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Executive Summary 
This deliverable provides initial benchmarks and results of the applications. In particular, the 

document discusses outcomes with respect to KPIs defined for each use case in the previous  

D6.1 deliverable. All use cases applied common methodology for performance and energy 

measurements, discussed in detail in D1.4. The tests were conducted among others on 

Textarossa available testbeds, including IDV-A (Dibona node with GPU accelerators from 

Atos) and IDV-E (node with FGPA accelerators from E4). The applications represent wide 

range of application types (HPC, AI/HDPA), scientific domains, approaches to parallelization 

(OpenMP, CUDA, MPI, …). In particular, the use cases benefit from developments around 

one of the three main pillars defined: heterogenous resources, mixed precision and dynamic 

runtime systems.  

The work carried out correspond directly to the following overall project objectives: 

- Energy efficiency, by the application developments; 

- Sustained application performance, by the application developments; 

- Seamless integration of reconfigurable accelerators, by using the APEIRON 

framework; 

- Development of new IPs, by using INFN intra/inter-FPGA communication IP behind 

the APEIRON framework; 

- Integrated Development Platform, by using existing IDV-A and IDV-E; 

- Opening of new usage domain, by the application developments. 

CINI-UNIPI provides application of smart cities is useful in case of disaster (e.g. earthquakes) 

or terrorist attacks or war scenarios. It contains an AI+video algorithm to detect people in a 

scene and then detecting and tracking people that are laying down. Input images acquired by 

video-camera are passed to a YOLOv5 (You-look-only-once) detection system, and its outputs 

are passed then to a filtering step detecting people that are laying down. A DeepSORT 

algorithm that implements tracking and counting tasks is finally applied. DeepSORT is an 

extension of the SORT (Simple Online Realtime Tracking) algorithm. This algorithm is tested 

on several HPC platforms using ARM and INTEL GPPs, with and without accelerators, some 

of them supporting mixed-precision. 

 

CNR designed and implemented a large part of the proposed Mathlib kernels, which includes 

widely used building-blocks for physics-driven simulation models in traditional HPC 

applications. Some new algorithms specifically thought for heterogeneous computing nodes 

hosting Nvidia GPUs have been proposed and efficient parallel design patterns have been 

applied to obtain high performance at the node level and large scalability. Measured KPIs on 

some Textarossa platforms and some Top 500 supercomputers demonstrate the validity of our 

approaches. A prototype of the CNR Mathlib is already available in a public repository and it  

can be considered one of the key innovations of the Textarossa software toolchain for 

performance/energy efficient computations.    

Fraunhofer extended a basic implementation of a 3D isotropic RTM Kernel using 5 different 

floating point formats of reduced precision to compress the domain and the model as well. The 

focus is to save memory bandwidth to increase runtime performance while keeping up the 

image quality. Images calculated with 6 different approaches have been compared 

quantitatively and qualitatively. Some formats like Bfloat16 proved not suitable for seismic 

applications while other formats like Posit16 or ZFP provided an acceptable image quality. 

Furthermore the numerical stability of the suitable implementations have been tested versus 
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the applied timestep including two difficulty levels in the velocity model. Most 

implementations revealed less than 5% drop in the stable timestep size. 

 

INFN provides one HPDA (RAIDER) and three HPC (TNM, NEST-GPU, HEP) applications 

as benchmarks to drive the co-design and characterization activities of project IDVs.  

We tailored the RAIDER (Real-time AI-based Data analytics on hEteRogeneous distributed 

systems) application for the use case of the CERN NA62 High Energy Physics experiment in 

order to demonstrate the effectiveness (in terms of processing throughput and energy efficiency 

KPIs) of our scalable streaming based framework (APEIRON) in addressing three project 

objectives:  i) Seamless integration of reconfigurable accelerators: the APEIRON framework 

allows to integrate a number of communicating HLS kernels (coded in C++) both on a single 

FPGA or on a set of several interconnected FPGAs, ii) Energy efficiency: first results on energy 

efficiency show a O(10) improvement when compared to CPU or CPU+GPU implementations, 

and iii) Sustained application performance: first results on processing throughput show a x3 

and x2 improvement respect to CPU and CPU+GPU respectively with a limited exploitation 

of the scalability features offered by the APEIRON framework and using just 20% of a single 

Alveo U200 FPGA resources. The key enabling technology behind the APEIRON framework 

is the INFN intra/inter-FPGA communication IP, developed according to the project objective 

Development of new IPs.  

Tensor Network Methods (TNM) application  for the simulation of quantum systems is used 

to emulate the behaviour of quantum computers.  

NEST-GPU is a GPU-accelerated neural network simulator engine for in-silico experiments 

which aims for easy reconfigurability and usage by the neurophysiology practitioner while 

striving for high efficiency and performance. While being self-standing production-ready code, 

the very significant gains in power consumption and reduced runtimes that it has demonstrated 

against its sibling application NEST (which is CPU-only) have motivated the current effort for 

its integration into the larger environment managed by the NEST Initiative and are fostering 

its employment in a larger number of hybrid HPC platforms.   

Finally, regarding High-Energy Physics (HEP) codes on heterogeneous architectures we have 

selected two representative applications: Pixeltrack, a track reconstruction algorithm for the 

CERN CMS experiment, and CLUE, a cluster algorithm for high-granularity calorimeters.   

The topics related to the three HPC applications are important in current and future HPC 

scenarios, and the applications represent relevant benchmarks to characterize and possibly 

shape the architecture of TEXTAROSSA IDVs. 

 

INRIA created a new scheduler called Multreeprio within StarPU. This scheduler is highly 

modular, as each task can have several priorities, one for each type of processing unit, allowing 

for the creation of compact heuristics to favor locality, makespan, or energy efficiency. We 

evaluated this scheduler on two applications, ScalFMM and Chameleon, using different types 

of heterogeneous computing nodes. We measured two key performance indicators (KPIs): 

Flops/s and Flops/Watt.  

 

PSNC provides GCRK kernel, one of the main routin of EULAG model. It was tailored towards 

the use in UrbanAir application, dealing with air quality forecasting. The work focused on 

addressing two objectives: energy efficiency and application performance by measuring 

proposed KPIs: iterations/s and iterations/Watt. In the former case, we are able to achieve 3.5-

9x speedup comparing CPUs to GPUs, but it depends on the problem size and amount of 

hardware resources used. In the latter case, we can achieve at least 2x more energy efficient 

run, although the number depends on the problem size and amount of hardware resources used. 
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1 Introduction 
 

Work performed in WP6 is essential to demonstrate the Textarossa outcomes in both hardware 

and software perspective. The applications need to use these for the final evaluation of the 

project, but far more important is to come up with conclusions if and how new hardware and 

software development paradigms can improve computation and energy efficiency of 

applications coming different domains. 

 

In the Textarossa we focus on applications related to AI (Artificial Intelligence), HPDA (High 

Performance Data Analytics) and HPC (High Performance Computing). Provided software 

represents quite a comprehensive set of different hardware used (CPU, GPU, FPGA), 

programming models and problems to be solved. Use cases are developed based on three 

distinctive approaches: i) adaptation to heterogenous resources, ii) applying posit and mixed 

precision, and iii) using dynamic runtime systems. Therefore, there is a different set of 

computational, energy efficiency and accuracy metrics defined (KPI – key performance 

indicator) for each of the applications, though some naturally overlaps. The KPIs were 

discussed in the previous D6.1 deliverable. In this document we focus on advancements in 

applications development, and on reporting initial benchmarks and results to steer further 

development. The work carried out is related to the following project objectives: 

- energy efficiency, by applications developments to adapt to heterogeneous resources, 

energy efficient accelerators or using mixed precision; 

- Sustained application performance, by applications development to adapt to more 

computational efficient accelerators, using scheduler of streaming framework; 

- Seamless integration of reconfigurable accelerators, by using the Apeiron framework; 

- Development of new IPs, by testing INFN intra/inter-FPGA  communication IP which 

works behind the APEIRON framework; 

- Integrated Development Platform, by using the available IDV-A (Dibona) and IDV-E 

platforms for initial benchmark results; 

- Opening of new usage domains, by developing application in many different domains, 

e.g. climate, oil&gas, high energy physics. 

 

This document is organized as follows. In Section 2, methodology for benchmarking 

applications from computational and energy efficiency perspective is discussed. It also details 

hardware architectures being used for testing. In Section 3, each use case is described in details, 

providing its status, development advancements, and initial benchmarking results including 

KPIs. Section 4 provides a summary and discusses next steps. 
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2 Methodology  
For the consistency of benchmarks results across different applications in the project, a 

common methodology is proposed to be obeyed by each of the use case. Each application 

provides results on the currently available testbeds, IDV-A (Dibona) equipped with GPUs, and 

IDV-E equipped with FGPA accelerators. Additionally, some applications performed 

additional benchmarks on external to the project hardware, which is detailed in Section 2.1 and 

within individual applications results. In Section 2.2, methodology to measure computational 

performance and energy efficiency is discussed. 

2.1 Hardware 

2.1.1 IDV-A 
 

The IDV-A prototype defined in Textarossa is a GPU blade provided by Atos for two-phase 

liquid cooling adaptation. This prototype has been described in Deliverable D1.2 Chapter 3 

(GPU platforms requirements). It will be available when this new liquid cooling is installed 

and validated on this blade. Unfortunately, the cooling design is still ongoing, and the prototype 

delivery targeted in M18 (Deliverable D5.1) has been delayed. Meantime access has been 

provided to a GPU node of previous generation in the Dibona cluster accessible to Atos partners 

in several funded projects.  

  

This node is implemented in a CRRM blade in BullSequana XH2000 platform. The 

architecture of this node, described in Figure 1, is based on the following components:  

- One bi-socket host with AMD EPYC 7402, codename "Rome" (8 DDR4 memory 

channel @3200 MT/s and 2 x16 PCIe Gen4 slots per socket). 

- 4 Nvidia GPU Ampere A100, interconnected with NVlink 

- Two 96-port PCIe Gen3 switches to provide direct access between CPU and GPU, 

CPU and NIC, GPU and NIC (GPU direct) 

- Up to four NICs (Network Interface Controller) to connect to a HPC high speed 

interconnect (Infiniband HDR technology). 

 

 

Figure 1 GPU blade architecture with PCIe switches 

 

In the case of Dibona platform, only one blade is provided, then there is no connection to high-

speed interconnect. The only access is the 1Gb/s link of the CPU host. 
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The architecture of final IDV-A is similar, except that the PCIe switch is embedded in the 

Infiniband NDR NIC (ConnectX 7 ou CX7), as described in Figure 2. 

 

 

Figure 2 GPU blade architecture with embedded PCIe switches 

 

This architecture change has no impact on the blade performance. But the performance will 

increase with these two main evolutions: 

- Nvidia GPU is the next generation Hopper H100, interconnected with Nvlink. 

- In the host node, the AMD Rome CPU is replaced with Intel Sapphire Rapids CPU, 

with 8 DDR5 memory channels @4800 MT/s and 2 x16 PCIe Gen5 slots per socket. 

This blade will be hosted on the new BullSequana XH3000 platform. As this blade remains 

isolated, the node will also be accessed with the 1Gb/s Ethernet link of the host. 

 

More details can be found in D1.4. 

 

 

2.1.2 IDV-E 
 

IDV-E system is delivered by E4 and it is currently available with remote access to project 

partners. The nodes are equipped with ARM64 and FPGAs.The choice of the system to which 

to apply the two-phase cooling system fell on the Ampere Mt.Collins 2U system with Ampere 

Altra Max processor; the main reasons are: (i) it supports a number of PCIe slots providing the 

possibility of adding FPGA boards (up to 3) and/or other boards if needed, (ii) it has the 

physical space for adding the cooling system, (iii) it presents a good match between the amount 

of heat to be removed and the design point of the cooling system developed in the project, (iv) 

it has an architecture (ARM) compatible with that of the EPI project, (v) the possibility of 

receiving the system in times compatible with the project (an aspect not taken for granted given 

the current state of shortage worldwide). As for the FPGA, the choice fell on the U280 Xilinx 

Passive Model, it is able to provide significant computing power and the flexibility of memory 

access via HBM2 or DDR protocol with a maximum consumption of 225W. This device also 

guarantees the use of the VITIS software stack.  More details are described in D5.2 and D1.4. 
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2.1.3 Other architectures 
 

For CNR-MathLib, Piz Daint system is used, operated by the Swiss National Supercomputing 

Center. That system is based on the Cray XC40/XC50 architecture with 5704 hybrid compute 

nodes (Intel Xeon E5-2690 v3 with Nvidia Tesla P100 accelerator) and 1813 multicore 

compute nodes (Intel Xeon E5-2695 v4), using the Cray Aries routing and communications 

ASIC with Dragonfly network topology.  It is ranked 26th in the November 2022 Top 500 list. 

 

For the Smart Cities applications by CINI in Section 3.1, CINI has considered multiple 

platforms: 

- platform 1 --> Quad core ARM Cortex-A72 on a Raspberry PI4 board 

- platform 2 --> ARM Neoverse N1 (80 cores) on Ampera Altra blade 

- platform 3 --> Fujitsu A64FX (ARMv8-A based) on an Apollo HPE cluster 

- platform 4 --> NVIDIA Jetson AGX Orin 

- platform 5 --> Intel i7-10750H with NVIDIA GeForce GTX 1650 Ti 

- platform 6 --> Intel Xeon with NVIDIA Tesla T4 

- platform 7 --> Intel Xeon with NVIDIA A100 

 

The platforms include processors based on ARM64 architecture (platform 2 and platform 3) 

with and without SVE extension.  

The platforms include also Intel i7 and Xeon processors, and use also of different type of 

accelerators (T4, A100, Orin).  

 

The platform with A100 supports mixed arithmetic like BF16/FP16/FP32/T32. 

T different formats of the mixed-precision are presented in Figure 3. 

 

 
Figure 3 Different mixed-precision format supported by accelerator in platform 7 

(with A100) 

 

FP16/FP32 mixed-precision is also supported by GPU T4 that is one of the used platforms. 

Missing an HW support to Posit in the available accelerators, the mixed-precision included 

BF16/FP16/FP32 but not Posit. 

All accelerator architectures considered for the smart cities CINI use cases also support 

INT4/INT8. 
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Being the platform equipped with a FPGA, IDV-E is the reference platform of the RAIDER 

application by INFN in the context of the TEXTAROSSA project. Since the RAIDER 

application is developed using the INFN APEIRON framework, which is based on the Vitis 

flow, it relies on the XRT runtime libraries and the corresponding XOCL/ZOCL device driver. 

Xilinx does not support XRT on ARM platforms other than ZynQ, as is the case for IDV-E that 

integrates a Xilinx Alveo U280 on an ARM server.  An activity from project partner BSC is 

finished to add the needed support, as reported in deliverable D4.1-Proof-of-concept 

Textarossa IDV-E Test support. However, the issues were solved too late to be accounted in 

this deliverable. Therefore results reported in this deliverable have been collected using a 

development platform available in the INFN Roma APE Lab, a dual socket server with two 

X86_64 processors (Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz) equipped with a Xilinx 

Alveo U200 FPGA card. In section 3.6 we compare the KPIs obtained on the CPU+FPGA 

setup with a baseline given by the execution of the inference task on the Tensorflow model 

running both on CPU only and in combination with a GPU accelerator. These baseline KPIs 

have been collected using a workstation sporting a single socket Intel(R) Xeon(R) W-2145 

CPU @ 3.70GHz 8 core processor (with Hyper Threading support) and a NVIDIA GeForce 

RTX 2080 Ti GPU accelerator. 

 

For the UrbanAir application, PSNC Altair supercomputer is used. It is a CPU and GPU cluster 

equipped with Intel processors: Xeon E5-2697 (2342), Xeon E5-2682 (110), Xeon Platinium 

8268 (2640), Xeon Gold 5115 (6), Xeon 6242 (18), and Nvidia V100 cards. The Altair is ranked 

158th in TOP500 list. 

2.2 Performance and energy measurements 
 

In order to have meaningful and consistent benchmarking results across different use cases, a 

common methodology for measuring the performance and energy efficiency is proposed and 

discussed in detail in D1.4 deliverable. Some of the approaches are described in this document 

in Section 3, where each use case presents in detail the approach to obtain results and measure 

application-specific KPIs (proposed in D6.1). 
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3 Results 
 

3.1 Smart cities – CINI-UNIPI 
The application of smart cities contains a video-based algorithm to detect people in a scene and 

then detecting and tracking people that are laying down. This application is useful in case of 

disaster (e.g. earthquakes) or terrorist attacks or war scenarios. The input images acquired by 

video-camera operating in the visual domain are passed to a YOLOv5 (You-look-only-once) 

detection system, that is one of the most popular object detection algorithms. The outputs of 

YOLOv5 are passed then to a filtering step detecting people that are laying down. Then a 

DeepSORT algorithm that implements tracking and counting tasks is applied. 

DeepSORT is an extension of the SORT (Simple Online Realtime Tracking) algorithm. 

Algorithm inputs are: 

- YOLOv5 model weights 

- Re-Identification model weights  

- Source path (path of the video file that should be processed) 

Algorithm outputs: 

- videos processed with detected and tracked people 

 

The platforms tested are: 

- platform 1 --> Quad core ARM Cortex-A72 on a Raspberry PI4 board 

- platform 2 --> ARM Neoverse N1 (80 cores on Ampera Altra blade) 

- platform 3 --> Fujitsu A64FX (ARMv8-A based) on an Apollo HPE cluster 

- platform 4 --> NVIDIA Jetson AGX Orin (12-core Arm Cortex-A78AE plus GPU 

NVIDIA Ampere) 

- platform 5 --> Intel i7-10750H with NVIDIA GeForce GTX 1650 Ti 

- platform 6 --> Intel Xeon with NVIDIA Tesla T4 

- platform 7 --> Intel Xeon with NVIDIA A100 

 

Platforms 1, 2 and 3 are homogenous multi-core platforms using different types of ARM cores. 

Platforms 4, 5, 6 and 7 are heterogenous platforms with multi-core ARM or Intel GPP plus a 

GPU-based accelerator. 

 

Table 1 reports the achieved results. In this tasble we use this legend to clarify if for the 

heterogenous platforms (4 to 7) we have used CPU-only or both CPU and the GPU accelerator:  

 

Table 1 🐢 execution on CPU only 

🚀 execution on CPU and GPU 

NM --> Not Measured 

 

To be noted that the results in terms of processing time for one frame are splitted among the 

YOLO inference phase, the mandown classifier and the DeepSORTphase. The frame per 

seconds is calculated as inverse of total time to process one frame. The temperature and power 

consumption of the chips (CPU and/or GPU) are also reported.  

The results achieved demonstrate for video surveillance application the importance of 

accelerating the GPP with e.g., a GPU. 
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Indeed, the only platforms achieving a real-time are those with a GPP (e.g. Intel Xeon) plus 

GPU T4 or A100. 

To be noted that platforms 2 and 3 are representative of the ARM HPC cores that will be 

available in the GPP of the European Processor Initiative. Comparing speed results of platform 

2 and platform 3, is clear that the support of the Scalable Vector Extension in ARM (present in 

the Fujitsu A64FX of platform 3, while missing in the ARM Neoverse of Platform 2)   allows 

for a speed increase by a factor at least 2. 

 

In terms of used arithmetics: 

- platforms 1,2 and 3 adopt a classic fp32 floating-approach; 

- platform 7 sustains fp32, fp16 and bfloat16; 

- platform 4 sustains float32 and int8 for platform; 

- platform 6 sustains ; fp32, fp16, int8, int4 for platform 6. 

 

   
Platform FPS YOLO 

Inference 

Speed 

(ms) 

Man Down 

Classifier 

Speed 

(ms) 

Deep 

SORT 

Speed 

(ms) 

CPU 

Temp 

(°C) 

CPU 

Power 

Consumpt
ion(W) 

GPU 

Temp 

(°C) 

GPU Power 

Consumptio

n(W) 

1 0.1 7632 1.2 1032 82.0 NM - - 

2 0.2 879 0.6 3794 51.6 NM - - 

3 0.4 1221 1.1 1233 NM NM - - 

4 🐢 0.05 2084 0.5 18155 58.2 16.8 - - 

4 🚀 7.7 38.8 0.5 54.9 52.2 6.7 47.0 16.0 

5 🐢 1.0 794 0.3 200 95 NM - - 

5 🚀 6.5 82.9 0.3 37.9 NM NM 74.7 38.2 

6 🐢 1.8 336 0.3 197 NM NM - - 

6 🚀 11.7 33.9 0.3 28.3 NM NM 48.9 57.1 

7 🐢 2.0 328 0.3 191 NM NM - - 

7 🚀 16.3 16.2 0.3 25.3 NM NM 30.8 44.4 

Table 1 Results of target application (Yolo+DeepSort) on the 7 target platforms (with those with accelerator data with GPP 
only or GPP+accelerator are reported)  
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3.2 MathLib – CNR 
In this section we discuss some preliminary results obtained by using the mathematical 

software library for  heterogeneous architectures, featuring NVIDIA GPUs at node level. As 
already described in D6.1, the CNR team is developing computational kernels required in 

sparse matrix computations and iterative linear solvers, which are widely exploited in Scientific 

Computing and Data Analysis. Main focus is both on node-level efficiency and on scalability 

when multiple nodes are needed for computations because dimensions largely exceed the 

memory resources of a single computing node. The MathLib computational kernels developed 

and tested in the first phase of the project are the following:  

  

1. Sparse matrix – vector multiplication (SpMV);  

2. Sparse matrix – matrix multiplication (SpMM);  

3. Maximum Weight Matching in undirected graphs (MWM);  

4. Preconditioned Conjugate Gradient (PCG) method coupled with a matching-based 

Algebraic MultiGrid preconditioner (BCMG). 

 

We point out that the BCMG solver is implemented on the base of all the other computational 

kernels, which are the main blocks for AMG setup (SpMM and MWM) and for solving by 

PCG (SpMV). In the following we first discuss preliminary results obtained on the CRRM 

Blade for the Textarossa project, named Dibona and operated by ATOS. Then, in order to 

analyze the scalability potential of our main kernel, that is the sparse linear solver based on the 

AMG-PCG method (BCMG), we also show weak scalability results obtained on Piz Daint. As 

benchmark datasets we consider matrices and right-hand sides of algebraic systems required 

for the solution of the Poisson equation in 3D with homogeneous Dirichlet boundary conditions 

and right-hand side equal to the unit vector. This is a standard benchmark test case for sparse 

matrix computation because it represents the computational kernel of many scientific and 

engineering applications, and indeed is also used in the HPCG benchmark [1]. In our case, the 

discretization of the problem is obtained by the classic 7-points finite-difference stencil for the 

left-hand side operator (the Laplacian operator), which results in a symmetric positive definite 

(s.p.d) matrix of coefficients well suited for PCG. All the data are real and represented in 

double-precision format. Note that, in all the experiments made with the BCMG solver and 

discussed in the following, we stop PCG iterations when the relative residual in the Euclidean 

norm is less than 10-6 or the number of iterations reaches the maximum value fixed to 1000 

(actually, in all the experiments with the linear solver, the required accuracy is obtained with 

no need to stop for the limit on the maximum number of iterations). 

In the case of the SpMV kernel, we consider, as vector operand, a vector of all ones, 

whereas in the case of the SpMM kernel, both the operands are the same, so that we compute 

the square of a Laplacian matrix. Finally, for the MWM kernel, we consider the undirected 

adjacency graphs of the Laplacian matrices to which suitable real weights are associated, as 

applied in the BCMG aggregation algorithm for the preconditioner setup.   

We note that our baseline was a mono-GPU version of all the kernels, while in this 

project we focused on a hybrid parallel version leveraging multi-GPUs computing nodes. We 

are interested in analyzing both strong scalability, i.e., the reduction in the execution times 

when a problem with a fixed size is considered on an increasing number of parallel resources, 

and weak scalability properties of our kernels, i.e. when dealing with problems of increasing 

size, while parallel resources increase.  

Parallel design pattern is based on Single Program Multiple Data (SPMD) programming 

model relying on a row-block distribution of the system matrix and the related right-hand sides 

among the MPI tasks. Blocks of contiguous rows are assigned to each task according to the 
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order defined by the MPI rank. We observe that each MPI task is associated to one GPU 

accelerator which is in charge of all the computation phases. Details on the algorithms and 

parallel design patterns implemented for all kernels of the MathLib are discussed in [2].  Here 

we just mention that some approximations in some original (mono-GPU) numerical algorithms 

have been required, so that the combination of communication-avoiding techniques, fine-

grained parallelism, and overlapping between computation and data communication could 

allow us to design a scalable version of the BCMG linear solver. In the paper we also included 

details on the algorithmic parameters which characterize the AMG preconditioner which for 

the sake of brevity we omit in this deliverable. 

 

3.2.1  Preliminary results on Dibona  
  

In this section we discuss results of different kernels, in terms of both parallel performance and 

power consumption. For strong scalability analysis of the kernels, we always consider matrices 

with size 3003=27M, whereas for weak scalability we consider different matrix dimension per 

each kernel, so that each GPU can be used at full load, as detailed in the following. Power 

consumption measures have been obtained for all the kernels when they      run on 1 GPU, 

while in the case of multi-GPU executions, we obtained measures only for the whole BCMG 

solver in the weak scaling approach, when the GPUs are used at their full load. As also 

described in deliverable D6.1, our main KPIs are grouped in 3 main categories, as classified in 

Table 2. 

 
 

KPI for computational 

efficiency 

KPI for energy KPI for accuracy 

- execution time 

- (strong and weak) speedup 

- number of iterations/time 

per iteration (only for 

iterative linear solver) 

-accuracy 

- iterations/Watt (only for 

iterative linear solver) 

- Dof (Degrees of Freedom 

or unknowns)/Watt 

Yes (User’s parameter 

dependent for iterative linear 

solver) 

Table 2 KPIs for MathLib 

 

3.2.1.1 Strong Scalability on Dibona 
 

In the following, we discuss KPIs for computational efficiency, in particular we focus 

on execution time and strong speedup scalability, having as baseline the mono-GPU version of 

the kernel. Accuracy of the results of all, but the linear solver, kernels is up to the machine 

precision in double precision floating-point arithmetic. In the case of the BCMG linear solver, 

as already said, an accuracy on the solution up to 6 digits is achieved. Different tolerances in 

the stopping criterion can be set up to reduce or increase solution accuracy.   

We first discuss performance of the SpMV kernel. It is a BLAS-2 operation involving 

a sparse matrix. BLAS-2 operations are characterized by a low intensity operation, indeed the 

ratio between number of flops and data access is constant for increasing matrix dimension. 

Therefore, their performance is limited much more by memory and communication bandwidth 

than the floating-point capabilities of the architecture. On the other hand, this feature is 

emphasized when the matrices are sparse, with a very small number of non-zero entries per 

row. In Figure 4 (top) we can observe that the execution time of the SpMV kernel decreases 
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with increasing number of GPUs resulting in a speedup (bottom of Figure 4) of 1.44x on 2 

GPUs and of 2.80x on 4 GPUs. 

 

 

 

Figure 4 Strong Scalability SpMV kernel: Execution time (top) and Speedup (bottom) 

 

In Figure 5 we show execution time (top) and speedup (bottom) of the SpMM kernel. 

Here the main issue is represented by the number of non-zero entries as well as the sparsity 

pattern of the resulting matrix product that are not predictable in advance. A so-called symbolic 

phase is in general applied, in which the number of nonzeros in the result matrix is computed, 

postponing the actual calculations of the values to a following numeric phase. For the single 

GPU version, we resorted to the nsparse [3] package, which revealed much more efficient of 

any combination of primitives provided by Nvidia's cuSparse library. Assumed that both 

operands are distributed in a consecutive row-block setting assigned to parallel tasks with 

consecutive MPI ranks, a straightforward solution to split the product computation among the 

GPUs is that each GPU computes the corresponding block of rows of the product matrix. In 

this setting, data communication among all the tasks is needed. The data communication 

volume and pattern depend on the nonzeros entries of the local rows, whose column indices 

correspond to rows, owned by other tasks, which have to be communicated to finalize the local 

computation on each GPU. We exchange all the data necessary to complete the product on each 

GPU before starting the computation, so that the product appears as if it were completely local 

from the viewpoint of the nsparse CUDA kernel. From Figure 5 we can see that execution time 

of SpMM, as expected, decreases for increasing number of GPUs and the speedup is 1.43x on 

2 GPUs and 1.69 on 4 GPUs. The reduced speedup on 4 GPUs is due to the increased impact 

of data communication in this kernel with respect to the SpMV kernel. 

In Figure 6 we show execution time (top) and speedup (bottom) of the MWM kernel, 

that is the computation of an approximate maximum weight matching in undirected weighted 

graphs. In this case we applied an embarrassingly parallel approach, where non-local edges are 

neglected, so that each task can compute an MWM approximation to the local sub-graph. 

Therefore, we can see that almost ideal speedup of about 2x and 4x, respectively on 2 and 4 

GPUs, is obtained.  

In Figure 7 and Figure 8 we show performance of the BCMG code which includes the 

setup of an AMG preconditioner and of the application of the corresponding preconditioned 

Conjugate Gradient method for solving linear systems arising from the Poisson problem, when 

a fixed number of 27M unknowns is considered. We can observe that in both cases the 
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execution time is reduced for increasing number of GPUs and that a speedup of 1.39x and 

1.67x, respectively on 2 GPUs and 4 GPUs, is obtained for the preconditioner setup, while a 

speedup of 1.30x and 1.87x, respectively on 2 GPUs and 4 GPUs, is obtained for the 

preconditioned Conjugate Gradient application. 

 

 

 

Figure 5 Strong Scalability. SpMM kernel: Execution time (top) and Speedup (bottom) 

 

 

 

 

Figure 6 Strong Scalability. MWM kernel: Execution time (top) and Speedup (bottom) 
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Figure 7 Strong Scalability. BCMG Preconditioner setup: Execution time (top) and Speedup (bottom) 

 

 

  

 

 

Figure 8 Strong Scalability. BCMG Solve: Execution time (top) and Speedup (bottom) 

 

 

 

3.2.1.2 Weak Scalability on Dibona 
 

As already mentioned, here we present some weak scalability results in using up to 4 

GPUs available on the Dibona cluster for all the kernels of our MathLib. We used different 

problem sizes per each GPU for the different kernels, so that, per each kernel, the GPU are 

used at the full load. As in the strong scalability analysis, we discuss KPIs for computational 

efficiency, in particular we focus on execution time and weak (scaled) speedup, having as 

baseline the mono-GPU version of the kernel. In more details, we defined the scaled speedup 

as the ratio T_1(N)*np/T_np(np*N), where T_1(N) is the execution time for solving a problem 

with dimension N on 1 GPU and T_np(np*N) is the execution time for solving a problem with 

dimension np*N on np GPUs. Accuracy of the results of all but the linear solver, kernels is up 
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to the machine precision in double precision floating-point arithmetic. In the case of the BCMG 

linear solver, an accuracy on the solution up to 6 digits is achieved. Different tolerances in the 

stopping criterion can be set up to reduce or increase solution accuracy.   

The SpMV kernel obtains very good scaled speedup (Figure 9, bottom) of 1.76x and 

3.32x, respectively on 2 and 4 GPUs. On the other hand, SpMM has a good scaled speedup 

(Figure 10, bottom) of 1.78x on 2 GPUs, while a scaled speedup of 2.23x is observed on 4 

GPUs, showing that with this data sets, the data communication impact increases for increasing 

number of GPUs. MWM, as expected, shows an ideal speedup (Figure 11, bottom) of 2x and 

4x, respectively on 2 and 4 GPUs, due to its embarrassingly parallel nature. As to the BCMG 

preconditioner setup we observe a scaled speedup (Figure 12, bottom) of 1.75x on 2 GPUs and 

of 3.28x on 4 GPUs. Finally, in the solve phase of BCMG, we observe a scaled speedup (Figure 

13, bottom) of 1.50x on 2 GPUs for solving a sparse linear system with 78M of unknowns, and 

of 2.24x on 4 GPUs for solving a linear system with 156M of unknowns. 

 

Figure 9 Weak Scalability. SpMV kernel: Execution time (top) and Speedup (bottom) 

 

 

Figure 10 Weak Scalability. SpMM kernel: Execution time (top) and Speedup (bottom) 
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Figure 11 Weak Scalability. MWM kernel: Execution time (top) and Speedup (bottom) 

 

 

Figure 12 Weak Scalability. BCMG Preconditioner setup: Execution time (top) and Speedup (bottom) 

 

 

Figure 13 Weak Scalability. BCMG Solve: Execution time (top) and Speedup (bottom) 



 

textarossa.eu   D6.2 | 26 

 

 

3.2.1.3 Preliminary measures of Power Consumption on Dibona 
 

In this section we show some preliminary results of power consumption required by our 

kernels. The measures were obtained by applying the methodology defined by the Textarossa 

Working Group on Power Measurement and included in deliverable D1.4.  In more details, we 

were able to use the tool developed by INFN relying on the NVML Nvidia library, when our 

kernels run on 1 GPU at full load. Note that for the BCMG solver, we show in the same picture 

both the preconditioner setup phase and the solve phase. Furthermore, in order to analyze the 

possible gain in power consumption, when all the 4 GPUs of the Dibona cluster are used at full 

load, we did some measures by using the nvidia-smi tool, which is able to show counters from 

all the GPUs available on a single node. Finally, we also analyze the CPU-core power 

consumption measures obtained by the likwid tool accessing the RAPL counters, when our 

BCMG solve was running, in a weak scalability setting, on 1, 2 and 4 GPUs available on the 

Dibona node. For the sake of reproducibility, we report in the following the Command Line 

used for obtaining the measures.  

      

Likwid + INFN tool: 

      

Likwid + nvidia-smi: 

      

1. Nvidia-smi activation: 

 

2. Application run (4 GPUs): 

      

A different <likwid_output_file> is created for each used core (-C S0:X) 

 

Figure 14 SpMV kernel. Power Measurement on 1 GPU at full load 

likwid-perfctr -C S0:1 -g ENERGY -t 1ms -O -o <likwid_output_file>  

<application> 

nvidia-smi dmon -s pucvt -o DT -d 1 -f  <nvidiasmi_output_file>  

mpirun -np 1 likwid-perfctr -C S0:1 -g ENERGY -t 1ms -O -o 

<likwid_output_file>  <application> : -np 1 likwid-perfctr -C S0:2 -g ENERGY -t 

1ms -O -o <likwid_output_file>  <application> : -np 1 likwid-perfctr -C S0:3 -g 

ENERGY -t 1ms -O -o <likwid_output_file>  <application> : -np 1 likwid-perfctr -C 

S0:4 -g ENERGY -t 1ms -O -o <likwid_output_file>  <application> 
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In Figure 14 we can observe a very sharp phase of increasing power consumption after about 

9 sec. from the starting of the SpMV kernel. The measured peak value is about 240 W, while 

an integral of about 1.2 kW of total power is measured for the global run.  

 

Figure 15 SpMM kernel. Power Measurement on 1 GPU at full load 

 

 

In Figure 15, we can clearly observe two different increasing phases in the computation, 

corresponding to the two different computation phases of the SpMM kernel on the GPU. Here 

we reach two peaks of about 220 W after about 4 sec. from the starting. The integral of the 

power consumption over the global run is about 861 W. 

 

Figure 16 MWM kernel. Power Measurement on 1 GPU at full load 

 

  

In Figure 16, for the MWM kernel we have a rapid increase after 10 sec. from starting and we 

see a peak of about 240 W as in the case of SpMV. A global power consumption of 1.4 kW is 

measured for MWM. 
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Figure 17 BCMG Preconditioner Setup and Solve. Power Measurement on 1 GPU at full load 
  

In Figure 17 we show power consumption of the BCMG solver. Here we can clearly recognize 

the two different phases of the computation, that is the preconditioner setup in the interval 

between 2 and 4 sec. from starting, where a peak of about 250 W is observed, while a longer 

solve phase in the interval between 4 and 8 sec. is observed, where a power consumption of 

about 300 W is measured. Here the global run requires about 1.9 kW power consumption.   

  

In Table 3 we summarize Energy KPIs obtained by our kernels, as defined in Table 2, when 

one GPU is used. In this case, as power consumption value, we consider the integral values of 

the overall execution period of the kernel. 

 

Kernel name Dofs/Watt Iterations/Watt 

SpMV 1.75 x 105  Not applicable 

SpMM 4.17 x 104  Not applicable 

MWM 1.88 x 105  Not applicable 

BCMG 2.07 x 104 0.02 

Table 3 Energy KPIs on 1 GPU 

  

In Figure 18 we show the measures of power consumption when the overall BCMG solver is 

run on an increasing number of GPUs, while the problem size linearly increases with the 

number of GPUs, as in the weak scalability setting previously discussed. We can observe that 

when 4 GPUs are involved in the computation, a smaller peak of about 240 W is observed for 

all the GPUs, while larger peaks of about 280 W and 300 W are observed when 2 GPUs and 1 

GPU are used. This result on 1 GPU is in a perfect agreement with that already showed in 

Figure 17. If we compute the integral of the power consumption of all the 4 GPUs in the 3 

different configurations, i.e., when the solver run on 1, 2 and 4 GPUs respectively, for solving 

systems with 39M, 78M and 156M unknowns, respectively, we measure a global power 

consumption of about 2.3 kW, 2.2 kW and 2.5 kW, respectively. This result demonstrates that, 

if we are able to use in an efficient way all the devices integrated on the single node at full load, 

we can solve larger problems by an almost constant energy consumption, leading to achieve 

energy scalability in addition to performance scalability of the computation. 
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Figure 18 BCMG Preconditioner Setup and Solve on multiple GPUs at full load 

  

In Table 4 we summarize Energy KPIs obtained by BCMG when more than 1 GPU are used in 

a weak scaling setting. As we can see, running our solver on more than 1 GPUs increases the 

energy efficiency, indeed, we can deal with a larger number of Dofs and solve iterations at the 

same energy power. 

 

  Dofs/Watt Iterations/Watt 

BCMG on 2 GPUs 3.54 x 104 0.03 

BCMG on 4 GPUs 6.39 x 104 0.03 

Table 4 Energy KPIs when multiple GPUs are used in a weak scaling setting 

  

For the sake of completeness, in Figure 19 we show the power consumption measures obtained 

by the likwid tool when BCMG is running on 1, 2 and 4 GPUs. The very small and almost 

stable power consumption, during all the computation, demonstrates that in all the cases, CPU 

cores are not involved in a significant way in the computation. 

 

Figure 19 BCMG Preconditioner Setup and Solve on multiple GPUs by Likwid CPU counters 
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3.2.2 Weak Scalability results of BCMG and Comparison with the State of 
the Art on the Piz Daint Supercomputers 

 

In this section, we analyze the scalability potential of our BCMG solver when the number 

of GPUs largely increases; the fixed matrix size per node is equal to 1303=~2.2M Dofs, going 

from 1 to 100 nodes. Therefore, we solve problems up to 220M unknowns. We analyze the 

performance of the linear solver looking also at the number of iterations of the PCG, in order 

to analyze the algorithmic scalability, i.e., the potential to have an almost constant or slowly 

increasing number of iterations for increasing number of unknowns and computing resources. 

The execution time to solve the system and the execution time per each PCG iteration are also 

discussed to characterize the application phase from the viewpoint of the implementation 

scalability. Therefore, in this case, in the following Figures, we report all KPIs which 

characterize a linear solver. 

Our hybrid BCMG, is compared with the hybrid version of Nvidia AmgX [4,5]. AmgX 

makes available various AMG preconditioners, based on different well known coarsening 

approaches already available in other libraries, and producing AMG hierarchies with different 

computational complexities. For a fair comparison, we selected the input configuration which 

defines AMG hierarchies based on a similar coarsening approach and having complexities 

comparable with our preconditioner. 

In Figure 20, we show number of iterations of BCMG versus AMGX. We can see that in 

all cases the number of iterations required by AMGX in the solve phase is always higher than 

that of BCMG. After an initial increase for both the solvers, they have a similar more stable 

behavior, but the increase in the number of iterations for AMGX is ~50% going from 1 to 100 

nodes, whereas the increase for BCMG is ~36%, showing that BCMG has better algorithmic 

scalability.  

 

Figure 20 Weak Scalability. Number of iterations of BCMG vs AMGX 

 

 

This better quality of our preconditioner is confirmed by the solve time (see Figure 21).  
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Figure 21 Weak Scalability. Time to solution of BCMG vs AMGX 
 

BCMG solve times are always significantly smaller than that of AMGX. In many cases 

AMGX requires a solve time that is double than that of BCMG. Finally, if we look at the time 

per iteration, measured as the ratio between the time to solution and the number of iterations 

needed to converge (see Figure 22), we see that BCMG always has smaller time than AMGX. 

On the other hand, BCMG also shows a smaller increase ratio for increasing number of nodes, 

showing that all the computational kernels in the application phase of the preconditioner are 

efficiently implemented. 

 

Figure 22 Weak Scalability. Time per iteration of BCMG vs AMGX 
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3.3 RTM – FRAUNHOFER 
In this project a simple implementation of the 3D isotropic RTM Kernel has been extended 

using different formats of reduced precision to compress the domain and the model to save 

memory bandwidth. The kernels are still computed in float32, but the domains and velocity 

model are kept in the compression format. Conversions are done within the kernel to switch 

between float 32 bit and the compression format. The imaging condition and aggregation is 

done also in float 32bit. The domains are converted to 32 bit to do so. Implementation D is 

special because not only the domains and model are kept in the compression format, but also 

the computational steps in the kernel are done in the compression format. However, even in 

this implementation the imaging condition is calculated in float 32bit format. The formats are 

detailed in Table 5. 

 

Label Description 

A 10 bit floating point, implemented by GNU MPFR library, emulating float 16 bit 

B 7 bit floating point, implemented by GNU MPFR library, emulating bfloat 16 bit 

C Posit 16 bit, one exponent bit, implemented by SoftPosit library 

D Posit 16 bit, one exponent bit, implemented by SoftPosit library, including kernel 
computing 

E ZFP array1f 1D, 16 bit per element, implemented by ZFP library 

F ZFP array3f 3D, 16 bit per element, implemented by ZFP library 

Table 5 List of reduced precision formats. 

 

Please note that in case A and B the exponent is unlimited, other than in floating point and 

bfloat formats. 
Further the RTM implementation has been extended to calculate and to document the total 

energy of the source volume over time in form as the sum of squares on the domain. These 

outputs are used to verify the numerical stability. 
 

3.3.1 Results 
The following table depicts the results of a single shot calculated in 3D. The model has two 

horizontal layers of constant velocity. The images of the two versions are compared by voxel 

vise numerical difference followed by a maximum norm. Perfect outcome would be zero. See 

the results in Table 6. 

 
 

  

Floating Point Format Maximum norm Maximum norm of difference to 

Floating Point 32 Bit 

  Float 32 bit 3857 0 

A Float 16 bit 3683 460 

B Bfloat 16 bit 691520 691616 

C Posit 16 bit 3687 647 

D Posit 16 bit + kernel 4270 2356 

E ZFP, 1D 3869 157 

F ZFP, 3D 3863 21 

Table 6 Comparison of different compression formats. 
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Figure 23 plots the ratio of the fourth column and the third column. The bfloat format does not 

give useful results. Format A and C end up with roughly 10% deviation. Calculating the kernel 

in posit 16 bit ends up with 60%. ZFP 1D yields 4% deviation while ZFP 3D yields below 1% 

deviation. 
 

 

Figure 23 Plot of relative maximum norm of difference between compression format and float 32bit. Normalized on 

float 32 bit. Bfloat exceeds 100% deviation. 

 

However, the numerical differences only give a rough idea of image quality. Figure 24 presents 

slices perpendicular to the depth axis for each implementation. The resulting slice and the 

reference slice are plotted side by side. The third column depicts the difference of the previous 

columns. 
General criteria of quality are qualitative similarity and the absence of structure in the 

difference plot. 
Implementation A shows very few visible differences but the difference plot shows an 

unsymmetric and unphysical structure. Implementation B shows unusable results. 

Implementation C shows few differences and a very symmetric difference plot. Implementation 

D shows significant and also unsymmetric differences. The same goes for the difference plot. 

Implementations E and F both show very good similarity but very unsymmetric and unphysical 

difference plots. 

  
To verify stability the total energy of the source volume is plotted over time for different time 

steps, namely 2.1ms, 2.2ms and 2.3ms. The velocity model is constant. Figure 25 depicts a 

slice perpendicular to the depth axis of the source volume. In Figure 26 all implementations 

show stability up to 2.2ms and unstability for 2.3ms. The only exception is implementation D 

which is unstable at 2.2ms but stable at 2.1ms. So the usage of compression formats has no 

significant influence on stability. All implementations except D have less than 5% loss in stable 

time steps. 
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A second and more challenging stability test uses a velocity model filled with random numbers 

equally distributed between 1250m/s and 2750m/s. Figure 27 on the left side proves stability 

for float 32 bit implementation up to 1.9ms and instability at 2.0ms timestep. All the 

compression implementations show stability at a timestep of 1.9ms as depicted on the right 

side. So even using a very rough velocity model the stable time step is kept within a 5% range 

around the floating-point implementation. 
 
 

 

 

 

  

Figure 24 Cut perpendicular the depth axis for all the 

compression formats 

First column compression format, second column 
reference Float 32bit, third column difference between 
first column and second column. Compression formats (top 
to bottom):  A: Float 16 bit, B: Bfloat 16 bit, C: Posit 16 bit 
with 1 exponent, D: Posit 16bit storage and computation, 
E: ZFP 1D 16 bit, F: ZFP 3D 16bit 
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Figure 25 Cut of source volume perpendicular to x-axis 
 

 

 

Figure 26 Total energy of source over time for different time step size Constant velocity model. Left: dt=2.1ms, Middle: 
dt=2.2ms, Right. 2.3ms. 

 

 

 

Figure 27 Total energy of source over time for different time step size Non constant velocity model. Left: Different time 

steps for float 32 bit. Right: All the compression formats for dt=1.9ms. 
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3.4 HEP 
As we described in Deliverable 6.1, it is important to execute High-Energy Physics (HEP) code 

on heterogeneous architectures due to the evolution of the computing solution offered by 

accelerator technologies. 

For the TEXTAROSSA project we have worked on two different applications: Pixeltrack [6], 

a track reconstruction algorithm for the CMS detector, and CLUE [7], a cluster algorithm for 

high-granularity calorimeters. Both applications are mainly developed by the CERN Patatrack 

team. 

Our first task was to rewrite the abovementioned applications on top of a portability layer, with 

the purpose to obtain a single source code per application that can be run in parallel on multiple 

heterogeneous backends; in fact, it is not affordable to redesign and reimplement the algorithms 

for each different architecture of every vendor. The next goal has been the evaluation of the 

application in terms of: 

• throughput: number of reconstructed events per second; 

• energy efficiency: number of reconstructed events per Joule, obtained from the ratio 

between throughput and power. 

Our main interest is the comparison of those two metrics between the heterogeneous version 

of the application and the corresponding serial one.  

Our initial plan was to use SYCL [8], the standard abstraction layer based on ISO C++. More 

specifically, we planned to use the SYCL implementation coming with Intel oneAPI, since it 

is the most complete implementation of the standard. We have obtained a SYCL version of 

CLUE and a SYCL version of Pixeltrack correctly working on CPUs, Intel GPUs, and Intel 

FPGAs. We have also tried to port the heterogeneous code on other architectures of different 

vendors, such as NVIDIA GPUs and AMD GPUs, but we have not obtained an executable code 

yet. The results we achieved have required a lot of effort because the compiler is not stable yet: 

Intel is still working on it with the goal of extending the supported hardware. 

Some results of this work were presented at the 21st International Workshop on Advanced 

Computing and Analysis Techniques in Physics Research (ACAT 2022), with a poster called 

“Experience in SYCL/oneAPI for event reconstruction at the CMS experiment” [9]. As shown 

in the poster, the performance achieved with the SYCL version of CLUE on an NVIDIA Tesla 

T4 is promising and in line with other technologies.  

For the purpose of the TEXTAROSSA project, we conclude that SYCL is a very promising 

abstraction layer but its implementation in oneAPI is not stable enough and not ready yet to be 

used for our purposes, that is, run the applications used to acquire and elaborate the data 

collected from the HEP detectors on different heterogeneous hardware. For that reason, we 

have decided to collect the data for the TEXTAROSSA project with a different abstraction 

layer, Alpaka [10]. From the documentation: “The Alpaka library is a header-only C++14 

abstraction library for accelerator development. Its aim is to provide performance portability 

across accelerators through the abstraction (not hiding!) of the underlying levels of 

parallelism”. Although coding with Alpaka is more complicated than coding with SYCL, this 

library is supported for a wider range of devices of different vendors than oneAPI, making it 

more appropriate for our goal.  
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Parallel to SYCL, we have implemented the Alpaka version of Pixeltrack and the Alpaka 

version of CLUE.  The same version of the source code can run on different devices without 

any modification. We have decided to perform all the measurements with that version of our 

applications. The architecture we used for the TEXTAROSSA tests was the IDV-A. We use 

both the CPU and the GPUs that this architecture provides. 

3.4.1 Tests on CPU 
On the CPU we are interested in demonstrating that our code scales with the number of 

resources we use for the execution; we would also investigate how the energy efficiency 

changes with respect to the same parameter. 

We ran both our applications increasing the number of cores and the number of CPU threads 

in order to execute them with one thread per core. For the power consumption measurements, 

we use the likwid-perfctr tool; it also helps us in specifying the correct number of cores we 

want to use. The number of threads could be indicated in the command we use to run the 

application, instead. In the same command we also specified how long the applications must 

run. Every test was 3-minute long and the likwid-perfctr tool extracted the power consumption 

values every second. An example of one of those execution command is: 

 

The results we achieved are reported in the section below. Table 7 and Table 8 showed the 

measures of throughput (events/second), Power (W) end Energy Efficiency (events/J) for the 

CLUE application and for the Pixeltrack application when they run on CPU, scaling the 

number of cores.  

CLUE on CPU 

cores thread Throughput 

(events/second) 

Power (W) Energy efficiency 

(events/J) 
 

1 1 4.33347  

81.140 

 

0.053 

2 2 8.5591  

84.338 

 

0.102 

 

4 

 

4 

 

16.8088 

 

91.589 

 

 

0.184 

 

8 

 

8 

 

33.5036 

 

105.825 

 

0.317 

 

16 

 

16 

 

66.2713 

 

134.687 

 

0.492 

 

32 

 

32 

 

118.869 

 

173.500 

 

0.685 

48 48  

156.511 

 

191.146 

 

0.819 

 

64 

 

64 

 

216.123 

 

321.966 

 

0.671 

96 96  

271.130 

 

235.522 

 

1.151 

Table 7 Scaling of KPIs for the CLUE application on CPU 

likwid-perfctr -f -C S<socket_id>:<cores> -g ENERGY -t 1s -O -o <output-

file>.csv ./alpaka --serial --runForMinutes 3 --numberOfThreads <threads> 
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Pixeltrack on CPU 

cores thread Throughput 

(events/second) 

Power (W) Energy efficiency 

(events/J) 
 

1 1 30.8127 81.944 0.376 

2 2 59.9623  

86.431 

 

0.694 

6 6 180.194  

103.412 

 

1.742 

12 12 360.465  

128.886 

 

2.797 

24 24 726.897  

181.967 

 

3.995 

36 on 1 

socket 

36 860.592  

198.681 

 

4.332 

36 on 2 

sockets 

36 1068.88  

305.188 

 

3.502 

48 48 1418.03  

354.890 

 

3.996 

72 72 1636.91  

390.303 

 

4.194 

96 96 1756.96  

233.529 

 

7.524 

 

Table 8 Scaling of KPIs for the Pixeltrack application on CPU 

 

Figure 28 and Figure 30 show the scaling of throughput for the two applications; Figure 29 and 

Figure 31 represent the correlation between the cores and the energy efficiency. Note that in 

the figures the data are normalized with respect to the values obtained with 1 thread on 1 core. 

 

Figure 28 Scaling of throughput with the number of used cores for the CLUE application on CPU  
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Figure 29 Scaling of energy efficiency with the number of used cores for the CLUE application on CPU 
     

 

Figure 30 Scaling of throughput with the number of used cores for the Pixeltrack application on CPU 

 

Figure 31  Scaling of energy efficiency with the number of used cores for the Pixeltrack application on CPU  
 

Figure 28 and Figure 30 show that the performance grows linearly when we run one thread per 

core using one socket. This trend remains constant until we use entirely the first processor.  
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When we run more threads per core using two sockets, the performance continues to increase 

but the increment starts to be slower. The same behavior is evident also with two processors 

(more than 48 cores). 

Regarding Figure 29 and Figure 31, we notice that there is an increment of the energy 

efficiency, even if it is not linear, until we use 48 threads on 48 logical cores. After that point, 

the efficiency gets worse; this is due to the fact that scaling beyond that number we start using 

two sockets and we incur in the overhead of using the second CPU but at a fraction of its 

processing capabilities. The penalty is evident in Figure 31 where we report two values for the 

energy efficiency for 36 logical cores: the higher value corresponds to using just one socket, 

the lower when using 24 cores on one socket and 12 on the other one. 

3.4.2 Tests on GPU 
On the GPU we are interested in demonstrating that our code scales with the number of GPUs 

we use; we would also investigate how the energy efficiency changes with respect to the same 

parameter. 

We decided to fix to 12 the number of CPU threads per GPU, mapping each of them on one 

different core. In this way, with 4 GPUs all the 48 physical cores are busy. The number of CPU 

threads, as in the previous case, could be indicated in the command we use to run the 

application. Also, the mapping between GPU, CPU threads and cores could be set in the same 

command. We executed all our tests for 2 minutes. Summing all these considerations, we report 

for example the command we use to run on 2 GPUs: 

For the power consumption measurements, we use the nvidia-smi tool; we read the value from 

the GPUs every 5 seconds to not affect their performance. As example: 

 

 

The results we achieved are reported in the section below. Table 9 and Table 10 show the 

measures of throughput (events/second), Power (W) and Energy Efficiency (events/J) for the 

CLUE application and for the Pixeltrack application when they run on one or more GPUs.  

CLUE on GPU 

gpu total throughput 

(events/second) 

power (W) power efficiency 

(events/J) 

1 1485.64 183.333 8.103 

2 2843.05 362.708 7.839 

3 4248.17 541.583 7.844 

4 5680.66 729.708 7.785 

Table 9 Scaling of KPIs for the CLUE application on GPU 

 

(CUDA_VISIBLE_DEVICES=0 taskset -c 0-11 ./alpaka --cuda --runForMinutes 2 --

numberOfThreads 12) & (CUDA_VISIBLE_DEVICES=1 taskset -c 12-23 ./alpaka --cuda -

-runForMinutes 2 --numberOfThreads 12) 

nvidia-smi dmon -i <id_gpus> -d <time> 
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Pixeltrack on GPU 

gpu total throughput 

(events/second) 

power (W) power efficiency 

(events/J) 

1 2174.26 150.375 14.459 

2 4386.89 303.261 14.466 

3 6515.27 450.750 14.454 

4 8711.73 606.458 14.365 

Table 10  Scaling of KPIs for the Pixeltrack application on GPU  

 

Figure 32 and Figure 34 and show the scaling of throughput for the two applications when we 

increment the number of GPUs; Figure 33 and Figure 35 represent the correlation between the 

GPU number and the energy efficiency. Note that in the figures the data are normalized with 

respect to the values obtained with 1 GPU. 

 

Figure 32  Scaling of throughput with the number of used GPUs for the CLUE application 

 

Figure 33  Scaling of energy efficiency with the number of used GPUs for the CLUE application 
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Figure 34 Scaling of throughput with the number of used GPUs for the Pixeltrack application 

 

Figure 35 Scaling of energy efficiency with the number of used GPUs for the Pixeltrack application 

 

From the Figure 32 and Figure 34 we notice that, as we expected, both the applications scale 

linearly with the number of GPUs: every GPU has the same throughput, so doubling the GPUs 

doubles the total throughput. Regarding energy efficiency, we notice that it remains almost 

constant. That behavior shows that, even if we introduce hardware, it allows us to increase the 

throughput, but the number of events processed per Joule remains constant. 
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3.5 NEST-GPU – INFN 
The neural simulation application is considered production-ready and is being used in recently 

published papers [11], but it is being modified in order to be in compliance with the rules of 
the NEST application building framework; this means that the activities currently being 

performed regarding Textarossa are a number of syntactical adjustments in the scripts that 

complement the application in the project set of benchmarks in order to keep them working as 

when the application was still NeuronGPU. 

 

The first trials were performed with a setup that simulates a section of mouse cortex with 

neurophysiological details inferred from experiments. This was initially run on the CPU-only 

version of the NEST simulator on the Ampere Altra platform made available by E4; the tests 

take as reference a schedule made of 1000 simulated milliseconds which are discarded (to let 

the network reach a reasonably steady and homogeneous state among all cortical columns), 

then a 1000-2000-4000 timeline, in order to check that no large differences in runtime among 

different MPI processes occur (so that load is evenly distributed) and the runtime scales with 

the simulated time. This network appears to have a level of average activity of 5M spikes per 

simulated second, so we use the number of Spike Updates per Joule (SUs/J) in the simulated 

time interval as another performance index. 

 

The scaling results on the Ampere Altra (for the final leg of simulation, 4000ms) are in the 

Table 11 Runtimes for the last leg (4000ms) of simulation on different process/cores layouts 

on Ampere Altra.. 

 

32 cores tot 64 cores tot 128 cores tot 256 cores tot 

1 MPI prc 

32 cores/prc 

2 MPI prc 

32 cores/prc 

4 MPI prc 

16 cores/prc 

8 MPI prc 

8 cores/prc 

16 MPI prc 

8 cores/prc 

32 MPI prc 

8 cores/prc 

156.91s 126.83s 107.43s 88.86s 78.04s 138.83s 

Table 11 Runtimes for the last leg (4000ms) of simulation on different process/cores layouts on Ampere Altra. 

 

We can see that some consideration must be taken when choosing how to distribute the 

available cores for the run – the application can take significantly longer when the same number 

of cores (64) is employed (from 126.83s when using 2 MPI processes and 32 OpenMP threads 

per process against 88.04s for the same cores allocated in 8 MPI processes with 8 OpenMP 

threads per process) or the scaling limit is reached when trying to push to 256 cores (138.83s) 

makes the application actually take longer than when using just 128 cores (78.04s). 

The significant KPI here is the simulated seconds per second, which on this platform in the 

best case (with 128 cores) is 4000/78.04 = 51.26 simulated milliseconds per second. 

 

Table 12 presents the power readings on the Ampere Altra; given that there is no support for 

the processor in LIKWID, the sensors utility was used with 0.7s sampling interval between 

calls over the entire 8000 simulated milliseconds timeline. In this table we report the energy 

spent (in kJ) during this simulation phase, the actual runtime and the average wattage for every 

configuration. 

 

32 cores tot 64 cores tot 128 cores tot 

 

256 cores tot 

 

1 MPI prc 

32 cores/prc 

2 MPI prc 

32 cores/prc 

4 MPI prc 

16 cores/prc 

8 MPI prc 

8 cores/prc 

16 MPI prc 

8 cores/prc 

32 MPI prc 

8 cores/prc 
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47.9kJ 32.7kJ 37.6kJ 33.0kJ 35.9kJ 62.9kJ 

461s 243s 253s 191s 166s 283s 

104W 135W 149W 173W 216W 222W 

Table 12 Power, runtime and wattage per configuration over total simulation (8000ms) on Ampera Altra. 

 

Figure 36 (time in seconds on the X-axis, power in Watts on the Y-axis as read by the sensors 

command and summed over the reading for the two CPU sockets) is to be read as follows: for 

the different processes/cores arrangements, the application has a brief startup phase (the first 

few seconds-long pedestal), then a longer (a few hundred seconds, depending on how many 

OpenMP cores were assigned to the process), higher plateau where some setup operations for 

the cortical areas are performed, then the actual simulation, with the mentioned 1000ms 

(discarded) – 1000ms – 2000ms – 4000ms, for a total of 8000 simulated milliseconds (the 

plateau on the right). 

It can be seen this second plateau to become shorter and higher as the cores are increased; an 

interesting and unexpected finding for this platform is that while the highest power 

consumption is expected to occur in this phase, this does NOT happen when pushing all 256 

cores, when the most power is drawn in the setup phase (the first plateau for the yellow line is 

higher than the second one). 

It is also worth mentioning that the actual minimum for the energy at 32.7kJ does not appear 

to be achieved by the configuration taking the shortest time (the 128 total cores configuration) 

but by an intermediate one (the 2 MPI processes/32 cores per process, 64 total cores 

configuration). Given the estimated level of activity of 5M spikes per simulated second, another 

KPI is 5M spikes per simulated second * 8 simulated seconds / 32.7kJ = 1223 SUP/J. 

 

 

Figure 36 Power profile for 8000 simulated milliseconds in different process/cores layouts on Ampere Altra. 

 

The very same trials were performed on the EPYC CPUs of the Textarossa partition on the 

Dibona cluster by ATOS; the scaling results (for the 4000ms leg of the schedule) are reported 

in Table 13. 
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12 cores tot 24 cores tot 48 cores tot 

2 MPI prc 

6 cores/prc 

2 MPI prc 

12 cores/prc 

4 MPI prc 

6 cores/prc 

2 MPI prc 

24 cores/prc 

4 MPI prc 

12 cores/prc 

376.61s 192.67s 192.51s 104.98s 104.13s 

Table 13 Runtimes for the last leg (4000ms) of simulation on different process/cores layouts on Dibona EPYC. 

 

Here we see that the runtimes spread times for different configurations of processes and threads 

are much smaller while the KPI of simulated milliseconds per second is at best 4000/104.13 = 

38.41. 

 

Being a standard x86_64 platform, the Dibona EPYC is therefore supported by LIKWID 

utility; the power readings tabulated below were taken via LIKWID with a 0.5s sampling 

interval for the entirety of the 8000ms schedule, presented in Table 14. 

 

12 cores tot 24 cores tot 48 cores tot 

2 MPI prc 

6 cores/prc 

2 MPI prc 

12 cores/prc 

4 MPI prc 

6 cores/prc 

2 MPI prc 

24 cores/prc 

4 MPI prc 

12 cores/prc 

150.6kJ 95.4kJ 94.9kJ 72.7kJ 72.1kJ 

755s 392s 390s 214s 213s 

200W 244W 243W 340W 338W 

Table 14 Power, runtime and wattage per configuration over total simulation (8000ms) on Dibona EPYC. 

 

Here the situation is different compared to the Ampere Altra: besides cutting the runtime, using 

more cores of course increases the wattage but not as much as compared to the Ampere Altra, 

so that the least energy here is drawn for the configuration with most cores and the shortest 

runtime. With the estimated level of activity of 5M spikes per simulated second, the relevant 

KPI is at best 5M spikes per simulated second * 8 simulated seconds / 72.1kJ = 554 SUP/J. 

 

As for the Ampere Altra (the colors in the plot distinguish the different configurations 

described in Table 14), Figure 37 (time in seconds on the X-axis, power in Watts on the Y-axis 

as reported by LIKWID and summed over the reading for the two CPU sockets) gives an idea 

of the power profile. The setup phase (the plateau on the left) increases in power consumption 

adding more cores without being significantly shortened while the simulation phase scales very 

well (halving the runtime when doubling the cores) while wattage ramps up from 200W to 

338W. 
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Figure 37 Power profile for 8000 simulated milliseconds in different process/cores layouts on Dibona EPYC. 

 

The actual GPU version of the NEST application was run on a platform sibling of the Dibona 

EPYC and equipped with the same GPU, an NVIDIA A100 that we had more handily available 

for testing; we do not expect significant changes to the results. 

Performing a scaling test for the NEST-GPU application requires a multi-GPU and multi-node 

setup that we did not have available; at the same time, the testing script is being reworked to 

operate in such an environment. For the time being we tried the same test described above in a 

single GPU configuration test in order to gauge the power consumption while developing the 

GPowerU tool and have a ballpark figure of the runtimes. 

Figure 38 shows the results: it is the output of the GPowerU tool (time in seconds on the X-

axis, power in Watts on the Y-axis, sampling period of 0.01s) on a run of 10000 simulated 

milliseconds executed on an NVIDIA A100 with the setup phase cut from the plot. 

The actual duration of the simulation is 33.1s with an average wattage of 118W and a total 

energy draw of a little less than 4kJ; the derived KPIs result 10000/33.1 = 302 simulated 

milliseconds per second and 5M spikes per simulated second * 10 simulated seconds / 4kJ = 

12500 SUP/J. 

 

Figure 38 Power profile for 10000 simulated milliseconds on NVIDIA A100 (the first ~4500s of runtime are for the 

setup phase where the GPU is unused and were cut from the plot). 
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3.6 RAIDER – INFN 
 

RAIDER is a high throughput online streaming processing application implemented on FPGA 
with the APEIRON framework and belongs to the HPDA domain.  Its task is to perform particle 

identification (PID) on the stream of events generated by the RICH (Ring Imaging CHerenkov) 

detector in the CERN NA62 experiment at a rate of about 10 MHz, using neural networks. 

In this preliminary version of the RAIDER application, the inference task consists in providing 

an estimate for the number of charged particles (0, 1, 2, >=3) for any RICH detector event, that 

corresponds to the number of ring tracks that can be reconstructed from the pattern of 

photomultipliers that have been illuminated (hit) by the Cherenkov light cone emitted by a 

charged particle traversing the detector, as shown in Figure 39. 

 

 

Figure 39 Examples of events belonging to class 2 and 3 (2 or >=3 charged particles) as detected by the array of RICH 

photomultipliers (blu dots are the hit photomultipliers, red circles are the tracks reconstructed offline by the NA62 

experiment analysis software framework) 

 

Figure 40 depicts the workflow for the generation of processing Kernels implementing neural 

networks designed for the inference tasks in RAIDER; these kernels are then integrated in the 

FPGA design as HLS kernels in the APEIRON framework, as described in deliverable D4.1. 

 

 

Figure 40 The workflow for the generation of NN kernels in RAIDER 

  

Using this workflow, design targets (efficiency, purity, throughput, latency) and constraints 

(mainly FPGA resource usage) must be taken into account and verified at any stage:  

  

1. TensorFlow/KERAS[12]: on this first stage the NN architecture (number and kind of 

layers) and representation of the input is designed, then using an appropriate training 

strategy (class balancing, batch sizes, optimizer choice, learning rate, etc.), the network 
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is trained and KPIs can be measured. If they don’t meet the targets the process is 

repeated, modifying input representation and the NN architecture.  

2. QKeras[13]: in this second stage, the original TF/Keras NN model is modified by 

searching iteratively the minimal representation size in bits of weights, biases and 

activations, possibly by layer that preserves the expected KPIs. For the RAIDER 

application, the neural network generated through this quantization step, yielded a 

neural network that uses an 8-bit fixed point <8, 1> representation for weights and 

biases and 16-bit fixed point <16, 6> for activations.  

3. HLS4ML[14]:  the QKeras model is translated into the corresponding Vivado HLS 

implementation (annotated C++ code).  Several handles are available at this stage to 

guide the translation, e.g. tuning of REUSE FACTOR configuration parameter (low 

values yield low latency, high throughput, high resource usage design), also clock 

frequency can be set. 

4. Vivado HLS[15]:  C/Verilog co-simulation for rapid verification of performance and 

synthesis of kernel IP to be integrated in the APEIRON framework. 

 

 

Figure 41  Details of the designed Convolutional Neural Network model 

 

Following this workflow, we designed a lightweight Convolutional Neural Network having 

just 2796 parameters and suitable to be implemented on a FPGA, along with the corresponding 

representation of the input data. The designed CNN model, represented in Figure 41, has been 

deployed on a Xilinx Alveo U200 FPGA with a very limited resource usage. This CNN receives 
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as input a compressed representation of the original event in form of a B&W 16x16 image, as 

depicted in Figure 42.  

 

 

Figure 42 Example of input images for the CNN (left class 0, center class 1, right class 2). 

 

3.6.1 Results 
We report KPIs for three different configurations of processing devices (CPU, CPU+GPU and 

CPU+FPGA): KPIs evaluated on CPU and CPU+GPU represent the baseline for those 

evaluated from measurements on the CPU+FPGA reference configuration. 

The application computational kernel is represented by the forward pass of the CNN, to infer 

the number of charged particles present in the input events. In detail, the performance of the 

three configuration of devices was measured by taking 2.7M events, extracted from those 

collected during past runs of the NA62 experiment, as neural network input and profiling the 

time to solution and the energy to solution to execute the inference task on the full dataset. 

In the application testbench we setup to measure the application KPIs, shown in Figure 43, the 

host is in charge of moving events from its memory to the FPGA memory, then Krnl_sender 

HLS kernel on FPGA forwards them to the inference pipeline Top_nnet, finally inference 

results are stored in host memory by the Krnl_receiver HLS kernel. 

The Top_nnet pipeline includes two stages: the first implementing the compressed encoding of 

events in 16x16 B&W images and the second executing the Convolutional Neural Network. 

Interconnection between the sender and receiver kernels and the inference pipeline on FPGA 

is accomplished via the TEXTAROSSA communication IP (see deliverable D2.8 - IP for low-

latency internode communication links, part 1). 

 

Figure 43 Testbench for the RAIDER  The host is in charge of streaming events from its memory through 

Krnl_sender to the processing pipeline Top_nnet  on FPGA and to collect results from Krnl_receiver. 
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3.6.1.1 Power measurement methods 
 

To perform power measurements on each we used different methods, in detail: 

1. CPU: LIKWID toolsuite (in particular the likwid-perfctr CLI), as described in 

deliverable D1.4 - Power Measurement on CPUs (x86_64 Architectures: Running 

Average Power Limit (RAPL) interface). The total power for the processor (Cores plus 

DRAM domain values) has been recorded. 

2. GPU: GPowerU tool developed internally and based on the NVIDIA NVML library, 

available on github (https://github.com/crrossi/GPowerU). 

GPowerU is a simple tool able to measure the power consumption of a CUDA kernel 

in specific points of the device code and to generate the complete power profile, with 

timestamp values correlated with the start and end of the application’s execution, 

differently from nvidia-smi –query functionality which runs “application blind”, and 

with a finer time resolutions (tens of milliseconds vs. seconds). For additional 

information refer to deliverable D1.4 - Power Measurement on GPU (NVML Library). 

3. FPGA: Xilinx Power Monitor Tools as described in D1.4 - Power Measurement on 

FPGA (Xilinx Power Monitoring Tools). 

 

3.6.1.2 Impact of using alternative hardware platforms on presented results 
 

In the application testbench we setup to measure the application KPIs, shown in Figure 43, the 

stream processing happens entirely in the FPGA and processing performance is not affected by 

the host system as long as it can sustain the PCIe Gen3 x16 bandwidth between its main 

memory and the FPGA accelerator. For these reasons we are confident that using our lab server 

instead the IDV-E system does not alter the measured KPI n.1 (throughput) significantly. Also, 

we do not expect appreciable differences in this regard using the Alveo U200 instead of the 

Alveo U280 FPGA card, since our application does not make use of the distinctive features of 

the latter (namely HBM memory). 

For what concerns KPI n.2 (energy efficiency), the task demanded to the host in this version 

of the application testbench is to feed the FPGA design with data read from its main memory 

and to store the produced results. The host side will be set aside from the data stream handling 

in the final version of RAIDER, with data arriving from one FPGA network channel and results 

send to a consumer again through a network channel, and its tasks will be limited to platform 

management. Taking into account these considerations, we include the energy consumption of 

the host in reporting results for this version of the application, knowing that using our lab 

X86_64 server instead of the ARM based IDV-E yields a higher contribution to the total energy 

consumption, and reported KPI n.2 (energy efficiency) will be most likely slightly 

underestimated compared to the one reachable on IDV-E. 

 

3.6.1.3  Baseline KPIs  
 

Referring to the CPU only and CPU+GPU measurements, they were performed on the CNN 

Keras model invoking the Tensorflow model.predict() library call on the input data loaded on 

the CPU/GPU memory. By using the tf.device() function we were able to select the execution 

of the model.predict() function to be performed on CPU or GPU.  

The execution time of the inference task on the full 2.7M events dataset was collected 

bracketing the model.predict() call with two calls to the python time() function and evaluating 

the difference between the second and first returned values, measured values are reported in 

Table 15 along with the corresponding throughput KPI. 

https://github.com/crrossi/GPowerU
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The CPU and GPU power measurements, concurrent with the model.predict() execution, were 

performed respectively using the LIKWID and GPowerU profiling tools and then the integral 

of the power profile was used to compute the application energy-to-solution and energy 

efficiency. These power profiles are presented in Figure 44 for the CPU only configuration, 

Figure 45 and Figure 46 for CPU+GPU configuration, while the corresponding energy-to-

solution and energy efficiency KPI values are reported in Table 15. 

For the CPU+GPU configuration, the sum of the energy consumption of both devices is 

reported for the energy-to-solution. 

 

 

 

Figure 44 Power profiling of model.predict() function performed via LIKWID tool 

 

 

 

 

Figure 45 Power profiling of model.predict() function for the CPU 
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Figure 46 Power profiling of model.predict() function for the GPU 

 

 

KPI CNN CPU 

tensorflow 

CNN CPU+GPU 

tensorflow 

purity/efficiency (per 

class) 

efficiency: 

- 0: 93% 

- 1: 83% 

- 2: 75% 

- 3+: 83% 

purity: 

- 0: 88% 

- 1: 90% 

- 2: 71% 

- 3+: 78% 

efficiency: 

- 0: 93% 

- 1: 83% 

- 2: 75% 

- 3+: 83% 

purity: 

- 0: 88% 

- 1: 90% 

- 2: 71% 

- 3+: 78% 

  

time to solution [s]  158.521 125.963 

throughput  

[events/s] 

189250 238165 

energy to solution [J] 11091.919  17497.783 

(8724.648 GPU) 

energy efficiency 

[events/J] 

270.467 154.305 

Table 15 Baseline KPIs evaluated on the execution of the Keras model.predict() function 2.7M events for the CPU 

only and CPU+GPU configurations 

 

 

3.6.1.4 KPIs for the FPGA implementation 
 

In the CPU+FPGA testbench configuration, the inference task is performed by the CNN 

deployed on FPGA through the workflow depicted in Figure 40 and using the same 

tensorflow/Keras model used to collect the two sets of baseline KPIs. 

Besides the testbench configuration described above sporting a single Top_nnet inference 

processing pipeline (1CNN) and depicted in Figure 43, we considered the opportunity of 

deploying multiple instances of the pipeline given its limited usage of FPGA resources and the 

intra-device scalability offered natively by the APEIRON framework.  
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So we deployed and measured KPIs also for a configuration of the design that includes 2 

inference processing pipelines (2CNN), as represented in Figure 47. 

 

 

Figure 47 CNN RAIDER testbench integrating 2 inference processing pipelines 

 

 

Percentage of the FPGA resources usage for the two design configurations are reported in Table 

16 and Table 17. 

 
 

 

Table 16 Percentage of FPGA resources used by the 1CNN RAIDER design configuration 

 

 

 

 

Table 17 Percentage of FPGA resources used by the 2CNN RAIDER design configuration 

 

 

In both configurations, input data are loaded on the FPGA memory from the CPU HOST 

memory via XRT functions then, they are sent through the intra-FPGA network via an HLS 

kernel (krnl_sender) which, in multiple CNN case, takes care of the load balancing by sending 

data Round-Robin to the multiple kernel replicas. Lastly, after the inference processing, another 

HLS kernel (krnl_receiver) receives data coming from the network and stores them back to the 
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CPU HOST memory, where they are collected in order to evaluate efficiency and purity results 

for each of the labeled classes. 

Both setups share the same clock frequency of 100 MHz. 

  

The execution time has been measured on the host using the 

std::chrono::high_resolution_clock::now()  method, with the start time corresponding to the 

launch of the krnl_sender (immediately after the completion of events data loading on FPGA 

memory) and with the end time at the completion of the krnl_receiver writing of inference data 

back to the host memory. 

The throughput and time-to-solution values for the two configurations, which are reported in 

Table 18.   

  

The FPGA setups power measurements, concurrent with the CNN kernel(s) execution, were 

extrapolated from the XRT summary .csv output file in order to produce the power profiles 

depicted in Figure 48 and Figure 49 respectively for the 1CCN and 2CCN design 

configurations. 

The integrals of the power profiles have been used to compute the energy-to-solution and 

energy efficiency values for both setups, which are reported in Table 18. 

 

 
 

Figure 48 Power profiling of 1CNN RAIDER design configuration CPU (left) and FPGA (right) 

 

 

 

Figure 49 Power profiling of 2CNN RAIDER design CPU (left) and FPGA (right) 
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KPI CPU+FPGA (1CNN) 

RAIDER 

CPU+FPGA (2CNN) 

RAIDER 

purity/efficiency (per class) efficiency: 

- 0: 92% 

- 1: 79% 

- 2: 75% 

- 3+: 76% 

purity: 

- 0: 83% 

- 1: 88% 

- 2: 70% 

- 3+: 80% 

efficiency: 

- 0: 92% 

- 1: 79% 

- 2: 75% 

- 3+: 76% 

purity: 

- 0: 83% 

- 1: 88% 

- 2: 70% 

- 3+: 80% 

time to solution [s]  9.701 4.898 

throughput  

[events/s] 

278324.152 551245.410 

energy to solution [J] 563.174 

(262.090 FPGA) 

267.831 

(137.902 FPGA) 

energy efficiency [events/J] 4794.255 10079.328 

Table 18 KPIs for the two design configurations of RAIDER 

 

 

Finally, in Table 19, we consider the improvement of the measured KPIs on the two design 

configurations (1CCN, 2CCN) over the two sets of baseline KPIs (CPU only and CPU+GPU). 

 

 

Design/KPI Improvement factor over CPU  Improvement factor over  

CPU + GPU  

 

1CNN/ 

throughput 

1.473 1.169 

1CNN/ 

energy efficiency 

 

17.726 31.070 

2CNN/ 

throughput 

 

2.913 2.135 

2CNN/ 

energy efficiency 

 

37.267 65.332 

Table 19 Improvement factors of the KPI for the 1CNN and 2CNN designs over the baseline 
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3.7 TNM – INFN 
The Quantum TEA is a suite of applications that utilizes tensor network methods (TNM) to 

simulate quantum systems and solve machine learning problems. Among these applications is 
the Quantum Matcha TEA, which is an emulator for quantum computers that is powered by 

matrix product states. To assess the performance of our application, we tested it with a 

Quantum Fourier Transform (QFT) algorithm on a set of entangled qubit blocks, with each 

block consisting of N entangled qubits. The total number of qubits for the QFT algorithm 

consists always of 100 qubits to evaluate its effectiveness on non-trivial states. 

 

 

Figure 50 Quantum Fourier Transformation (QFT) algorithm acting on a block of N entangled qubits. Here in the 

example, we show N=3 where each qubit is represented by one vertical line and the entangling blocks are displayed in 

orange.  

 

Here in the Figure 50, we show N=3 where each qubit is represented by one vertical line and 

the entangling blocks are displayed in orange. The timeline from the perspective of each qubit, 

represented by a vertical black line, goes from the top downwards: first, the qubit is entangled 

with (N-1) neighbors via an entangling block and then the QFT is executed on all 100 qubits.. 

Apart from the boundary effects, we have around 100 / N entangling blocks. 

 

We present results obtained using the Dibona configuration's computing node. The 

performance of the system is measured by using LIKWID, which determines energy 

consumption as an indicator of efficiency. To measure the effectiveness of our results, we have 

chosen the number of gates per second (Gates/s) and the number of gates per Watts (Gate/Ws) 

as the key performance indicators (KPIs). This metric allows us to evaluate the efficiency of 

our execution when dealing with entangling blocks of different sizes N. In particular, we have 

conducted tests on circuits with N=6 and N=8.  

 

The setup ‘likwid-perfctr -f -C 0 -g ENERGY -t 100ms -O -o data.likwid ./qmatchatea.exe’ 

executes the simulation on one core with a measurement frequency of 100ms. The quantum 

matcha tea executable is compiled with gfortran v8.4 and quantum match tea itself is based 

on version v0.3.7. 

 

In Figure 51 and Figure 52, we have included plots that display the energy consumption data we 

have collected for single-CPU baseline. These plots offer a visual depiction of our system's 

energy consumption over time for N=6 and N=8, enabling us to observe that the energy usage 

remains relatively constant, except for minor fluctuations in both cases. 
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Figure 51  Power measurement for a single-core double-precision simulation of a quantum Fourier transformation of 100 

qubits on blocks of six entangled qubits. 

 

 
Figure 52  Power measurement for a single-core double-precision simulation of a quantum Fourier transformation of 100 

qubits on blocks of eight entangled qubits. 

 

We have provided a summary of the results in the Table 20. This table outlines the key metrics 

we have collected and provides an overview of the performance of our system. In addition to 

the energy measurements, we have executed the single-CPU baseline without power 

measurement to obtain an unbiased computation time. 
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Description N = 6, data type = Z N = 8, data type = Z 

Number of gates 11850 10995 

Time (mm:ss) 1:25 21:52 

Gates/s (KPI from D6.1) 139.4 9.0 

Power consumption Ws 504.8 8200.5 

Gates/Ws (KPI from D6.1) 23.5 1.3 
Table 20  Properties for single-core double-precision simulations of a quantum Fourier transformation of 100 qubits on 

blocks of N entangled qubits. The number of gates executed during the algorithm together with the execution time and 

power consumption leads to two KPIs defined for tensor network simulations. 
 

We see the difference between the results with different N both in execution time and in power 

consumption. As expected from a quantum physics point of view, the computation time, and 

thus energy consumption, depends drastically on the amount of entanglement present in the 

system, where the entanglement increases with even numbers of N. For future benchmark, it is 

important to compare the same protocol, i.e., the number of entangling blocks controlling the 

entanglement and the QFT algorithm running thereafter.. 

 

The results shown so far have been for double precision simulation where we truncate singular 

values below 10-9 in the compression scheme, which is a key part of our algorithm.  

 

As our next step of analysis, we compare the performance of single precision (C) and double 

precision (Z) data types. We adapt the truncation threshold to 10-5 for both data types which 

guarantees to truncate numerical noise also for single precision simulations. The Figure 53, 

Figure 54 and Table 21 compare the data types. 

 

Description N=6, C N=6, Z N=8, C N=8, Z 

Number gates 11850 11850 10995 10995 

Time (mm:ss) 0:30 0:32 7:36 7:51 

Gates/s 395.0 370.3 24.1 23.3 

Power Ws 170.7 183.5 2665.4 2883.1 

Gates/Ws 69.4 64.6 4.1 3.8 
Table 21  Comparison of single-precision (C) versus double-precision (Z) simulations on a single core for a quantum Fourier 

transformation on blocks of N entangled qubits. The comparison shows minor benefits for using single precision in terms of 
computation time and energy consumption. 
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Figure 53  Power measurement for a single-precision (C) and double-precision (Z) simulation on a single core of a quantum 

Fourier transformation of 100 qubits on blocks of six entangled qubits. 

 

 

 
Figure 54  Power measurement for a single-precision (C) and double-precision (Z) simulation on a single core of a quantum 

Fourier transformation of 100 qubits on blocks of eight entangled qubits. 
 

The comparison between the single and double precision shows a slight advantage of the single 

precision in terms of runtime and energy consumption. Together, they add up to around 7% 

fewer energy consumption for single precision simulations. For the plot of the power 

measurement for N=8, we apply a moving average to suppress fluctuations in the energy 
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consumption and distinguish single precision versus double precision data. A possible next step 

is to compare the convergence of both simulations with respect to their results. 

 

This benchmarking process allowed us to evaluate the effectiveness of our emulator under 

different conditions and identify areas where further improvements could be made. Additional 

KPIs defined in D6.1 as Qbits/s or Qbits/Ws are not shown here. These KPIs are more 

applicable to condensed matter problems where one wants to study the properties of the system 

while scaling in the number of qubits. The benchmarks of these simulations for condensed 

matter problems are not yet available. The energy measurements and benchmarks with GPUs 

are also not available yet. 
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3.8 ScalFMM (Mathlibs-INRIA) 
 

ScalFMM is an HPC application developed at Inria that implements the fast multipole method 
(FMM), which enables computing pairwise interactions between N particles with quasi-linear 

complexity. Before the current project, ScalFMM was already parallelized with StarPU and 

had GPU capability. 

 

Like Chameleon, we are using ScalFMM to validate our scheduler multreeprio, and we plan to 

extend it to study the exploitation of FPGA with StarPU. 

 

We provide results obtained on computing nodes of older generations compared to Dibona (2 

× 16-core Intel Skylake + 2 × V100 and 2 × 12-core Intel Haswell + 4 × K40). Our work here 

does not focus on the efficient implementation of computational kernels (i.e. optimizing for a 

given processing unit), but rather on the flexibility and robustness of the multreeprio scheduler. 

What matters in a configuration is not just the raw performance of the processing units, but 

also their number and the performance difference between the different types. 

 

Since this is still ongoing work, we show results for two variants of the scheduler called 

lamtp{1,2} in Figure 55 that shows the number of particle interactions per second for different 

StarPU schedulers. As the simulation relies on the FMM, many of the interactions are 

computed approximately. Our scheduler is competitive with DMDA (a modified version of the 

Heft scheduler [16]), which is considered the most efficient StarPU scheduler, as well as the 

(la)heteroprio scheduler, a scheduler that was originally designed for the FMM [17,18]. 

We want to remind you that configuring the heteroprio scheduler manually is required, which 

is not necessary for laheteroprio or multreeprio, making things easier for developers. 

 

On the V100 configuration, we obtain an efficiency of 230.10^9 interactions/Watt using the 

two GPUs and the two CPUs with multreeprio. We currently do not have a comparison with 

the other schedulers, but the related paper will include it. 

 

Our next steps will be: 1) to port some FMM kernels to FPGA and 2) to adapt the multreeprio 

scheduler to consider energy in its decision-making process. 

 

  

Figure 55 Interactions/s of a n-body simulation using ScalfMM and StarPU on two different hardware 

configurations. We compare our new scheduler (lamtp) against its legacy version (heteroprio) and the most used 

scheduler (DMDA). 
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3.9 Chameleon (Mathlibs-INRIA) 
Chameleon is a C library that provides parallel algorithms to perform BLAS/LAPACK 

operations, fully exploiting modern architectures. It had already been parallelized with StarPU 
before the start of the current project. 

 

Similar to ScalFMM, we use Chameleon to validate our scheduler and plan to test it on FPGA 

and energy optimization. In Figure 56, we provide the Flops/s, for the Cholesky factorization 

(POTRF) and the QR factorization (GEQRF) on three different hardware configurations and 

different schedulers. DMDA is the most effective scheduler known for executing Chameleon. 

Our results show that our scheduler multreeprio (lamtp) is competitive with DMDA when the 

performance difference between CPU and GPU is low (K40), but is not as efficient as DMDA 

when the GPU is much more efficient than the CPU (V100). 

 

On the V100 configuration, we obtain an efficiency of 21GFlops/Watt using the two GPUs and 

the two CPUs using multreeprio. 

 

Similar as with ScalFMM, our next steps will be: 1) to port some GEMM kernels to FPGA and 

2) to adapt the multreeprio scheduler to consider energy in its decision-making process. 

Additionally, we are currently investigating ways to improve execution on this type of 

configuration by offloading more tasks to the GPU. 
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Figure 56 Flops/s for the Cholesky and Qr factorization (Chameleon) and StarPU on two different hardware 

configurations. We compare our new scheduler (lamtp) against its legacy version (heteroprio) and the most used 

scheduler (DMDA). 
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3.10 UrbanAir – PSNC 
 

The UrbanAir application is tailored towards assessing and predicting air quality over complex 
urban areas. It is a multiscale model which benefits from coupling between WRF and EULAG. 

WRF is a community mesoscale weather prediction model, and its purpose in UrbanAir is to 

feed the latter model with meteorological fields. EULAG, the all-scale geophysical flow solver, 

is used to precisely model the wind flow over complex buildings shapes using immersed 

boundary method, and to calculate transport of contaminants. In the scope of the project we are 

focusing on the EULAG and exploiting heterogeneous resources in particular. 

The dynamical core of EULAG constists of the MPDATA method and GCR solver. The latter 

consists of five routines: prforc, divrhs, laplc, precon  and reduction: 

Prforc – used to initialize the solver, applies boundary conditions and guesses the first updated 

velocity; 

Divrhs – initializes the solver and computes the initial residual error of the elliptic problem; 

Laplc – iteratively evaluates the generalized Laplacian operator; 

Precon – accelerates the convergence of the variational scheme. 

 

The original code written in Fortran 77 was previously rewritten to C++ in order to be able to 

run on different hardware architectures and proof-of-concept adaptation to heterogeneous 

resources was made [19]. The original code uses MPI parallelization. In order to support 

heterogeneous resources, including GPUs and many-cores, a stencil framework was introduced 

being responsible for parallelization and communication. Each kernel can be provided in either 

CPU or GPU realization (or both), and it is up to the framework to orchestrate proper execution.  

The kernels were adapted to GPUs by the means of CUDA. To exploit intra-node 

parallelization, OpenMP was used. Thus, within a node, CPU code is parallelized using 

OpenMP, and for GPU code using CUDA. The communication between GPUs and nodes is 

done via MPI. The computational domain is divided between all given hardware resources, 

where each process receives it’s part of the global domain called subdomain. Important to say, 

we decided to keep the static decomposition of the domain, i.e. partitioning is done before 

compilation process, as it allows the compiler to optimize the stencil loops. 

 

Within Textarossa, a new testcase has been introduced which corresponds to the air quality use 

case. In contrast to previous studies, the computational domain is latter flat, as the domain 

increases horizontally in each direction, but not vertically. The testcase is about modelling air 

quality in urban environments, therefore 64 grid points (corresponding to domain height) is 

enough to model flows at buildings height. Improvements in communication framework were 

required to allow for efficient data exchange between multiple accelerators available within a 

single node and between multiple nodes. To efficiently exploit multi-core and multi-GPU 

within a node, automating mapping for cores and GPUs were provided for the most efficient 

realization. Finally, improvements in GPU kernels were made to improve correctness of results 

and their efficiency. 

 

The baseline for benchmarks is a CPU version running on single and multiple nodes, combining 

MPI and OpenMP for inter- and intra-node communication respectively. Tests were conducted 

on currently available architectures, including testbed developed in Textarossa project. We 

used Altair, a PSNC’s cluster equipped with Intel Intel Xeon Platinium 8268 processors (2x24 

CPU cores) and NVIDIA V100 cards. The Textarossa testbed is Dibona machine equipped 

with AMD processors and NVIDA GPU cards, see Section 2 for details. As described in D6.1 

deliverable, our interest is to measure and improve in terms of GCRK number of iterations per 
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second and per Watt. With the developed new architectures, we do not expect only 

improvement in computational performance and energy savings, but also a possibility to run 

larger domains on accelerators. 

 

The tests are divided into strong scalability, weak scalability and energy consumption. If not 

explicitly stated, each test runs 100 iterations over 59M grid points domain (for strong 

scalability) or 1M grid points domain (for weak scalability). It corresponds to 960x960x64 and 

128x128x64 domains respectively. For the energy measurements tests were additionally 

conducted using 500 iterations and over 15M grid points domain (for weak scalability). 

 

3.10.1 Strong scalability 
 

The parallelization on a single CPU node is done via OpenMP. Before running tests in 

multinode environment, the most efficient number of OpenMP threads needs to be chosen. In 

Figure 57, strong scalability within a single node is presented. The top compares execution 

time for different number of OpenMP cores used, while the bottom depicts achieved speedup. 

Increasing the number of threads lowers the execution time, although the more threads are used 

the less speedup is achieved. The optimal number of threads for a single node is 32 threads, 

although Altair and Dibona are equipped with 48 physical cores. 

 

Figure 57 GCRK strong scalability on a single node. Top: execution time. Bottom: speedup. 

 

The strong scalability study in multinode environment is conducted on Altair system up to 64 

nodes. Within a node, code is parallelized using OpenMP paradigm with number of threads set 

to 32 CPU cores. The computational job is divided between the nodes, where each node 
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receives its own and equal subdomain to calculate over, and the data is exchanged via MPI. 

The strong scalability results are presented in Figure 58. The top chart depicts execution time, 

while the bottom achieved speedup. Adding more nodes results in shorter execution time, but 

again the more nodes are used the less speedup is achieved. However, required time for 

obtaining results is getting shorter.  

 

 

 

Figure 58 GCRK strong scalability on multiple nodes. Top: execution time. Bottom: speedup. 

 

The strong scalability tests for the GPUs were performed on Altair and Dibona systems. It is 

important to say that the parameters for tests are different for each testbed. On Altair, a single 

GPU V100 is able to handle 15M grid points domain, while Dibona GPU computes over 59M 

grid points domain. Nonetheless, we would like to study whether the speedup characteristic is 

similar on different GPU architectures. 

In Figure 59, strong scalability of the GCRK running up to 4 A100 GPUs is presented, which 

the achieved speedup closed to a linear one. In Figure 60, results for strong scalability up to 8 

NVIDIA V100 GPUs is presented. On both figures the top chart presents how execution time 

changes when adding more GPU cards, while the bottom one depicts achieved speedup. On the 

older GPU architecture, the speedup is not as exceptional as on a modern one. 
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Figure 59 GCRK strong scalability on multiple A100 GPUs. Top: execution time. Bottom: speedup. 

 

 

Figure 60 GCRK strong scalability on multiple NVIDIA V100 GPUs. Top: execution time. Bottom: speedup. 

 

Errore. L'origine riferimento non è stata trovata. 
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3.10.2 Weak scalability 
 

To compare weak scalability across different available hardware, 1M grid points problem per 

node or per GPU was selected. Figure 61 and Figure 62 presents results for CPUs and GPUs 

respectively. The top chart presents how execution time changes when more CPUs and GPUs 

are used, while the bottom depicts efficiency. In both cases, the more CPU nodes or GPUs are 

used, the weak efficiency drops more. Interestingly for Dibona GPU, while strong scale 

speedup is close to linear, the weak efficiency is the worst one among tested GPUs. The reason 

for this is the fact the chosen number of grid points (1M per node or GPU) is far from this GPU 

capabilities. This is why we conducted another weak scalability tests, aiming at solving 59M 

grid points per node or GPU. The results are presented in Figure 63, and one can observe that 

fitting GPU accelerator with more work (larger job to do) results in better efficiency. 

 

 

 

Figure 61 GCRK weak scalability on CPUs. Top: execution time. Bottom: efficiency. 
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Figure 62 GCRK weak scalability on GPUs. Top: execution time. Bottom: efficiency. 

 

 

Figure 63 GCRK weak scalability on GPUs – comparison between 1M and 59M grid points problem 
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3.10.3 Energy measurements 
Energy measurements were conducted on Dibona system using methodology described in 

D1.4. These experiments are to analyze energy and power consumption to find the sweet spot 

between computational performance and energy efficiency. 

 

Figure 64 and Figure 65 present power consumption characteristic for the fixed amount of grid 

points per GPU, 1M and 15M points respectively. Each subfigure depicts what is the power 

consumption during GCRK execution when 1, 2 or 4 GPUs cards are used. For individual 

accelerators, the power consumption remains at the same level when more than one GPU is 

used, which means they are occupied with work at the same level. The power consumption is 

larger when a single GPU is used. 

 

 

Figure 64 GCRK power consumption on GPUs, 1M grid points per GPU. Top: 1GPU, middle: 2 GPUs, bottom: 

4GPUs 

 

Figure 65 GCRK power consumption on GPUs, 15M grid points per GPU. Top: 1GPU, middle: 2 GPUs, bottom: 

4GPUs 
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The same test was applied to a fixed problem size of 59M gridpoints, which is then equally 

divided between available GPUs. Results presented in Figure 66 demonstrates that power 

consumption characteristic is the same, no matter a strong or weak scalability problem is 

solved. Each subfigure presents power consumption during the execution for each GPU 

accelerator used. 

 

Figure 66 GCRK power consumption on GPUs, 59M grid points per job. Top: 1GPU, middle: 2 GPUs, bottom: 

4GPUs 

 

Next, we provide a study on what is the CPU energy power consumption when running kernels 

on GPU. Figure 67 presents such comparison for a 59M grid points size problem run on GPUs 

(up to 4) and OpenMP version of GCRK (up to 32 physical CPU cores). The power usage for 

CPU cores for OpenMP and GPU version is alike, and it is worth doing more tests in the future 

to check whether further increase in number of GPUs will results in similar increase in CPU 

power consumption. The energy accounted to package is constant for GPU realization of the 

GCRK. For the CPU implementation, package power consumption is significantly lower when 

less CPU cores are used, but when the optimal number of cores is used (32), package power 

consumption is even greater comparing to GPU realization. 

 

Figure 67 GCRK CPU power consumption when running on GPUs 
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Because the power consumption characteristic is the same for every GPU involved, we may 

expect the energy consumption to be constant for the fixed problem size (strong scaling) and 

increasing for the same size problem per GPU (weak scaling). In Figure 68, we correlate 

execution time to energy consumption for a strong and weak scalability. The top graph presents 

results for a fixed problem size (59M of grid points) and 500 iterations, and the bottom one for 

a constant problem size for each GPU accelerator (15M of grid points, 100 iterations). In both 

graphs, the blue line corresponds to exection time, which is plotted against left y-axis. The red 

line indicates energy consumption (in Joules), which is plotted against right y-axis. While the 

weak scaling allows to solve larger problems within more or less the same amount of time 

(problem size is fixed per accelerator), the energy consumption naturally increases by the 

number of accelerators being used. For strong scaling the situation is quite the opposite – 

increasing number of accelerators used results in shorter execution time and in lower energy 

consumption. We can achieve energy scalability and solve larger problems with almost 

constant energy consumption. 

 

 

Figure 68 GCRK energy consumption on GPUs, strong (top) vs. weak (bottom) scaling 
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3.10.4  Measuring KPIs 
 

In D6.1 we proposed KPIs to be measured for the UrbanAir kernels, which are reminded in 

Errore. L'origine riferimento non è stata trovata..  

 

KPI for computational efficiency KPI for energy 

- execution time 

- (strong and weak) speedup 

- number of iterations/time per iteration  

 

 

- iterations/Watt  

Table 22 UrbanAir KPIs 

 

Let’s discuss how execution on CPUs compares to those on GPUs. For this test, we ran GCRK 

100 iterations on a 59M grid points domain. The CPU code was run on multinode Altair 

environment, while Dibona was used for measurements on GPUS, as only these cards make it 

possible to run on such large domain. Figure 69 presents the results in terms of number of 

iterations per second. While increasing the number of nodes makes more iterations to be 

computed per second, the GPUs easily outperforms CPU version of the code. 64 CPU nodes 

are required to beat a single GPU, while beating 4 may be challenging. And even if it is doable, 

the energy consumption for such CPU run will be much higher than on GPUs. 

 

 

Figure 69 GCRK strong scalability iterations per second 

 

Figure 70 presents the results for iterations per second for different hardware architectures, 

where the same amount of work is computed by each CPU or accelerator. As expected, the 

GPUs perform better than CPU, but also the newer GPU cards (Dibona) demonstrate its 

advantage over the older ones (Altair), even in the case GPU is assigned with rather small 

problem size. 
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Figure 70 GCRK weak scalability iterations per second 

 

Figure 71 presents iterations per Watt for strong (top chart) and weak (bottom chart) size 

problem. The energy measurements were done only on Dibona, thus we compare OpenMP 

parallelization to GPU accelerators. Similarly to the performance measurements, the iterations 

per Watt KPI is better for GPUs. However, when more GPUs are used to solve the problem, 

this KPI slightly increases for strong-scalability problem, while decreases for a weak-

scalability. 

 

 

Figure 71 GCRK iterations/Watt, strong (top) and weak (bottom) scalability 
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Figure 72 presents cumulative KPIs measurements for different hardware architectures: CPUs  

and GPUs on a single node. Iterations per second are plotted against left y-axis, while iterations 

per Watt are depicted against right y-axis. For strong scalability, adding more CPU cores 

slightly increases iterations/s but significantly decreases iterations per Watt. Increasing number 

of GPUs significantly increases iterations/s keeping iterations per Watt at more or less constant 

level. It means that for GPUs, within the same amount of energy consumed we are able to 

perform work quicker.  

For weak scalability, adding more CPUs results in both KPIs decrease. When more GPUs are 

used, iterations per second remains more or less constant, but iterations per Watt drops 

significantly. 

 

 

Figure 72 GCRK KPIs on a single node for CPUs and GPUs for strong (top) and weak (bottom) scalability 
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4 Summary and future work 
 

In this deliverable we presented initial application benchmarks and results with respect to the 

KPIs defined in previous D6.1 deliverable. Each of the use case is progressing well, 

contributing to the overall project objectives, and benefitting from either adaption to 

heterogeneous resources, usage of mixed-precision or application of dynamic runtime systems. 

The first results are promising and demonstrate we are heading in a good direction. Smart cities 

were tested on several HPC platforms using ARM and Intel GPPs, with and without 

accelerators, where some of them supporting mixed-precision. CNR proposed some new 

algorithms and achieve already high performance and energy efficiency at the node level by 

exploitation of hybrid programming models for heterogeneous architectures and large 

scalability. RTM is extended with different formats of reduced precisions, providing stability 

tests and tests on image quality. RAIDER achieved O(10) improvements in energy efficiency 

and 2-3x in throughput, demonstrating using of APEIRON framework and intra/inter-FPGA 

communication IP. NEST-GPU reported increase in energy efficiency and reduced runtimes. 

HEP reported increase in energy efficiency, performance and throughput. TNM demonstrated 

increase in energy efficiency. INRIA created a new scheduler within StarPU and tested its 

robustiness and flexilbity usings ScalFMM and Chameleon applications. UrbanAir kernels 

achieved 3.5-9x speedup (multinode environment) and 2x increase in energy efficiency (single 

node). 

  

We continue to work on the applications for further exploration how to increase energy 

efficiency and sustained application performance in particular. We do look forward to the 

availability of the ultimate IDV-A and application of other hardware solutions to test if and 

how this can lead to increase in our KPIs values. With the comprehensive set of use cases, 

applicable in different scientific fields, we will be able to draw conclusions on best approaches 

in increasing energy efficiency and sustained application performance and share with the 

community at the end of the project. 

  

Next subsections detail future work for each application. 

 

4.1 Smart Cities - CINI-UNIPI 
The application and benchmarking activity of CINI-UNIPI will be extended to consider also 

RISC-V architectures and compare them to ARM-based (Neoverse N1, A64FX) and Intel-

based GPP architectures. To this aim, COTS RISC-V solutions will be considered, at least 

scalar ones. 

4.2 MathLib - CNR 

Activities for the last year of the project include the implementation and testing of a new version of 

the BCMG linear solver based on a Communication-Avoiding Conjugate Gradient (CA-CG) method, 

based on grouping s-step of the standard CG method, so that latency and global synchronization are 

reduced.  The final results will be hopefully obtained on the IDVA Textarossa platform. Therefore, the 

availability of the IDVA platform by the end of the 30th month of the project is a critical issue. It is 

worth to note that CNR group received a grant for early access to the Italian Leonardo supercomputer. 
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Therefore, as soon as it is available, some tests with our library will be run on the Leonardo hybrid 

supercomputer.   

4.3 RTM – FRAUNHOFER 
The next step will be the calculation of several shots to create an image more closely to typical RTM 

migrations. The image quality will be compared between float 32 bit and other compression formats. 

To make this feasible we will reduce the model to a 2D case which costs less compute power per shot. 

4.4 HEP - INFN 

The two identified benchmarks (CLUE and Pixeltrack) have been fully developed using the 

Alpaka library and will be portable without, or with minor, effort on the final IDV-A. In the 

next few months the development of this set of applications related to HEP can be subject to 

delays because there is a chance that the person working on this activity could be diverted to 

other projects at the CNAF INFN unit. 

4.5 NEST-GPU - INFN 
The preliminary comparison made between the multiprocess CPU version of the neural 

network simulation engine NEST (scaled up to what was available to run on either for ARM 

and x86_64 platforms with the Ampere Altra and the EPYC Zen2) and its GPU-supporting 

prototype NEST-GPU already reveals a staggering advantage of this latter – both in power 

consumption and runtime – even when run on just a single, recent but not latest generation 

device. Work is underway on the NEST-GPU application to move also the setup phase (which 

at the moment is still done on the CPU and represents a very unwieldy time at the start of every 

simulation) onto the GPU as well while the bulk of future work will focus on defining a scalable 

version of the testing protocol (likely to be based on the simulation of a-multi-area model of 

macaque vision-related cortex) and implementing it on an enhanced version of the NEST-GPU 

application in order to perform a sensible multiGPU performance measurement. 

4.6 RAIDER - INFN 

Preliminary results we reported in section 3.6 show that the FPGA-based implementation is 

the most convenient by a large amount when considering the energy efficiency aspect.   

Our objective within the timeframe of the TEXTAROSSA project is, besides the mere technical 

development needed to finalize the processing pipeline by including the network interface with 

the RICH detector (data producer) and the trigger processor (results consumer), to scale-up 

performance of the RAIDER application to reach or surpass the challenging experimental 

requirement of a processing throughput higher than 10 MHz.  

We will research along two parallel direction to reach this goal: i) exploit the intra/inter-FPGA 

scalability feature offered by the APEIRON framework, as shown up to a limited extent in 

section  3.6, and ii) continue improving the neural network model and the corresponding 

representation for input data used in the inference processing pipeline. 
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4.7 TNM - INFN 

The TNM application plans to scale the simulation beyond the single-core baseline that we 

presented in section 3.7, both scaling on the number of CPU cores (using OpenMP) and 
accelerating parts of the code on NVIDIA GPUs. We also plan to add more sub-application as 

far as the HPC infrastructure allows, where we have other tools solving the Schrödinger 

equation or solving machine learning tasks with tensor networks. A scaling up to MPI is 

unlikely due to a serial step of matrix decompositions, which is necessary to obtain 

convergence. 

4.8 MathLib - INRIA 

Our next steps will be to develop FPGA kernels for ScalFMM and Chameleon, as well as to 

improve our scheduler to reduce energy consumption of the executions. For this latter point, 

we plan to replace the heuristics used to compute task priorities with those focused on 

minimizing energy usage, rather than just optimizing for makespan. 

4.9 UrbanAir - PSNC 

The next steps is to provide power consumption measurements on a multiple node to do a fair 

comparison between CPUs and GPUs and judge the increase in energy efficiency.  We also 

plan to study if and how the mixed precision can increase the computational and energy 

efficiency. 
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