed per second, the GPUs easily outperforms CPU version of the code. 64 CPU nodes

are required to beat a single GPU, while beating 4 may be challenging. And even if it is doable,

the energy consumption for such CPU run will be much higher than on GPUs.

Figure 69 GCRK strong scalability iterations per second

Figure 70 presents the results for iterations per second for different hardware architectures,

where the same amount of work is computed by each CPU or accelerator. As expected, the

GPUs perform better than CPU, but also the newer GPU cards (Dibona) demonstrate its

advantage over the older ones (Altair), even in the case GPU is assigned with rather small

problem size.

textarossa.eu D6.2 | 74

Figure 70 GCRK weak scalability iterations per second

Figure 71 presents iterations per Watt for strong (top chart) and weak (bottom chart) size

problem. The energy measurements were done only on Dibona, thus we compare OpenMP

parallelization to GPU accelerators. Similarly to the performance measurements, the iterations

per Watt KPI is better for GPUs. However, when more GPUs are used to solve the problem,

this KPI slightly increases for strong-scalability problem, while decreases for a weak-

scalability.

Figure 71 GCRK iterations/Watt, strong (top) and weak (bottom) scalability

textarossa.eu D6.2 | 75

Figure 72 presents cumulative KPIs measurements for different hardware architectures: CPUs

and GPUs on a single node. Iterations per second are plotted against left y-axis, while iterations

per Watt are depicted against right y-axis. For strong scalability, adding more CPU cores

slightly increases iterations/s but significantly decreases iterations per Watt. Increasing number

of GPUs significantly increases iterations/s keeping iterations per Watt at more or less constant

level. It means that for GPUs, within the same amount of energy consumed we are able to

perform work quicker.

For weak scalability, adding more CPUs results in both KPIs decrease. When more GPUs are

used, iterations per second remains more or less constant, but iterations per Watt drops

significantly.

Figure 72 GCRK KPIs on a single node for CPUs and GPUs for strong (top) and weak (bottom) scalability

textarossa.eu D6.2 | 76

4 Summary and future work

In this deliverable we presented initial application benchmarks and results with respect to the

KPIs defined in previous D6.1 deliverable. Each of the use case is progressing well,

contributing to the overall project objectives, and benefitting from either adaption to

heterogeneous resources, usage of mixed-precision or application of dynamic runtime systems.

The first results are promising and demonstrate we are heading in a good direction. Smart cities

were tested on several HPC platforms using ARM and Intel GPPs, with and without

accelerators, where some of them supporting mixed-precision. CNR proposed some new

algorithms and achieve already high performance and energy efficiency at the node level by

exploitation of hybrid programming models for heterogeneous architectures and large

scalability. RTM is extended with different formats of reduced precisions, providing stability

tests and tests on image quality. RAIDER achieved O(10) improvements in energy efficiency

and 2-3x in throughput, demonstrating using of APEIRON framework and intra/inter-FPGA

communication IP. NEST-GPU reported increase in energy efficiency and reduced runtimes.

HEP reported increase in energy efficiency, performance and throughput. TNM demonstrated

increase in energy efficiency. INRIA created a new scheduler within StarPU and tested its

robustiness and flexilbity usings ScalFMM and Chameleon applications. UrbanAir kernels

achieved 3.5-9x speedup (multinode environment) and 2x increase in energy efficiency (single

node).

We continue to work on the applications for further exploration how to increase energy

efficiency and sustained application performance in particular. We do look forward to the

availability of the ultimate IDV-A and application of other hardware solutions to test if and

how this can lead to increase in our KPIs values. With the comprehensive set of use cases,

applicable in different scientific fields, we will be able to draw conclusions on best approaches

in increasing energy efficiency and sustained application performance and share with the

community at the end of the project.

Next subsections detail future work for each application.

4.1 Smart Cities - CINI-UNIPI
The application and benchmarking activity of CINI-UNIPI will be extended to consider also

RISC-V architectures and compare them to ARM-based (Neoverse N1, A64FX) and Intel-

based GPP architectures. To this aim, COTS RISC-V solutions will be considered, at least

scalar ones.

4.2 MathLib - CNR

Activities for the last year of the project include the implementation and testing of a new version of

the BCMG linear solver based on a Communication-Avoiding Conjugate Gradient (CA-CG) method,

based on grouping s-step of the standard CG method, so that latency and global synchronization are

reduced. The final results will be hopefully obtained on the IDVA Textarossa platform. Therefore, the

availability of the IDVA platform by the end of the 30th month of the project is a critical issue. It is

worth to note that CNR group received a grant for early access to the Italian Leonardo supercomputer.

textarossa.eu D6.2 | 77

Therefore, as soon as it is available, some tests with our library will be run on the Leonardo hybrid

supercomputer.

4.3 RTM – FRAUNHOFER
The next step will be the calculation of several shots to create an image more closely to typical RTM

migrations. The image quality will be compared between float 32 bit and other compression formats.

To make this feasible we will reduce the model to a 2D case which costs less compute power per shot.

4.4 HEP - INFN

The two identified benchmarks (CLUE and Pixeltrack) have been fully developed using the

Alpaka library and will be portable without, or with minor, effort on the final IDV-A. In the

next few months the development of this set of applications related to HEP can be subject to

delays because there is a chance that the person working on this activity could be diverted to

other projects at the CNAF INFN unit.

4.5 NEST-GPU - INFN
The preliminary comparison made between the multiprocess CPU version of the neural

network simulation engine NEST (scaled up to what was available to run on either for ARM

and x86_64 platforms with the Ampere Altra and the EPYC Zen2) and its GPU-supporting

prototype NEST-GPU already reveals a staggering advantage of this latter – both in power

consumption and runtime – even when run on just a single, recent but not latest generation

device. Work is underway on the NEST-GPU application to move also the setup phase (which

at the moment is still done on the CPU and represents a very unwieldy time at the start of every

simulation) onto the GPU as well while the bulk of future work will focus on defining a scalable

version of the testing protocol (likely to be based on the simulation of a-multi-area model of

macaque vision-related cortex) and implementing it on an enhanced version of the NEST-GPU

application in order to perform a sensible multiGPU performance measurement.

4.6 RAIDER - INFN

Preliminary results we reported in section 3.6 show that the FPGA-based implementation is

the most convenient by a large amount when considering the energy efficiency aspect.

Our objective within the timeframe of the TEXTAROSSA project is, besides the mere technical

development needed to finalize the processing pipeline by including the network interface with

the RICH detector (data producer) and the trigger processor (results consumer), to scale-up

performance of the RAIDER application to reach or surpass the challenging experimental

requirement of a processing throughput higher than 10 MHz.

We will research along two parallel direction to reach this goal: i) exploit the intra/inter-FPGA

scalability feature offered by the APEIRON framework, as shown up to a limited extent in

section 3.6, and ii) continue improving the neural network model and the corresponding

representation for input data used in the inference processing pipeline.

textarossa.eu D6.2 | 78

4.7 TNM - INFN

The TNM application plans to scale the simulation beyond the single-core baseline that we

presented in section 3.7, both scaling on the number of CPU cores (using OpenMP) and
accelerating parts of the code on NVIDIA GPUs. We also plan to add more sub-application as

far as the HPC infrastructure allows, where we have other tools solving the Schrödinger

equation or solving machine learning tasks with tensor networks. A scaling up to MPI is

unlikely due to a serial step of matrix decompositions, which is necessary to obtain

convergence.

4.8 MathLib - INRIA

Our next steps will be to develop FPGA kernels for ScalFMM and Chameleon, as well as to

improve our scheduler to reduce energy consumption of the executions. For this latter point,

we plan to replace the heuristics used to compute task priorities with those focused on

minimizing energy usage, rather than just optimizing for makespan.

4.9 UrbanAir - PSNC

The next steps is to provide power consumption measurements on a multiple node to do a fair

comparison between CPUs and GPUs and judge the increase in energy efficiency. We also

plan to study if and how the mixed precision can increase the computational and energy

efficiency.

textarossa.eu D6.2 | 79

5 References

[1] Heroux MA, Dongarra JJ. Toward a New Metric for Ranking High-Performance

Computing Systems. Sandia National Lab. Tech. Rep., SAND2013-4744, 2013.

[2] Bernaschi M, Celestini A, D’Ambra P, Vella F. Multi-GPU aggregation-based AMG

preconditioner for iterative linear solvers, 2023. Available at arxiv.org/abs/2303.02352

[3] Nagasaka Y., Nukada A., Matsuoka S. High-Performance and memory-saving sparse

general matrix-matrix multiplication for Nvidia Pascal GPU, IEEE 46th International

Conference on Parallel Processing 2017, Bristol (UK), 101–110.

[4] Nvidia, Algebraic multigrid solver (AmgX) library, rel.2.1, 2020.

https://github.com/NVIDIA/AMGX.

[5] Naumov M, Arsaev M, Castonguay P, Cohen J, Demouth J, Eaton J, Layton S, Markovskiy

N, Reguly I, Sakharnykh N, Sellappan V, Strzodka R. AmgX: a library for GPU accelerated

algebraic multigrid and preconditioned iterative methods, SIAM Journal on Scientific

Computing, 2015, 37, S602–-S626.

[6] https://github.com/cms-patatrack/pixeltrack-standalone

[7] https://github.com/cms-patatrack/heterogeneous-clue

[8] https://www.khronos.org/sycl/

[9] https://indico.cern.ch/event/1106990/contributions/5096932/

[10] https://alpaka.readthedocs.io/en/latest/

[11] https://doi.org/10.3389/fninf.2022.883333

[12] François Chollet et al. 2015. Keras. https://github.com/fchollet/keras

[13] Claudionor Coelho. 2019. QKeras. https://github.com/google/qkeras

[14] Duarte J, Han S, Harris P, Jindariani S, Kreinar E, Kreis B, Ngadiuba J, Pierini M,

Rivera R, Tran N and Wu Z 2018 Journal of Instrumentation 13 P07027–P07027

[15] Vivado Design Suite User Guide High-Level Synthesis UG902 (v2020.1), Xilinx, San

Jose, CA, 2021

[16] Topcuoglu, Haluk; Hariri, Salim; Wu, M. (2002). "Performance-effective and low-

complexity task scheduling for heterogeneous computing". IEEE Transactions on Parallel and

Distributed Systems. 13 (3): 260–274.

[17] Emmanuel Agullo, Berenger Bramas, Olivier Coulaud, Eric Darve, Matthias Messner,

Toru Takahashi , Task-based Fmm for heterogeneous Architectures, Concurrency and

Computation: Practice and Experience, Volume 28, Issue 9, 25 June 2016, Pages 2608-2629

https://github.com/NVIDIA/AMGX
https://github.com/cms-patatrack/pixeltrack-standalone
https://github.com/cms-patatrack/heterogeneous-clue
https://www.khronos.org/sycl/
https://indico.cern.ch/event/1106990/contributions/5096932/
https://alpaka.readthedocs.io/en/latest/
https://doi.org/10.3389/fninf.2022.883333
https://github.com/fchollet/keras
https://github.com/google/qkeras

textarossa.eu D6.2 | 80

[18] Clément Flint, Ludovic Pailla, Bérenger Bramas, Automated prioritizing heuristics for

parallel task graph scheduling in heterogeneous computing, in PeerJ CS, 2021

[19] M. Ciżnicki, M. Kulczewski, P. Kopta, K. Kurowski, Methods to Load Balance a GCR

Pressure Solver Using a Stencil Framework on Multi- and Many-Core Architectures,

Scientific Programming, 2015

textarossa.eu D6.2 | 81

