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Executive Summary 
This deliverable summarizes possible adaptation of applications and/or TEXTAROSSA 

toolchain features which was needed to obtain benefits in terms of performance and energy 

efficiency, as evaluated by the KPIs defined for each use case in the previous D6.1 deliverable. 

Therefore, as follow up of all the WP6 activities on the applications, it provides guidelines, 

possible recommendations, and final evaluation of the project efforts. All use cases applied 

common methodology for performance and energy measurements, discussed in detail in D1.4. 

The tests were conducted among others on TEXTAROSSA available testbeds, including IDV-

A (node with NVIDIA GPU accelerators from Atos) and IDV-E (node with FPGA accelerators 

from E4). The applications represent wide range of application types (HPC, AI/HDPA), 

scientific domains, approaches to parallelization (task-based, streaming-based, 

distributed/shared memory). In particular, the use cases benefit from developments around one 

of the three main pillars defined: heterogenous resources, mixed precision and dynamic runtime 

systems.  

The work carried out correspond directly to the following overall project objectives: 

- Energy efficiency, by the application developments; 

- Sustained application performance, by the application developments; 

- Seamless integration of reconfigurable accelerators, by using the APEIRON 

framework; 

- Development of new IPs, by using INFN intra/inter-FPGA communication IP behind 

the APEIRON framework; 

- Integrated Development Platform, by using existing IDV-A and IDV-E; 

- Opening of new usage domain, by the application developments. 

CINI-UNIPI provides example results of HPC services for smart cities. Particularly, the 

proposed application refers to processing of video-surveillance applications for smart cities, 

where data acquired by telecameras are first processed with YOLO (You Only Look Once) to 

detect scenes containing people, and then people are automatically counted, and their position 

tracked using DeepSORT. The latter is an evolution of the tracking algorithm SORT: Simple 

Online and Realtime Tracking. Profiling of the algorithm on several platforms (those with Arm 

N1 processors are representative of the IDV-E) allows assessing the usefulness of different 

technologies. Results on RISC-V based platforms are also reported. 

 

CNR has developed computational kernels for a TEXTAROSSA MathLib specifically required 

in sparse matrix computations and iterative linear solvers, which are widely exploited in 

Scientific Computing and Data Analysis. The library was thought both as main component of 

the TEXTAROSSA platform and as benchmark tool for IDV-A. Focus was on GPU-kernels 

efficiency and on scalability when multiple GPUs, also on different computing nodes, are 

needed for computations because dimensions largely exceed the memory resources of a single 

GPU. Therefore, on IDV-A, the library stresses the GPU operation capabilities and 

memory/communication channels bandwidth at the node level. Performance analysis and GPU 

energy consumption KPIs on IDV-A are reported in section 2.2. In the same section are 

discussed scalability results and comparisons with the state-of-the-art Nvidia library on the 

Leonardo Italian supercomputer. Results demonstrate benefits of the new algorithms, 

specifically thought for GPU-accelerated architectures, and of the implementation design 

patterns, which efficiently exploit high throughput of GPUs and reduce/hide data 

communication among memories and computing nodes, with respect to Nvidia library 

implementing same computations.  Power and energy consumption results of the kernels on 
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IDV-A are consistent with the strong and weak scalability performance and are discussed before 

and after the installation of the new 2-phase cooling system on the IDV-A platform.    

 

PSNC provided UrbanAir, a HPC application for the purpose of benchmarking and hardware 

characterization, IDV-A in particular. The scope of UrbanAir is to predict air quality in urban 

environment, by detailed modelling of the wind flow over street canyons and complex building 

structure. In TEXTAROSSA, work was focused on GPU version, UrbanAir-gcrk, to run the 

kernels exploiting GPUs accelerators. The primary purpose was to increase energy efficiency 

and computation performance (lower time-to-solution). The secondary purpose was to exploit 

multi-GPUs available on multiple nodes to be able to run over domains which dimensions 

exceed the memory constraints of a single GPU. Results demonstrate that by adapting codes to 

accelerators it is possible to achieve primary and secondary goals. 

 

FHG has evaluated the usability of reduced precision Floating Point format for seismic Reverse 

Time Migration calculations (RTM). A small reference implementation has been created to 

calculate the Marmousi reference example based on 16 bit Posit and 16 bit Float format. The 

quality of the results has been evaluated based on the images calculated and the numerical 

stability of the total energy of the source wavefields over time. Storing the wavefields in Posit 

16 bit delivered acceptable images. Performing the calculations in Posit 16 bit too required 

some optimizations but finally delivered also acceptable results. Calculating the image in Posit 

16 bit too revealed higher deviations from the reference result but the image quality was still 

acceptable. In Float 16 bit format both storage of the wavefields and the calculation of the 

kernel delivered acceptable images. Calculating the image in Float 16 bit too revealed higher 

deviations from the reference result but the image quality was acceptable. 

BSC has used NBody application (as reported in section 2.12) in order to test all its framework 

developments along the project like the fast task scheduler IP, the OmpSs@FPGA task-based 

programming model, the task+stream models integration, the FPGA power measurement tools 

or the multinode programming model Implicit Message Passing. Also, the power and cooling 

efficiency of the OmpSS@FPGA model in the IDV-E node has been evaluated. Beside the 

results of this tasks reported in this deliverable, also the integration of the RAIDER application 

stream kernel with the OmpSs@FPGA task-based model was done in coordination with INFN 

and reported in the corresponding section 2.6.  

 

ENEA used the Vitis High-Level Synthesis (HLS) flow to implement an image processing 

library (FPGA Image Processing Library - FIPLib) on the Alveo U280 board. This to showcase 

the benefits in terms of both speed and power usage achievable using FPGA accelerators. The 

FIPLib has also been used in conjunction with the APEIRON framework, developed by INFN, 

to demonstrate how a design could be scaled to several FPGA accelerators to sustain a higher 

throughput, not achievable through a single FPGA for its limited resources. 

 

INFN provided one High Performance Data Analytics (RAIDER) and three HPC (NEST-GPU, 

HEP, TNM) applications as benchmarks to drive the co-design and characterization activities 

of project IDVs. 

The RAIDER (Real-time AI-based Data analytics on hEteRogeneous distributed systems) 

application, described in section 2.6, is driven by the use case of a real-time particle 

identification system for the CERN NA62 High Energy Physics experiment. Being entirely 

FPGA-based, it represents the TEXTAROSSA IDV-E reference application for its 

characterization in terms of processing throughput and energy efficiency KPIs. RAIDER was 

co-designed and co-developed with the APEIRON HLS streaming programming framework 

aimed at the seamless scalable integration of reconfigurable accelerators. The key technology 
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behind the APEIRON framework enabling its scalability feature is the INFN intra/inter-FPGA 

communication IP, developed according to the project objective “Development of new IPs”. 

NEST-GPU is a GPU-accelerated neural network simulator engine for in-silico experiments 

which aims for easy reconfigurability and usage by the neurophysiology practitioner while 

striving for high efficiency and performance. While being self-standing production-ready code, 

the very significant gains in power consumption and reduced runtimes that it has demonstrated 

against its sibling application NEST (which is CPU-only) have motivated the current effort for 

its integration into the larger environment managed by the NEST Initiative and are fostering its 

employment in a larger number of hybrid CPU+GPU HPC platforms. Simulating a neuronal 

system distributed over the available GPUs, the NEST-GPU application stresses both the GPU 

computing and the inter-GPU communication capabilities of the IDV-A node. Furthermore, the 

CPU-only NEST simulator engine has been used to characterize and compare the processing 

and energy performance of the IDV-A and IDV-E nodes, as reported in section 2.5. 

Regarding High-Energy Physics (HEP) codes on heterogeneous architectures we have selected 

two representative applications: Pixeltrack, a track reconstruction algorithm, and CLUE, a 

cluster algorithm for high-granularity calorimeters, both developed for the for the CERN CMS 

experiment (see section 2.4). The applications are natively heterogeneous, being implemented 

with the Alpaka [1] library, and have been run both in CPU and in CPU+GPU configurations 

in the IDV-E and IDV-A nodes. Finally, the tensor network methods (TNM) application 

combines multiple simulation frontends for simulation quantum systems. For TEXTAROSSA, 

we considered the following sub-applications: i) Quantum matcha TEA: gate-based quantum 

circuit emulator for digitized quantum circuits, and ii) Quantum green TEA: solver for the 

Schrödinger equation or Lindblad equation; within this analysis, we restrict ourselves to finding 

the ground state of a system. Both have been used to characterize the processing and power 

efficiency of hybrid CPU+GPU systems like the IDV-A, as described in section 2.7. 
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Introduction 
 

Work performed in WP6 is essential to demonstrate the TEXTAROSSA outcomes in both 

hardware and software perspective. The applications need to use these for the final evaluation 

of the project, but far more important is to come up with conclusions if and how new hardware 

and software toolchain can produce benefits in terms of computation and energy efficiency of 

applications coming from different domains as well as can make available new and easy to use 

development and evaluation tools. 

 

In the TEXTAROSSA project we proposed some applications related to AI (Artificial 

Intelligence), HPDA (High Performance Data Analytics) and HPC (High Performance 

Computing). Provided software represents quite a comprehensive set of different hardware 

used (CPU, GPU, FPGA), programming models and problems to be solved. Use cases are 

developed based on three distinctive approaches: i) adaptation to heterogenous resources, ii) 

applying posit and mixed precision, and iii) using high-level programming models and their 

dynamic runtime systems. Therefore, there is a different set of computational, energy efficiency 

and accuracy metrics defined (KPI – key performance indicator) for each of the applications, 

though some naturally overlaps. The KPIs were discussed in the previous D6.1 deliverable. In 

this document we focus on applications development, and on reporting benchmarks and results. 

The work carried out is related to the following project objectives: 

- energy efficiency: by applications developments to adapt to heterogeneous resources, 

energy efficient accelerators or using mixed precision; 

- sustained application performance: by applications development to adapt to more 

computational efficient accelerators, in some cases applying a re-design of basic 

algorithms in order to better exploit fine-grained parallelism of accelerators, or/and in 

using scheduler of task/streaming-based frameworks; 

- seamless integration of reconfigurable accelerators: by using the Apeiron framework; 

- development of new IPs: by testing INFN intra/inter-FPGA communication IP which 

works behind the APEIRON framework; 

- Integrated Development Platform: by using the available IDV-A and IDV-E platforms 

for final benchmark results; 

- opening of new usage domains: by developing applications in many different domains, 

e.g. climate, oil&gas, high-energy physics. 

 

To give a global picture of the TEXTAROSSA project achievements, in Figure 1Figure we 

summarize all the components developed or improved in this project, as an integrated HW/SW 

layered architecture. At the bottom layer we have the two types of accelerated prototype 

heterogeneous nodes (IDV-A and IDV-E), equipped with last generation NVIDIA GPUs and 

Xilinx Alveo FPGAs and the two-phase cooling system developed in this project. On the top 

of the above infrastructure, we have a basic toolchain including standard compilers and 

libraries for parallel programming as well as run-time supports and tools by vendors which, 

where it was needed for efficiency and scalability motivations, were directly used by some 

higher-level software tools and applications. In the middle layer we put all the new tools 

proposed in this project, including structured programming environments, application-specific 

workflow management tools, automatic code generation tools for exploitation of mixed-

precision variable storage and computations, tools and libraries for modeling and 

measurements of energy consumption. Finally, on the top of this infrastructure, we put the 

applications, which in turn can be classified as general-purpose mathematical libraries, domain-

specific codes, and mini applications. All the above applications are representatives of different 
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computational needs and were developed as significant benchmarks of some of the components 

of the above architecture. Their development and testing provided useful feedback for the 

development and setup of all the basic components of the TEXTAROSSA architecture and 

significant guidelines, not only for the tools developed in this project, but more generally, for 

efficient and scalable exploitations of current heterogeneous computing nodes in relevant 

application domains.        

 

 
Figure 1: TEXTAROSSA Integrated Platform 

 

 

This document is organized as follows. In Section 1 a briefly reminder is given on hardware 

being used for evaluation of applications, as well as on benchmarking methodology. In Section 

2, final results of each use case are presented. Section 3 provides general summary and 

recommendations. 
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1 Methodology  

1.1 Hardware 

 

1.1.1 IDV-A 
 

IDV-A is based on one of Atos’ 1U blade servers commercialized inside the Sequana3 

architecture. It consists of one Nvidia Redstone-Next GPU board equipped with four Nvidia 

H100 GPUs, piloted by an Atos C4E CPU board equipped with two Intel Sapphire Rapids 

CPUs. It is currently cooled down by a combination of water-blocks (single-phase water heat 

spreaders) for the CPUs and GPUs, heat pipes and a cold-plate which serves as a chassis for 

the boards and distributes cold water to the various heat-spreaders. More details are described 

in D5.1 and D1.4. 

 

1.1.2 IDV-E 
 

IDV-E system is delivered by E4 and it is currently available with remote access to project 

partners. The nodes are equipped with ARM64 and FPGAs. The choice of the system to which 

to apply the two-phase cooling system fell on the Ampere Mt.Collins 2U system with Ampere 

Altra Max processor; the main reasons are: (i) it supports a number of PCIe slots providing the 

possibility of adding FPGA boards (up to 3) and/or other boards if needed, (ii) it has the 

physical space for adding the cooling system, (iii) it presents a good match between the amount 

of heat to be removed and the design point of the cooling system developed in the project, (iv) 

it has an architecture (ARM) compatible with that of the EPI project, (v) the possibility of 

receiving the system in times compatible with the project (an aspect not taken for granted given 

the current state of shortage worldwide). As for the FPGA, the choice fell on the U280 Xilinx 

Passive Model, it is able to provide significant computing power and the flexibility of memory 

access via HBM2 or DDR protocol with a maximum consumption of 225W. This device also 

guarantees the use of the Vitis High Level Synthesis software stack.  More details are described 

in D5.2 and D1.4. 

 

1.1.3 Other architectures 
 

To assess applications results and demonstrate the potential of node-level efficiency and 

scalability, when more than 1 computing node are used, some other tests have been done on 

some available heterogeneous computers, operated by project partners or accessed by some 

other grants. 

• For CNR-MathLib, Leonardo is used, operated by the CINECA Italian supercomputing 

center and granted by an Early Access Project. The booster module used for the tests, 

is based on BullSequana XH2000 compute blade, it has 3456 nodes equipped with Intel 

Xeon Platinum 8358 32C 2.6GHz and 4 NVIDIA A100 SXM4 64GB GPUs. The 

system is interconnected through a Quad-rail NVIDIA HDR100 Infiniband. It is ranked 

6th in the November 2023 Top 500 list. 
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• For Inria-MathLib, computing nodes are used from the plafrim cluster 

(www.plafrim.fr), which is a scientific instrument located in Bordeaux (France) and 

designed to support experiment-driven research in all areas of applied mathematics 

related to modeling and high-performance computing. We used computing nodes with 

NVIDIA A100 or V100 GPUs. 

• For UrbanAir kernels, Altair – HPC machine operated by Poznan Supercomputing and 

Networking Center - is used to perform additional tests in multimode environment. The 

nodes are equipped with Intel Xeon Gold 6242 2.8GHz and NVIDIA V100 SXM2 

GPUs. 

• For n-body scalability kernel CPU implementation baseline, the Marenostrum 4 

machine operated by BSC was used. Each of the computing nodes are equipped with 2 

Intel Xeon Platinum 8160 CPU with 24 cores each @ 2.10GHz and 96 GB of memory. 

Nodes are connected using Intel OmniPath 100Gb/s network. 

• For multi-node FPGA measurements, the MEEP machine, operated by BSC was used. 

This machine is formed by 96 compute nodes. Each one is equipped with two Intel 

Xeon Gold 6330 CPU @ 2.00GHz, 256 GB of main memory and 8 AMD Alveo U55c 

FPGA accelerator cards. FPGA accelerators are connected using 100Gb/s Ethernet. 

• For the NEST-GPU, HEP and TNM (Quantum matcha TEA) applications we used the 

BSC DIBONA partition node with a dual-socket system with two AMD EPYC 7402 

24-Core Processor and four NVIDIA A100-SXM4-40GB to collect results to use as 

baseline to compare against performance on the IDV-A node. 

• For the TNM (Quantum green TEA) the CINECA Leonardo booster node and the 

Justus2 cluster node (bwHPC): 2xIntel Xeon 6252 Gold with 2x24 cores. 

• For the RAIDER HPDA multi-FPGA applications, we used the INFN APE Lab small 

development cluster made of 4 single Intel(R) Xeon(R) Silver 4410T CPU nodes, 

each of them hosting one Xilinx® Alveo U200 FPGA board, with the four FPGAs 

interconnected in a ring topology. 

 

 

1.2 Application tuning, performance, and energy 
measurements 

 

In order to have meaningful and consistent benchmarking results across different use cases, a 

common methodology for measuring the performance and energy efficiency is proposed and 

discussed in detail in D1.4 and followed in D6.2. Some of the approaches are described in this 

document in Section 3, where each use case presents in detail the approach to obtain results 

and measure application-specific KPIs (proposed in D6.1). Where it was needed to follow an 

architecture-specific pathway and/or adaptation at the algorithmic and/or implementation level, 

this is discussed in detail so that this Deliverable can be read as a set of guidelines for potential 

users of all the HW/SW IPs developed in the project.  
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2 Results 
 

2.1 Smart cities – CINI-UNIPI 

Smart Cities algorithm description and implementation assumptions  
  

CINI-UNIPI provides example results of HPC services for smart cities. The proposed 

application refers to processing of video-surveillance applications for smart cities, where data 

acquired by telecameras are first processed with YOLO (You Only Look Once) to detect scenes 

containing people. Then people are automatically counted and their position tracked using 

DeepSORT, which is an evolution of the tracking algorithm SORT: Simple Online and 

Realtime Tracking. YoloV5 is an algorithm that ensures low-latency in extracting the object of 

interest in a complex scene. YoloV5 was trained on a custom labelled dataset (to recognize 

specifically people and people laying down). Moreover, DeepSORT is designed to achieve 

real-time. Hence, the combination of both algorithms ensures a rapidity that is essential in 

mission-critical applications. DeepSORT takes advantage of OSNet x1.0, a convolutional 

neural network used for person re-identification, to identify the same person in the video 

stream. 

  

Thanks to a geometrical check of the bounding boxes generated by Yolo to highlight the target 

of interest in the scene (people), the algorithm can also detect if people are laying down or not. 

This is important when monitoring zones of the city after a natural disaster (e.g. earthquake, 

landslide) or in a war scenario. 

  

Profiling of the algorithm on several platforms (those with Arm N1 processors are 

representative of the IDV-E) allows assessing the usefulness of different technologies. Results 

on RISC-V based platforms are also reported. 

  

To be noted that as far as the computation partitioning between general-purpose processor and 

Hardware (HW) accelerator is concerned, Deep-SORT has an irregular data flow and hence is 

less suited for HW acceleration on FPGA than Yolo. For YoloV5 we considered both the case 

it is implemented SW-wise on the general-purpose processor or HW-wise via an FPGA 

acceleration. In this case the complete flow can be pipelined with the FPGA processing with 

Yolo the input video flows and then the general-purpose computing cores applying DeepSORT 

and other control rules. 

In all cases the General Purpose CPU also implements some pre-processing of the input videos 

acquired from the surveillance camera. 

  

As far as mixed-precision is concerned, the Posits were tested through the CppPosit software 

library developed by UNIPI [2]. 

 

Indeed, in TEXTAROSSA it is not foreseen designing a custom processor as an ASIC with 

dedicated HW support for new formats like Posits.  

  

Moreover, some of the considered platforms (e.g. those with NVIDIA GPUs) consider 

automatically an optimization of multiple arithmetic precisions among float32, bfloat/float16 
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and integers (8 or lower). The native mixed-precision is more effective than emulating via 

software the CppPosit library on a given platform.  

 

In the reported Figure 2 and Table 1 the results refer to the best mixed-precision 

configuration. 

 

 

Figure 2: [SmartCities] Computation flow for the YOLOv5 step 

 

Target platform and implementation results 
 

We evaluated the aforementioned deep-learning application through Pytorch on several 

architectures. We employed architectures with and without accelerators (GPUs, FPGA), to also 

evaluate the performance of vector units inside the CPUs, when available. The tested CPU-only 

architectures are based on ARM, RISC-V and Intel.  

 

The platforms used in the test are available at the Green Data Center of University of Pisa 

(GREEN DATA CENTER (unipi.it)).  

Most of the reported HPC platforms, including those with ARM N1 processors, are installed 

and maintained at UNIPI Green Data Center by E4 and hence the results achieved are coherent 

with those achieved on machines made available via VPN by E4. 

 

For ARM we have considered ARM 64 bit architectures and particularly: the ARM Neoverse 

N1 that is the one available in IDV-E, plus that in the Fujitsu A64FX CPU that is the ARM 

SVE (scalable vector extension) and finally the ARM Cortex-A72 available in Xavier NVIDIA 

SoC (system-on-chip) computing board. 

 

• ARM Cortex-A72 CPU (with ARMv8.0-A 64-bit instruction set) with four cores running 
at 1.5 GHz, with support for the 128-bit Neon SIMD extension and 4 Gbyte of RAM. 

• ARM Cortex-A78 CPU (with ARMv8.2-A 64-bit instruction set) has been also tested 
since is inside the AGX Orin with 12 cores. 

• HPE Apollo80 system, powered by a Fujitsu A64FX, running at 2.2 GHz with support for 
the ARM 512-bit Scalable Vector Extension (SVE) SIMD unit. 

• Ampere Altra Max with ARM Neoverse N1 CPU with support to 128-bit NEON SIMD 
instructions (IDV-E platform). ARM Neoverse N1 CPU being derived from Cortex-A76 
supports the ARMv8.2-A 64-bit instruction set as in the Cortex-A78 mentioned above. 

• HiFive Unmatched board powered by a SiFive U740 SoC running at 1.2 GHz for the 
scalar RISC-V unit called Arriesgado. 

• Cascade Lake-based Intel Xeon Silver CPU running at 2.2 GHz with support for the 512-
bit AVX SIMD instructions. 

https://www.unipi.it/index.php/structures-and-research-facilities/item/20923-green-data-center
https://en.wikipedia.org/wiki/ARMv8.2-A
https://en.wikipedia.org/wiki/ARMv8.2-A
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• I7-107650H processor from Intel, implemented in 14nm is a 10th generation x86 I7 
family CPU with AVX2 and SSE4.2 instruction extensions (256-bit SIMD instructions), 
with 2.6 GHz basic frequency (boot up to 4.8 GHz). 

 

The tested GPU-based architectures are: 

• NVIDIA Jetson Orin SoC with an Ampere-based GPU 

• NVIDIA Tesla T4 

• NVIDIA A100 

 

Hereafter, we report the benchmark results for the platforms listed above. In Table 1 we report 

the average number of frames processed per second for each platform on the whole application 

(preprocessing and YoloV5 + people down check + DeepSORT) application. Furthermore, we 

detail, for each architecture, the timing performance for the three different components of the 

application.  

 

 

Platform  FPS  YOLO 

(ms)  

People-down(ms)  DeepSORT (ms) 

ARM Cortex-A72  0.11 7493 1.2 1107 

ARM NeoverseN1  0.73 858 0.6 503 

IDV-E: ARM N1+FPGA  2                  (FPGA) (FPGA) 503 (ARM) 

ARM A64FX 0.43 1292 1.1 1054 

RISC-V SIFIVE U7540 

emulating Arriesgado# 

0.006 148987 2.6 13835 

AGX Orin (12 Cortex-

A78 cores CPU + GPU 

Ampere) * 

7.7 38.8 0.5 54.9 

Intel i7 0.98 807 0.2 207 

Intel i7 + GPU GeFore 

1650Ti (Turing)* 

7.3 85.4 0.3 11,9 

Intel Xeon  1.88 335 0.3 197 

Intel Xeon + GPU Tesla 

T4 * 

12.8 37.8 0.3 15.1 

Intel Xeon + GPU A100* 21.3 10.9 0.3 13.9 

Table 1: [SmartCities] Implementation results and benchmarks for different platforms 

 

Please note that for the 4 cases with * where we have a CPU plus a GPU accelerator, due to 

bottlenecks in the data transfer between the CPU part and the GPU part the overall frame-per-

seconds (FPS) is lower than the inverse of the sum of the individual frame processing time  (i.e. 

for Intel Xeon + GPU A100*  the sum of frame processing time would be 25.1 ms, i.e.  its 

inverse would be a theoretical FPS od 39.84 FPS but due to data transfer bottlenecks among 

CPU-GPU we measured 21.3 FPS). 

 

Please also note that for Arriesgado scalar RISC-V emulated on SI-Five u7540 the very low 

FPS performance achieved when compared to other solutions is due also to the fact thet the 

architecture is emulated. 
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It is worth remembering that the Tesla A100 has fully native support of mixed precision. 

A100 Tensor Core GPU performance specs [3]: 

• Peak FP64 9.7 TFLOPS  

• Peak FP32 19.5 TFLOPS  

• Peak FP16 78 TFLOPS  

• Peak BF16 39 TFLOPS  

• Peak TF32 Tensor Core 156 TFLOPS 

• Peak FP16 Tensor Core 312 TFLOPS 

• Peak BF16 Tensor Core 312 TFLOPS  

• Peak INT8 Tensor Core 624 TOPS  

• Peak INT4 Tensor Core 1,248 TOPS 

    

In Figure 2 we analyze the power efficiency for all platforms with an FPS value higher than 7, 

that is the minimum considered useful for a real application. The power efficiency is measured 

at application level, so the KPI is Frame-Per-Second/Watt or Frame/Joule being 1 Joule equal 

to 1 Watt * 1 second. 

The results achieved show that the most efficient solution is the one with multicore Cortex-

A78 64b plus NVIDIA GPU, although optimizations towards an increases power efficiency are 

needed since the cost is still 2 Joule for each processed Frame. 

If we need to increase the performance to a real-time value for more than 20 FPS the best 

solution is the Intel XEON + A100 GPU with an energy cost of 2.5 Joule per processed frame. 

 

Figure 3: [SmartCities] Power efficiency measured as FPS/Watt 

the higher is the better, for the platforms with FPS higher than 7 (that is the minimum considered for a practical use) 

 

From the results achieved, the key lesson learned to set-up an edge server for surveillance 

applications in smart cities are: 
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• RISC-V computational capabilities, particularly in scalar version, and considering 

commercially available solutions are still far in performance from other platforms like 

those based on Intel and/or ARM. 

• For ARM the SVE version in Fujitsu performed worse than the ARM Neoverse N1 in 

Ampera Altra Max (the one in IDV-E) that is not using SVE; this can be justified by the 

fact that the algorithms were not optimized for the scalar vector extension of the 

processor as implemented in Fujitsu. 

• Multicore ARM Cortex-A 64b (like in the A78 with ARM v8.2 instruction set) sustained 

by a GPU acceleration are the most efficient solution for edge –AI/Video applications. 

• Looking to edge server performance the combination of Intel Xeon plus a GPU Like 

Tesla A100 is the best in terms of pure performance, FPS as KPI, but is also a good 

solution in terms of energy efficiency, FPS/Watt KPI. Since the new ARM Neoverse 

V2 is appearing in the market with ARM 64b v8.4 instruction set and vectorized 

instruction, we expect that ARM Neoverse V2 plus GPU can be as effective as Intel 

Xeon plus A100 GPU.  

• The availability of FPGA Xilinx Alveo in IDV-E can be exploited by porting the Yolo 

calculation on it while keeping the DeepSort on the ARM processor and hence a gain in 

speed can be achieved roughly by a factor of 2. However, the performance are still 

below those that can be achieved using Intel Xeon plus a GPU Like Tesla A100. 

• Modern GPUs like A100 natively support mixed-precision from very low-format (from 

INT4 to FP64 including new FP16 or Bfloat16)  

• New chip evolutions expected from main US companies will extend this mixed-

precision support to microscaled Floating Point formats having also FP4 and FP8 as 

alternative to IEEE 754 standard, see this joint paper from Intel, Meta, Nvidia, AMD, 

Microsoft, Qualcomm 2310.10537.pdf (arxiv.org) entitled “Microscaling Data Formats 

for Deep Learning” and the open library from Microsoft GitHub - 

microsoft/microxcaling: PyTorch emulation library for Microscaling (MX)-compatible 

data formats. This demonstrates  the value of an independent research on compact 

floating –point variants vs the IEEE 754 standard, like Posits and integration for Posits 

with other formats in tools like TAFFO. An idea on future work can be the combination 

in TAFFO of Posits16, 32 with FP32/FP64 for high accurate numerical applications and 

Posit8, with BFloats16, FP8, FP4, INT4, INT8 for video or AI applications where the 

classification accuracy can tolerate a higher numerical inaccuracy. 

 

 

 

2.2 MathLib – CNR 
 

In this section we discuss results obtained by CNR using the mathematical software 

library for hybrid architectures featuring NVIDIA GPUs at node level. As already described in 

previous deliverables, the CNR team has developed computational kernels required in sparse 

matrix computations and iterative linear solvers, which are widely exploited in Scientific 

Computing and Data Analysis. Our library was thought both as main component of the 

TEXTAROSSA platform and as benchmark tool for IDV-A. Focus was on GPU-kernels 

efficiency and on scalability when multiple GPUs, also on different computing nodes, are 

needed for computations because dimensions largely exceed the memory resources of a single 

GPU. Therefore, on IDV-A, the library stresses the GPU operation capabilities and 

https://arxiv.org/pdf/2310.10537.pdf
https://github.com/microsoft/microxcaling?tab=readme-ov-file#readme
https://github.com/microsoft/microxcaling?tab=readme-ov-file#readme
https://github.com/microsoft/microxcaling?tab=readme-ov-file#readme
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memory/communication channels bandwidth at the node level. The Mathlib development 

toolchain includes C compilers, the Cuda Toolkit and the MPI library available as basic 

environment of the TEXTAROSSA platform. Our choice of the above basic tools was 

motivated by the need to re-use some very efficient GPU kernels already available in the library 

baseline (for 1 NVIDIA GPU) and to focus on algorithm and implementation scalability when 

very large number of nodes could be needed. Moreover, extensive use of the GPowerU project 

tool has been made for monitoring GPU kernels energy consumption. In the following we first 

discuss some adaptation and approximations needed at the algorithmic and implementation 

levels to have benefits from the use of heterogeneous systems and then discuss main results.      

  

The MathLib computational kernels developed and tested in the project are the following:  

  

• Sparse matrix – vector multiplication (SpMV);  

• Sparse matrix – matrix multiplication (SpMM);  

• Maximum Weight Matching in undirected graphs (MWM);  

• Preconditioned Conjugate Gradient (PCG) method coupled with a matching-based 

Algebraic MultiGrid preconditioner. Note that in the following we use the acronym BCMG 

to refer to the complete solver. 

  

We point out that the BCMG solver is implemented on the base of all the other computational 

kernels, which are the main blocks for AMG setup (SpMM and MWM) and for solving by PCG 

(SpMV). We present performance and energy consumption results obtained on IDV-A and 

then, to analyze the scalability potential of our main sparse linear solver based on the AMG-

preconditioned Conjugate Gradient method (BCMG), we also show performance, in a weak 

scalability regime, obtained on the Leonardo supercomputer, whose access was granted through 

a Leonardo Early Access Project.   

As benchmark data sets, we consider matrices and right-hand sides of algebraic systems 

required for the solution of the Poisson equation in 3D with homogeneous Dirichlet boundary 

conditions and unitary right-hand side. This is a standard benchmark test case for sparse matrix 

computations because it represents the computational kernel of many scientific and engineering 

applications, and indeed is also used in the HPCG benchmark [4]. In our case, the discretization 

of the problem is obtained by the classic 7-points finite-difference stencil for the left-hand side 

operator (the Laplacian operator), which results in a symmetric positive definite (s.p.d) matrix 

of coefficients well suited for PCG.  Note that, in all the experiments made with the BCMG 

solver and discussed in the following, we stop PCG iterations when the relative residual in the 

Euclidean norm is less than 10-6 or the number of iterations reaches the maximum value fixed 

to 1000 (actually, in all the experiments with the linear solver, the required accuracy is obtained 

with no need to stop for the limit on the maximum number of iterations).  In the case of the 

SpMV kernel, we consider, as vector operand, a vector of all ones, whereas in the case of the 

SpMM kernel, both the operands are the same, so that we compute the square of a Laplacian 

matrix. Finally, for the MWM kernel, we consider the undirected adjacency graphs of the 

Laplacian matrices to which suitable real weights are associated, as applied in the BCMG 

aggregation algorithm for the preconditioner setup.   

We note that our baseline was a mono-GPU version of all the kernels, while in this 

project we focused on a hybrid parallel version leveraging multi-GPUs computing nodes. We 

are interested in analyzing both strong scalability, i.e., the reduction in the execution times when 

a problem with a fixed size is considered on an increasing number of parallel resources, and 

weak scalability properties of our kernels, i.e. when dealing with problems of increasing size, 

while parallel resources increase. The parallel design pattern is based on Single Program 

Multiple Data (SPMD) programming model relying on a row-block distribution of the system 
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matrix and the related right-hand sides among the parallel tasks. Blocks of contiguous rows are 

assigned to each task. We observe that each task is associated to one GPU accelerator which 

oversees all the computation phases.  

Details on the algorithms and parallel design patterns implemented for all kernels of the 

MathLib are discussed in [5] and reported in Deliverable 6.2.  Here we mention, as general 

guidelines for users and software developers, that some approximations in original (mono-

GPU) numerical algorithms have been required, so that the combination of communication-

avoiding algorithms, fine-grained parallelism, and overlapping between computation and data 

communication could allow us to design a scalable version of the BCMG linear solver. Indeed, 

In the context of heterogeneous computing, where we want to use accelerators like GPUs to 

maximize performance, developing effective approaches for the iterative solution of linear 

systems brings the need for new methods, algorithms, and implementations capable of 

exploiting the underlying hardware and basic software. Regardless of the method adopted for 

solving the system, the computation on sparse matrices is particularly challenging with respect 

to its dense counterpart due to the irregular memory access pattern and intrinsic load imbalance 

caused by the sparsity pattern of the matrix rows. GPUs rely on fine-grained parallelism and 

access to medium size memories with high bandwidth, but also not negligible latency. 

Therefore, although the current software stack makes available programming environments 

which provide a clear interface to the features of the hardware, it is still challenging to use the 

above accelerators efficiently, especially for memory-bound kernels, like sparse matrix-vector 

products involved in iterative linear solvers. For example, the NVIDIA GPUs are built in terms 

of arrays of multithreaded, streaming multiprocessors, and each multiprocessor is composed of 

a fixed number of scalar processors. The CUDA programming paradigm is based on the concept 

of blocks of threads which share data. Therefore, having a regular density in the rows of a 

matrix is a favorable situation for high-throughput SIMD operations, whereas the irregular 

structure of general sparse matrices poses some limitations for efficient usage of the architecture 

which often are smoothed by organizing matrices in suitable data structures. Furthermore, a 

sequence of SIMD operations applied to the same data allows realizing the so-called 

data/thread-locality which makes GPU exploitation very efficient. For the same reasons, basic 

iterative algorithms which express a high-level of data parallelism are preferred to more 

complex algorithms which induce data dependency although, generally, the former may have 

worse convergence properties. Indeed, extra computation is often well tolerated and balanced 

by very efficient execution on the GPU. On the other hand, the ability to exploit the scalability 

of large clusters of heterogeneous nodes largely depends on appropriate coordination among 

multiple levels of computation so that data partitioning, data/workload balancing, data 

communication between GPUs, CPUs, and among distributed nodes, do not penalize in a 

significant way the final performance. In the paper we also included details on the algorithmic 

parameters which characterize the AMG preconditioner which, for the sake of brevity, we omit 

in this deliverable.  

2.2.1 Performance and Energy Consumption on IDV-
A  

In this section we discuss results of different kernels, in terms of both parallel performance and 

power/energy consumption. For both strong scalability and weak scalability analysis we 

consider different matrix dimensions per each kernel, so that each GPU can be used at full load, 

as detailed in the tables. Power consumption measures have been obtained for all the kernels 

varying the number of GPUs. As also described in deliverable D6.1, our main KPIs are grouped 

into 3 main categories, as classified in Table 2. We point out that in this deliverable, after some 

discussion among the project partners, with the aim to follow a common practice, we modified 

KPIs for energy, adding a measure considering energy consumption and a measure whose ratio 
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has an average power to the denominator. Finally, we observe that for all the kernels we analyze 

results obtained with the final configuration of IDV-A, including all the hw/sw toolchain 

driving the 2-phase cooling system, while for the BCMG solver we were able to make a 

comparison between and after the installation of the 2-phase cooling system. 

  

KPI for energy KPI for computational efficiency KPI for accuracy 

Iterations/Joule 

Iterations/AvgWatt 

(only for iterative linear 

solver) 

Execution time Yes (User’s parameter 

dependent for iterative 

linear solver) 

Dofs (Degrees of Freedom or 

unknowns)/Joule 

Dofs/avgWatt 

(strong and weak) speedup  

 Number of iterations/time per 

iteration (only for iterative linear 

solver) 

 

 Accuracy  

Table 2: [MathLib CNR] KPIs 

  

Accuracy of the results of all kernels, except the linear solver, is up to the machine precision in 

double precision floating-point arithmetics. In the case of the BCMG linear solver, as already 

said, an accuracy on the solution up to 6 digits is achieved. Different tolerances in the stopping 

criterion can be set up to reduce or increase solution accuracy.  For the sake of completeness, 

we include in the tables for every kernel, also the values of peak and average power as well as 

the total energy measured during the execution of the kernels. Note that for the above measures 

we follow a so-called dynamic approach, that is we neglect power and energy of idle GPUs 

state and we only consider values when the kernels start their execution, including all phases of 

I/O from CPU to the GPU and till the GPUs go back to the idle state. In Table 3, Table 4 and 

Table 5 we report the performance of the SpMV, SpMM and MWM kernels, respectively. 

 
GPUs Dofs Time 

(sec.) 
Sp Power 

(peak) 
Power 

(avg) 
Dofs/avgWatt Dofs/Joule Total Energy 

Strong Scalability 

1 3.1x108 0.30 1 137 116.0 2.7x106 3.15x105 969.45 

2 3.1x108 0.26 1.2 133 116.3 2.6x106 3.13x105 979.07 

4 3.1x108 0.20 1.5 133 115.0 2.6x106 3.16 x105 967.48 

Weak scalability 

2 6.2x108 0.34 1.8 137 117.5 5.2x106 7.30x104 8389.12 

4 12.4x108 0.48 2.5 164 117.8 10.4x106 7.21x104 16993.58 

Table 3: [MathLib CNR] Performance and Energy Consumption of the SpMV kernel 

  

 

 We observe that, as expected for such a communication-bound kernel, parallel efficiency 

degrades when GPU number increase also in a weak scaling setting. Furthermore, while total 

energy consumption is preserved in a strong scaling setting, in the weak scaling, doubling 

number of Dofs going from 1 to 2 GPUs, produces an increasing ratio in energy consumption 

of more than 8.  This increasing ratio is, as expected, about 2 going from 2 to 4 GPUs. Different 
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behavior in terms of energy consumption is observed for the SpMM kernel, where in the strong 

scaling setting, the energy consumption increases for increasing GPU number both in a strong 

scaling and in a weak scaling setting. A large increase in energy consumption, when the number 

of GPUs increases as well as the number of Dofs, is also observed for the MWM kernel. The 

above behavior requires a deeper analysis and hopefully further tests. 

 
GPUs Dofs Time 

(sec.) 
Sp Power 

(peak) 
Power 

(avg) 
Dofs/avgWa

tt 
Dofs/Joule Total 

Energy 
Strong Scalability 

1 3.8x107 0.33 1 179 117.0 3.3x105 6.75x104 567.09 

2 3.8x107 0.13 2.6 122 115.5 3.3x105 5.08x104 753.80 

4 3.8x107 0.31 1.1 122 116.5 3.3x105 3.35 x104 1143.56 

Weak scalability 

2 7.6x107 0.20 3.4? 131 116.5 6.6x105 4.19x104 1828.25 

4 15.2x107 0.19 7.0? 132 116.8 13.1x105 4.89x104 3127.72 

Table 4: [MathLib CNR] Performance and Energy Consumption of the SpMM kernel 

 

  
GPUs Dofs Time 

(sec.) 
Sp Power 

(peak) 
Power 

(avg) 
Dofs/avgWa

tt 
Dofs/Joule Total Energy 

Strong Scalability 

1 2.7x108 0.257 1 198 118.0 2.3x106 2.94x105 913.72 

2 2.7x108 0.128 2.0 160 118.5 2.3x106 2.95x105 910.65 

4 2.7x108 0.064 4.0 141 118.0 2.3x106 4.06x105 661.35 

Weak scalability 

2 5.4x108 0.257 2.0 193 118.0 4.5x106 6.98x104 7685.71 

4 10.8x108 0.257 4.0 200 118.0 9.0x106 9.68x104 11086.53 

Table 5: [MathLib CNR] Performance and Energy Consumption of the MWM kernel 

  

In the following we put results obtained with the BCMG solver before and after installation of 

the 2-phase cooling system. In the figures we report pictures of the power consumption behavior 

of the execution of the BCMG solver on 4 GPUs, when each GPU oversees a local matrix with 

about 61x106 Dofs for a linear system with a total of 2.4x108 Dofs. 

  

In Figure 4 we report the behavior before the 2-phase cooling installation and in Figure 5 we 

show the same behavior after installation. We observe very similar power behavior but in the 

right side of the picture, where we see that GPUs go toward the idle state power rapidly drops 

in Figure 4 while in Figure 5 the same time was not sufficient to reach the idle state power, 

showing that the cooling controller has some impacts on the transition of the GPUs to the idle 

state. If we go deep inside the numbers reported in Table 6 and Table 7 we can better observe 

that, while performance of the solver shows a small degradation after the installation of the 2-

phase cooling system, the energy consumption shows a slight reduction.  
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Figure 4: [MathLib CNR] Power behaviour of BCMG on IDV-A before the 2-phase cooling system installation 

 

  

  

Figure 5: [MathLib CNR] Power behaviour of BCMG on IDV-A after the 2-phase cooling system installation 

 

Table 6 and Table 7 summarize results for the BCMG solver, as for the other kernels, before 

and after installation of the 2-phase cooling system. 

  

 
GPUs Dofs Time 

(sec.) 
Sp Power 

(peak) 
Power 

(avg) 
Dofs/avg

Watt 
Dofs/Joule Total Energy 

Strong Scalability 

1 6.1x107 8.59 1 399 178.0 3.4x105 2.85x104 2147.72 

2 6.1x107 5.25 1.6 338 166.5 3.7x105 2.37x104 2578.74 

4 6.1x107 4.45 1.9 247 148.3 4.1x105 1.86x104 3283.00 

Weak scalability 

2 12.2x107 9.96 1.7 352 162.0 7.6x105 2.03x104 6011.36 

4 24.4x107 11.27 3.1 354 153.0 16.0x105 1.90x104 12898.43 

Table 6: [MathLib CNR] Performance and Energy Consumption of the BCMG solver before installation of the 2-

phase cooling system 
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GPUs Dofs Time 

(sec.) 
Sp Power 

(peak) 
Power 

(avg) 
Dofs/avgWatt Dofs/Joule Total 

Energy 
Strong Scalability 

1 6.1x107 9.77 1 400 169.0 3.6x105 3.18x104 1920.95 

2 6.1x107 6.14 1.6 319 156.5 3.9x105 2.70x104 2268.53 

4 6.1x107 5.68 1.7 235 140.3 4.4x105 2.15x104 2843.50 

Weak scalability 

2 12.2x107 10.70 1.8 352 156.0 7.8x105 2.09x104 5863.95 

4 24.4x107 11.98 3.3 342 152.5 16.0x105 1.95x104 12524.63 

Table 7: [MathLib CNR] Performance and Energy Consumption of the BCMG solver after installation of the 2-phase 

cooling system 

  

  

2.2.2 Weak Scalability results of BCMG up to 64 
billion dofs on the Leonardo Supercomputer 

  

In this section, we analyse the scalability potential of our BCMG sparse linear solver 

when the number of GPUs largely increases; the fixed matrix size per node is equal to 

2503=~15.6M dofs, going from 1 to 4096 GPUs of the general-purpose module of the Leonardo 

Italian Supercomputer operated by Cineca. Therefore, we solve problems up to 64 billion Dofs. 

We analyse the performance of the linear solver looking at the number of iterations to obtain 

the desired accuracy, the execution time to solve the system and the execution time per each 

solver iteration, to characterize the ability of the solver in leveraging large-scale resources for 

solving problems of increasing size. In the following figures, indeed, we report all KPIs which 

characterize the application phase of a linear solver. In Figure 6 we show the number of 

iterations needed to reach the required accuracy for increasing dimension and number of GPUs. 

We can observe that, as expected, due to a general increase in the conditioning number of the 

system matrices and to the uncoupled aggregation approach in the setup of the AMG hierarchy, 

number of iterations changes for increasing number of GPUs; after a rapid increase from 1 to 4 

GPUs, we observe a good algorithmic scalability, with  an almost stable number of iterations, 

up to 2048 GPU, while a significant increase is observed going from 2048 to 4096 GPUs 

showing a degradation of the quality of the preconditioner. This degradation is also responsible 

for the increase of the solve time, as observed from Figure 7. Moreover, we point out that we 

were able to solve a linear system with 64 billion Dofs in less than 3.8 seconds, with an increase 

in solve time of less than 6.5 times to solve a system whose size increases by more than 4 

thousand times, going from 1 to 4096 GPUs. In Figure 8 we show the execution time per 

iteration which is a KPI showing efficiency and scalability of the implementation of BCMG 

and all its computational building blocks. We can observe an increase in the time per iteration 

which is expected for such a type of communication/memory bound problems, however we 

observe an increase of only 3.4 times going from 1 to 4096 GPUs, which indicates a very good 

implementation scalability and leads to a scaled speedup of the solve phase of 632.5 on 4096 

GPUs (see Figure 9).  

  



 

textarossa.eu   D6.3 | 30 

 

Figure 6: [MathLib CNR] Weak scalability on Leonardo up to 64 billion Dofs, number of iterations 

 

  

 

Figure 7: [MathLib CNR] Weak scalability on Leonardo up to 64 billion Dofs, solve time 
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Figure 8: [MathLib CNR] Weak scalability on Leonardo up to 64 billion dofs, execution time 

 

  

 

Figure 9: [MathLib CNR] Weak scalability on Leonardo up to 64 billion dofs, speedup 

 

 

Comparison with NVIDIA AmgX library 
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In this section we show comparisons with the hybrid version of 

NVIDIA AmgX [6, 7], that is the state of the art for AMG-preconditioned sparse linear solver 

on NVIDIA GPUs. AmgX makes available various AMG preconditioners, based on different 

well-known coarsening approaches already available in other libraries, and producing AMG 

hierarchies with different computational complexities. For a fair comparison, we selected two 

input configurations for the AMGX solver: AMGX-C refers to a preconditioned Conjugate 

Gradient solver based on a robust preconditioner having very good algorithmic scalability at 

the cost of a large computational complexity, while AMGX-AGG refers to the PCG solver 

coupled with an aggregation-based preconditioner, which defines AMG hierarchies based on a 

similar coarsening approach and having complexities comparable with our preconditioner. Due 

to the limitation in using more than 128 nodes, we were able to run our tests on up to 512 GPUs 

of the Leonardo supercomputer. Stopping criteria are the same for all the solvers and are the 

same we used for the tests with BCMGX discussed in the previous sections. For these tests we 

were able to use a problem size per GPU equal to 2003 = 8 million Dofs up to more than 4 

billion dofs on 512 GPUs. In Figure 10 we show number of iterations needed to reach the 

desired accuracy. We can see that, as expected, the best behaviour is obtained by AMGX-C, 

while our BCMGX shows largely better algorithmic scalability with respect to AMGX-AGG. 

In Figure 11 we show total solve time. Here we observe that the smallest number of iterations 

obtained by AMGX-C does not balance its large cost per iteration (see Figure 12) for a number 

of GPUs larger than 8 and then for increasing number of GPUs and problem size, our BCMGX 

obtains the smallest execution time with respect to the AMGX solvers. The above results are 

very promising and demonstrate the benefits of our new parallel algorithms and 

implementation design patterns for heterogeneous architectures. Our MathLib can be 

considered, indeed, as a main tool of the TEXTAROSSA Integrated Platform for Scientific 

Computing leveraging heterogeneous architectures exploiting NVIDIA GPUs. 

 

 

Figure 10: [MathLib CNR] Weak scalability on Leonardo. BCMGX vs AMGX, number of iterations 
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Figure 11: [MathLib CNR] Weak scalability on Leonardo. BCMGX vs AMGX, solve time. 

 

 

Figure 12: [MathLib CNR] Weak scalability on Leonardo. BCMGX vs AMGX, time per iteration 

 

 

2.3 RTM – FRAUNHOFER 
Reverse Time Migration (RTM) is used in the field of seismic for oil and gas exploration. 

Among other migration algorithms RTM is able to visualize more details compared with more 

simple algorithms as e.g. Kirchhoff migration that uses high frequency ray approximation. 
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Especially steep dips can’t be mapped well by Kirchhoff 

migration. On the other hand the computational effort is higher because a simulation of the 

wave equation has to be done for the source and the receiver data followed by the correlation 

and stacking of the matching source and receiver domains (imaging condition). This means 

that the computational effort is especially critical with RTM algorithms. 

Depending on the complexity of the velocity model RTM algorithms come at least in three 

flavours, the isotropic (ISO), the vertical transverse isotropy and the tilted transverse isotropy 

(TTI). The latter two have an anisotropy axis which can be tilted versus the vertical axis in TTI. 

Especially the ISO and VTI form are typically used in practical applications. These algorithms 

are mostly memory bound. For this reason, increasing the pure FLOP rate is not helpful to 

decrease the time to solution. On the other hand, decreasing the precision of the Floating Point 

format might exploit better the available memory bandwidth and increase the FLOP rate under 

constant or even shrinking power envelope. The question to explore is if lower precision is 

sufficient to keep up the image quality of RTM migration algorithms calculated in full 

precision. As the typical Floating Point format in seismic is 32 bit IEEE Float we evaluate 

different 16 bit Floating Point formats. Among them 16 bit Posit format and 16 bit Floating 

Point format. 

 

Previous experiments have demonstrated that RTM images calculated in reduced precision 

deliver competitive images compared with calculations in 32 bit Float. Simple stability tests 

also demonstrated positive outcome. However, these images were based on a single shot and 

were far from modeling a realistic seismic scenario. So the next step is to model a more realistic 

case. To limit the calculation time to an applicable amount we switch to 2D images and use the 

well known Marmousi model. The Marmousi model is an artificially created reference model 

based on a section in the Cuanza Basin. It is very often used in the literature to compare the 

performance of different migration algorithms. 

  

 Design of experiments 
A small reference implementation is created that is able to calculate the isotropic RTM 

Marmousi example. The source and receiver wavefields can be stored in different Floating 

Point standards, the Float32, the Float16 and the Posit format. The RTM kernel can be 

calculated in the same Floating Point format matching the storage or it can be calculated in 

Float32 while the Floating Point format is converted back and forth. Another part is the Floating 

Point format of the calculated Image from the two wavefields. This format can be identical to 

the reduced precision Floating Point format or it can be stored in Float32. The Floating Point 

format of the image can be mixed arbitrarily with the calculation format of the kernel. 

Furthermore the calculation of the imaging condition in reduced precision can be done 

including the Kahan summation. The image is calculated by calculating the correlation between 

the source wavefield und the receiver wavefield. The different correlations which are in the 

order of magnitude of the number of calculated timesteps are summed up to yield the final 

image. The precision of this sum can be improved using the Kahan summation. The advantage 

of the Kahan summation is a higher precision than using normal summation. The disadvantage 

of the Kahan summation is that two numbers per pixel are needed. Thus the bandwidth needed 

to store the image in 16 bit format is the same as the number of bit to store a 32bit image in. 

The Floating Point effort is even higher than calculating in Float32. However, this approach 

can be useful because a very lean compute core can be used to calculate the imaging condition 

having only ALUs in reduced precision. 
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Results Posit format 
The Marmousi model is reduced to save computational time. The model has 240 shots that are 

reduced to 40 shots around the center (shots #101 to #140). Furthermore, the simulated time is 

reduced from 2.7 seconds to 1.62 seconds. The gird spacing is 16m in depth direction and 25m 

in lateral direction. The timestep is 1.405 milliseconds. The number of pixels in the domain is 

185x223 (lateral times depth). The full domain would be 367x187 but is adjusted in these 

experiments. As only 40 shots are calculated the simulated domain can be reduced in lateral 

direction. In depth direction that size has been slightly extended beyond the full domain. The 

reason is that no specific boundary condition has been implemented. Thus, padding the domain 

reduces the amount of artifacts in the images created by reflected waves at the artificial 

boundary of the domain. The sources and receivers are coupled in 18 pixels beyond the upper 

boundary. In the calculation campaign different combinations of Floating Point formats in the 

domain, the kernel and the image are tested. All the Posit16 values use one exponent. The 

source signal is modeled as a Gabor wavelet. 

 

 

Figure 13: [RTM] Marmousi results with different combinations of Floating Point formats  
Left: Reference simulation in Float32 Right: specific combination of Posit with Float32 formats 

The combinations are from top to bottom: 

Label “p16.1_storage_only”: Domain Posit, kernel Float32, image Float32 

Label “p16.1”: Domain Posit, kernel Posit, image Float32 

Label “p16.1_accumulate”: Domain Posit, kernel Posit using quire for dot products, image Float32 

Label “p16.1_accumulate_scale”: Domain Posit, kernel Posit using quire while scaling model and traces, image Float32 
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Figure 13 and Figure 14 demonstrate that using Posit 16 with 

one exponent as a storage format for the domain only creates very similar images compared to 

the pure Float32 reference image. Using Posit for calculation of the kernel too yields 

unacceptable results (p16.1). The reason for the poor performance might be catastrophic 

cancellation in calculation of the stencil inside the kernel. To mitigate a possible cancellation a 

Posit quire is used to sum up the stencil. The quire has a high number of bits as an intermediate 

storage of the sum to avoid cancellation in intermediate results. Only the final result is rounded 

to the available mantissa. Image “p16.1_accumulate” demonstrates that the quire doesn’t 

improve the image quality significantly. Another source of low precision could be a low 

mantissa because of large Floating Point values.  The mantissa of Posit values is decreasing the 

more the absolute value deviates from 1.  Figure 15 demonstrates the distribution of absolute 

values in the velocity model and the receiver data. The median of the velocity model is 2638.28. 

The average of the two medians (negative values and positive values) is 30.981. The receiver 

data and the velocity data is scaled so that the median values map to 1. The output images are 

scaled back so that the scaling is cancelled out. Simulation “p16.1_accumulate_scale” 

demonstrates that the scaling fixes the broken image. In Figure 13 simulation “p16.1_scale” 

demonstrates that the scaling alone is sufficient to create a good image and that the quire is not 

needed. Simulation ”p16.1_scale_img_p16.1” and ”p16.1_scale_img_p16.1_kahan” 

demonstrate that an image stored in Float16 doesn’t make the image unusable 

 

 

Figure 14: [RTM] Marmousi results with different combinations of Floating Point formats continued 
Left: Reference simulation in Float32 Right: specific combination of Posit with Float32 formats 

The combinations are from top to bottom: 

Label “p16.1_scale”: Domain Posit, kernel Posit scaling model and traces, image Float32 

Label ”p16.1_scale_img_p16.1”: Domain posit, kernel Posit scaling model and traces, image Posit 

Labe l”p16.1_scale_img_p16.1_kahan”: Domain posit, kernel Posit scaling model and traces, image Posit Kahan 
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Figure 15: [RTM] Distribution of absolute values in velocity model (left) and all the receiver traces (right) 
Input data is sorted ascending for size and plotted as absolute value. 

 

 

Figure 16 plots the infinity norm of the difference between Float32 and Posit normalized by 

the infinity norm of the Posit image. The simulation using Posit as storage format for the image 

deviates significantly more from the reference than all the other useful cases. The usage of 

Kahan summation brings back the deviation to similar values as other useful cases (approx. 

4%). 

 

To have close to zero difference between Float32 and Posit is not necessarily crucial. Most 

important is to have no shifts of the reflectors especially in depth direction. On the other hand 

a difference close to zero implies few shifts. But although the case ”p16.1_scale_img_p16.1” 

has significantly higher deviation towards Float32 as e.g. “p16.1_scale” the eye cannot see 

relevant shifts of reflectors in both cases. 

2.3.1.1  Numerical Stability 
To save computational time the simulation has been restricted to a subset of the model. 

Especially the simulated time has been reduced. To verify that the Marmousi example is stable 

also for longer simulated times the simulated times was increased in a further reduced test 

example. Here the development of the total energy of the source wavefields is plotted over time. 

A proxy for the total energy is the summed squares of all the pixels. According to the physics 

a conservation of energy is expected over time. So this property is a must have of the algorithm 

and a violation of this property reveals numerical instability. 

  

Figure 17 demonstrates a significant increase of the energy beyond 1.6 seconds simulated time. 

The same simulation with 17 bit Posits demonstrates that this explosion of energy can be 

avoided by using a slightly higher precision. This means that the precision of the Posit 16 bit is 

very close to sufficient to avoid this explosion. In the end a reorganization of the kernel was 

sufficient to stabilize the algorithm even if 16 bit Posits. 
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Figure 16: [RTM] Distribution of absolute values in velocity model (left) and all the receiver traces (right) 

 

 

 

 

Figure 17: [RTM] Distribution of absolute values in velocity model (left) and all the receiver traces (right) 
The energy of shot number 120 of 240 in the Marmousi model is plotted over time. The Floating Point format is Posit with 16 bit (red), 17 

bit (green) and 16 bit with reorganized kernel (blue). Always one exponent is used. Parameters: Grid spacing is 25x16 meters, timestep is 

1.405ms, the simulated time is from 0 to 2.7s. The number of pixels is 185x223 for the red and the green curve and 185x373 for the blue 

curve. 
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2.3.1.2 Conclusion 
To use the Posit 16 one exponent Floating Point to store the source and receiver wavefields 

delivered acceptable images more or less out of the box. Using the same format for calculation 

of the kernel raised some issues. These issues could be solved by scaling the model and the 

receiver samples combined with a numerical reorganization of the kernel. Using the Posit as 

format to aggregate the correlated images too increases the deviation towards Float 32 bit 

significantly but the results are still acceptable. Additionally, the Kahan summation can be used 

to rebuild a low deviation towards Foat32. However, this mitigates the bandwidth savings of 

the reduced precision format. On the other hand, this is only a minor drawback as the number 

of memory accesses to the image during the stacking process is small compared to the memory 

accesses to the wavefields during the stacking process and during the kernel calculation. The 

advantage to use Kahan summation might be that the compute core can be designed more 

simply by dropping the support for Float32 completely. 

  

Results Float16 format 
The simulation in Float 16 bit Floating Point format is less compute time consuming so that the 

full Marmousi model can be calculated. The gird spacing is 16m in depth direction and 25m in 

lateral direction.  The simulated time is 2.7 seconds, the timestep is 1.405 milliseconds. The 

number of pixels in the domain is 439x373 (lateral times depth). The full domain would be 

367x187 but is padded to avoid artifacts caused by reflections on the artificial boundaries. The 

sources and receivers are coupled in at 93 pixels beyond the upper boundary. Sources and 

Receivers are scaled to avoid overflow of exponents in the Float 16 data type. The maximum 

representable value is 65504 in Float16. In the calculation campaign different combinations of 

Floating Point formats of the domain, the kernel and the image are tested. The source signal is 

modeled as a Gabor wavelet.  

Figure 18 depicts the calculated images. The first model “f16” shows storage and calculation 

of the wavefields in Float16 while the image is stacked in Float32. The next case uses Float 16 

bit for stacking of the image too while the case “f16_img_f16_kahan” uses Kahan summation 

additionally to stack the images. The remaining two cases store the wavefields in ­Float16 and 

calculate the kernel in Float32. The “f16_storage_only” case stacks the image in Float32 while 

the “f16_storage_only_img_f16” stacks the image in Float16. All the images show an 

acceptable quality. The eye can detect very subtle differences between images where the kernel 

has been calculated in Float32 compared to kernels calculated in Float16. 

Figure 19 plots the relative norm of difference versus the pure Float32 case as reference. The 

cases where the kernel was calculated in Float16 are all very similar around 7% deviation. The 

deviation of the respective Posit16 cases towards Float32 (3%) was lower (better). Calculating 

the kernel in Float32 reduces the deviation to 0.5% or 4% if the image is stacked in Float16. 

Stacking the image in Float16 makes a significant difference here. 

  

2.3.1.3  Numerical stability 
  

To verify that the Marmousi example is stable while calculated in Float16 the development of 

the total energy of the source wavefields is observed over time (0s-2.7s). A proxy for the total 

energy is the summed squares of all the pixels. In none of all the cases the plotted energy over 
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simulated time did show any explosive increase (data not 

shown). So no signs of instability have been detected. 

 

2.3.1.4 Conclusion 
All the different combinations of Float16 with Float32 delivered acceptable images and 

numerically stable simulations. If the kernel was calculated in Float16 the deviation versus the 

reference was double compared to the respective Posit16 calculations. On the other hand, if the 

kernel was calculated in Float32 the Float16 simulation had smaller deviations towards the 

reference. Scaling the input data was necessary with Float16 as well as with Posit16. 

 

 

 

 

Figure 18: [RTM] Marmousi results with different combinations of Floating Point formats 
Left: Reference simulation in Float32 Right: specific combination of Float16 with Float32 formats 

The sources and receivers are scaled to avoid exponent overflow in Float16 values. 

The combinations are from top to bottom: 

Label “f16”: Domain Float16, kernel Float16, image Float32 

Label ”f16_img_f16”: Domain Float16, kernel Float16, image Float16 

Label ”f16_img_f16_kahan”: Domain Float16, kernel Float16, image Float16 with Kahan summation 

Label “f16_storage_only”: Domain Float16, kernel Float32, image Float32 

Label “f16_storage_only_img_f16”: Domain Float16, kernel Float32, image Float16 
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Figure 19: [RTM] Infinity norm of difference between Float16 and Float32 as percentage of the infinity norm of the 

Float16 example 

 

2.4 HEP 
High-Energy Physics (HEP) experiments are increasingly using a mix of processing hardware 

(heterogeneous architectures) to keep up with computing solutions offered by accelerator 

technologies. 

 

The TEXTAROSSA project focused on two applications from CERN's Patatrack team: 

Pixeltrack (a pixel tracking algorithm used for CMS detector) and CLUE (a cluster algorithm 

for high-granularity calorimeters). Our first goal was to rewrite them using a portability layer. 

This allows a single codebase to run efficiently on various hardware types from different 

vendors. Recoding for each specific architecture is impractical.  

Following objective was to evaluate the performance of these applications in two key areas: 

• throughput: number of reconstructed events per second; 

• energy efficiency: number of reconstructed events per Joule, obtained from the ratio 

between throughput and power. 

 

As reported on deliverable D6.2, for the TEXTAROSSA project we concluded that while 

SYCL is a promising approach, Intel's oneAPI implementation isn't stable or mature enough 

for our needs. Specifically, we require running the applications used to collect and process data 

from HEP detectors on various mixed hardware platforms. For that reason, we opted to use a 

different abstraction layer called Alpaka [1] to collect data for the TEXTAROSSA project. As 

quoted from the Alpaka documentation: "The Alpaka library is a C++14 header-only 

abstraction library designed for accelerator development. Its goal is to ensure performance 

portability across accelerators by abstracting (not hiding!) the underlying layers of parallelism." 
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While coding with Alpaka is more complex than with SYCL, 

this library supports a wider range of devices from different vendors compared to oneAPI, 

making it better suited for our project. 

Therefore, we opted to conduct all measurements leveraging the Alpaka version of the 

application, in this way we were able to run the same source code on various devices without 

any modifications. We used the applications to characterize the IDV-A (CPU only, CPU+GPU) 

and IDV-E (CPU only) node’s performance. 

 

2.4.1 Baseline KPIs assessment on Dibona node 
 

We repeated the tests and measurements on the Dibona node, that were already reported in 

Deliverable 6.2, to be more confident in assessing the baseline for the applications’ KPIs to be 

used in the comparison with the IDV-A and IDV-E nodes’ performance. 

 

2.4.1.1 Tests on CPU 
Our focus on the CPU is twofold: firstly, to verify that our code efficiently scales increasing 

the number of processing cores. Secondly, we want to see how energy efficiency is affected by 

this scaling. We achieved this by running both applications with a varying number of cores and 

threads. To measure power consumption, we employed the likwid-perfctr tool. This tool also 

assisted us in accurately specifying the number of cores to be used. 

The number of threads could be indicated in the command we use to run the application, 

instead. In the same command we also specified how long the applications must run. Every test 

was 2-minute long and the likwid-perfctr tool extracted the power consumption values every 

second. An example of one of those execution command is: 

 
likwid-perfctr -f -C S<socket_id>:<cores> -g ENERGY -t 1s -O -o 

<output-file>.csv ./alpaka --serial --runForMinutes 2 --numberOfThreads 

<threads> 

 

The results we achieved are reported in the section below. Table 8 and Table 9 show the 

measures of throughput (events/second), Power (W) end Energy Efficiency (a.u., normalizing 

to 1.0 the events/J obtained on a single core) for the CLUE application and for the Pixeltrack 

application when they run on CPU, scaling the number of logic cores. 

 

 
CLUE on CPU 

cores thread Throughput 

(events/sec) 

Power 

(W) 

Energy efficiency 

(ref single core) 

1 1 4.341 81.114 1.0 

2 2 8.574 85.074 1.748 

4 4 16.878 92.266 3.077 

8 8 33.720 107.233 5.169 

16 16 66.586 136.053 8.049 

24 24 98.840 166.268 9.676 

48 48 189.239 162.402 18.980 

64 64 232.670 172.709 21.917 

72 72 253.44 181.032 22.777 
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96 96 296.225 173.950 27.745 

Table 8: [HEP] KPIs for CLUE on Dibona CPU 

 

 

 

 

 
Pixeltrack on CPU 

cores thread Throughput 

(events/sec) 

Power 

(W) 

Energy efficiency 

(ref single core)) 

1 1 30.118 82.116 1.0 

2 2 60.7018 86.439 1.890 

6 6 178.051 103.708 4.354 

12 12 350.269 129.147 6.835 

24 24 705.473 182.601 9.556 

48 48 1365.25 177.424 13.306 

64 64 1573.48 190.017 20.419 

72 72 1604.44 192.939 20.535 

96 96 1353.11 178.625 18.733 

Table 9: [HEP] KPIs for Pixeltrack on Dibona CPU 

 

The scaling of throughput for both applications is illustrated on Figure 20 and Figure 21.  

 

 

Figure 20: [HEP] Throughput vs cores for CLUE on Dibona CPU 
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Figure 21: [HEP] Throughput vs cores for Pixeltrack on Dibona CPU 

 

Figure 22 and Figure 23 explore the relationship between the number of cores used and the 

applications' energy efficiency. It's important to note that the data in both these figures is 

normalized, meaning it's been adjusted relative to the performance achieved with a single 

thread on a single core. 
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Figure 22: [HEP] Energy efficiency vs cores for CLUE on Dibona CPU 

 

 

 

 

Figure 23: [HEP] Energy efficiency vs cores for Pixeltrack on Dibona CPU 
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Figure 20 and Figure 21 show that the performance grows linearly when we run one thread per 

core using one socket. This trend remains almost constant for both the applications, but for the 

Pixeltrack algorithm, above 64 threads, the performance gets worse. A similar behaviour can 

be noticed in Figure 22 and Figure 23, showing the scaling of the Energy Efficiency KPI with 

the number of CPU cores used by the applications. 

This difference might be caused by the Pixeltrack implementation possibly requiring more 

memory accesses, incurring in resource contention. 

 

2.4.1.2 Tests on GPU 
Our focus on the GPU is similar to the CPU analysis: demonstrating how well our code utilizes 

an increasing number of GPUs and how energy efficiency is affected. 

To achieve this, we fixed the number of CPU threads per GPU at 12, ensuring each thread runs 

on a separate core. This ensures all 48 physical cores are utilized when using 4 GPUs. As with 

the CPU tests, the number of CPU threads can be specified in the application's launch 

command. Additionally, this command allows configuring the mapping between GPUs, CPU 

threads, and cores. All our tests ran for a duration of 2 minutes. 

 For illustration purposes, here's an example command used to run the application on 2 GPUs: 

 
(CUDA_VISIBLE_DEVICES=0 taskset -c 0-11 ./alpaka --cuda --runForMinutes 2 -

- 

numberOfThreads 12) & (CUDA_VISIBLE_DEVICES=1 taskset -c 12-23 ./alpaka --

cuda - 

-runForMinutes 2 --numberOfThreads 12) 

 

For the power consumption measurements, we use the NVIDIA-smi tool; we read the value 

from the GPUs every 5 seconds to not affect their performance. As example: 

 
NVIDIA-smi dmon -i <id_gpus> -d <time> 

 

The results we achieved are reported in the section below. Table 10 and Table 11 show the 

measures of throughput (events/second), Power (W) and Energy Efficiency (events/J) for the 

CLUE application and for the Pixeltrack application when they run on one or more GPUs. 

 

CLUE on GPU – A100 

GPU Throughput 

(events/sec) 
Power 

(W) 

Energy 

efficiency 

(events/J) 

1 1401.940 175.500 7.991 

2 2937.820 368.261 7.979 

3 4369.630 551.833 7.922 

4 5651.190 728.849 7.756 

Table 10: [HEP] KPIs for CLUE on GPU on Dibona node 

 

 

Pixeltrack on GPU – A100 

GPU Throughput 

(events/sec) 
Power Energy 

efficiency 
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(W) (events/J) 

1 2174.430 149.333 14.59 

2 4302.790 300.804 14.34 

3 6370.730 445.749 14.29 

4 8591.570 595.272 14.43 

Table 11: [HEP] KPIs for Pixeltrack on GPU on Dibona node 

 

 

Figure 24 and Figure 25 show for both applications the close-to-perfect linear scaling of 

throughput KPI with the number of the used GPUS on the Dibona node. 

 

 

Figure 24: [HEP] Throughput (a.u.) vs number of used GPUs for CLUE on Dibona node 
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Figure 25: [HEP] Throughput (a.u.) vs number of used GPUs for Pixeltrack on Dibona node 

 

Figure 26 and Figure 27, on the other hand, show for both applications an almost constant 

trend of the energy efficiency KPI (normalized to what is obtained on one GPU) scaling the 

number of the used GPUs on the Dibona node. 
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Figure 26: [HEP] Energy efficiency (normalized to one GPU) vs number of used GPUs for CLUE on Dibona node 

 

 

 

 

 

Figure 27: [HEP] Energy efficiency (normalized to one GPU) vs number of used GPUs for Pixeltrack on Dibona node 
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2.4.2 Tests on IDV-A 
Being available the IDV-A, a dual-socket server equipped with two Intel(R) Xeon(R) Platinum 

8470 (Sapphire Rapids generation with 52 Physical cores Total Threads.) and 4 NVIDIA 

H100-64MB, we had the chance to test the performance of the CLUE and Pixeltrack 

benchmarking applications on this node implemented with more recent technologies. In this 

section we report the results of the measured applications’ KPIs on the IDV-A node, for both 

CPU only and CPU+GPU configurations. 

 

2.4.2.1 Tests on CPU 
 

In Table 12 and Table 13 the measurements of throughput (events/second), Power (W) and 

Energy Efficiency (a.u.) for the both CLUE and Pixeltrack applications run on their CPU 

versions are listed. 

 

CLUE on CPU 

cores thread Throughput 

(events/sec) 

Power 
(W) 

Energy efficiency 

(ref single core) 

1 1 3.198 405.81 1.0 

2 2 6.364 408.87 1.975 

6 4 18.865 417.10 5.740 

12 8 37.462 428.19 11.102 

24 16 75.028 451.89 21.068 

52 52 161.582 504.82 40.616 

64 64 196.779 529.61 47.148 

72 72 220.188 546.27 51.148 

96 96 314.112 607.79 65.580 

Table 12 [HEP] KPIs for CLUE on CPU for IDV-A node 

 

Pixeltrack on CPU 

cores thread Throughput 

(events/sec) 

Power 
(W) 

Energy efficiency 

(ref single core) 

1 1 21.469 407.23 1.0 

2 2 44.915 409.62 2.080 

6 6 132.096 420.32 5.961 

12 12 261.728 431.91 11.494 

24 24 527.451 466.24 21.458 

52 52 1138.95 535.87 40.316 

64 64 1138.95 568.78 45.916 

72 72 1528.82 591.81 49.001 

96 96 2060.88 672.98 58.086 
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Table 13: [HEP] KPIs for Pixeltrack on CPU for IDV-A node 

 

 

Figure 28 and Figure 29 show, as in the case of the Dibona node, a close-to-perfect linear trend 

of the throughput KPI with the scaling of the number of used CPU cores, with a marginal 

improvement in absolute terms on IDV-A for this KPI for the CLUE application, while there 

is a noticeable improvement in scaling approaching the maximum number of available cores 

for the Pixeltrack application, with a better scaling behaviour on IDV-A and a noticeable 

improvement in the maximum attainable throughput in the new architecture. 

 

 

Figure 28: [HEP] Throughput vs number of used cores for CLUE on IDV-A CPU 
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Figure 29: [HEP] Throughput vs number of used cores for Pixeltrack on IDV-A CPU 

 

 

The scaling of the energy efficiency with the number of used CPU cores for the CLUE 

application on the IDV-E CPU (Figure 30) shows a similar linear trend to that on the Dibona  

CPU (Figure 22). Instead, for what regards the scaling on the energy efficiency on the IDV-A 

CPU of the Pixeltrack application, Figure 31shows a quite relevant improvement of the IDV-

A CPU with respect to the corresponding result for the Dibona node (Figure 23). Focusing on 

the absolutes of the energy efficiency KPIs shows a significant degradation of performance on 

IDV-A tough. This is mainly due to the ~400 W power consumption in idle state of the node 

CPUs (with a ~200 W contribution accountable to the thermal control daemon in its current 

version). 
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Figure 30: [HEP] Energy efficiency vs number of used cores for CLUE on IDV-A CPU 

 

 

 

Figure 31: [HEP] Energy efficiency vs number of used cores for Pixeltrack on IDV-A CPU 
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2.4.2.2 Tests on GPU 
 

We run the CLUE and Pixeltrack applications on the IDV-A node in the same configurations 

used to measure the baseline KPIs on the Dibona node and described in Sec.2.4.1.2 .  

Measured KPIs scaling the number of used GPUs are reported below. 

 

CLUE on GPU - H100 

GPU Throughput 

(events/sec) 

Power 

(W) 

Energy efficiency 

(events/J) 

1 1102.1 181.40 6,075 

2 2194.63 364.50 6,021 

3 3314.11 552.47 5,999 

4 4300.63 728.38 5.90 

Table 14: [HEP] KPIs for CLUE on GPU on IDV-A node 

 

Pixeltrack on GPU - H100 

GPU Throughput 

(events/sec) 

Power 

(W) 

Energy efficiency 

(events/J) 

1 2507.31 182.678 13,725 

2 4999.05 367.347 13,608 

3 7212.48 546.521 13,197 

4 9514.89 723.583 13,150 

Table 15: [HEP] KPIs for Pixeltrack on GPU on IDV-A node 

 

 

Moving from Dibona node (Table 11) the improvement in Pixeltrack throughput KPI is 

noticeable and expected in the IDV-A node (Table 15). The slightly worse performance of 

CLUE on IDV-A on throughput KPI (Table 14) compared  to that measured on Dibona node 

(Table 10) needs further investigation, and possibly specific code tuning for the H100 GPU. 
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Figure 32: [HEP] Throughput vs number of used GPUs for CLUE on IDV-A node 

 

 

Figure 33: [HEP] Throughput vs number of used GPUs for Pixeltrack on IDV-A node 

 

Figure 34 and Figure 35, on the other hand, show for both applications a slightly decreasing 

trend of the energy efficiency KPI (normalized to what is obtained on one GPU) scaling the 

number of the used GPUs on the IDV-A node. 
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Figure 34: [HEP] Energy efficiency vs number of used GPUs for CLUE on IDV-A node 

 

 

 

Figure 35: [HEP] Energy efficiency vs number of used GPUs for Pixeltrack on IDV-A node 
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2.4.3 Tests on IDV-E 
Having the opportunity to run the benchmarks on the IDV-E nodes equipped with ARM64 

Ampera Altra CPUs, we can report the performances of the aforementioned Pixeltrack on this 

server. 

 
Pixeltrack on ARM64 

cores thread Throughput 

(events/sec) 

Power 
(W) 

Energy efficiency 

(ref single core) 

1 1 24.863 64.80 1.0 

2 2 58.582 63.38 2.409 

4 4 112.156 71.35 4.097 

8 8 212.776 74.65 7.429 

16 16 410.435 89.20 11.992 

32 32 778.272 109.64 18.500 

64 64 1339.22 149.24 23.387 

96 92 1691.69 166.86 26.423 

128 128 1842.98 145.75 32.955 

160 160 2011.04 212.74 24.637 

192 192 2200.17 223.35 25.673 

224 224 2017.87 208.94 25.170 

256 256 2016.09 220.33 23.848 

 

Table 16: [HEP] KPIs for Pixeltrack on CPU on IDV-E node 
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Figure 36: [HEP] Throughput vs number of used cores for Pixeltrack on IDV-

E CPU 

 

 

 

 

 

Figure 37: [HEP] Energy efficiency vs cores for Pixeltrack on IDV-E CPU 

 

The IDV-E ARM64 architecture reaches the same throughput of the more performant of the 

two X86_64 ones (IDV-A) while surpassing by roughly a 50% the more energy efficient of 

them (Dibona) in the energy efficiency KPI. 

2.5 NEST-GPU – INFN 
As regards performance benchmarking in neuronal network simulations we mention the 

ongoing effort undertaken by the NEST team in the way of a standardization process [8] that 

designed a conceptual, generic workflow and produced a reference implementation, the 

beNNch framework. This is a set of modules for configuration, execution and analysis of 

benchmarks for NN simulations recording data and metadata in a unified way to foster 

reproducibility. Among the different modules we pick the test called hpc_benchmark [9]: it is 

a weak scaling benchmark employing a two populations network of excitatory and inhibitory 

leaky integrate-and-fire neurons, each with a fixed number of randomly drawn incoming 

connections (independent of the network size). This already has a multi-process 

implementation in the NEST repository as a Python script and we use an adapted version to 

perform the same test using the NEST-GPU application as a driver for the GPU as simulation 

engine. We mention in passing that the NEST-GPU has also received a new, GPU-accelerated 

implementation of the setup phase where the data structures pertaining to connections among 

neurons are created directly in GPU memory – a phase which at the time of D6.2 was still 
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performed on CPU only and was quite time-consuming – that 

is described and benchmarked in detail in [10]. 

 

The power measurements were performed on the IDV-A platform using the GPowerU tool to 

encapsulate the launch of the hpc_benchmark script when run on the NVIDIA H100 GPUs (the 

same was done on the A100 GPUs equipped in the TEXTAROSSA partition in Dibona cluster 

for reference) and on the IDV-E platform by reporting at the same time the output of the sensors 

command – that returns the instantaneous power per CPU socket – together with the output of 

a Power Distribution Unit connected to the IDV-E that returns the whole power draw. 

 

An interesting artifact of sampling the power output of an idle GPU with GPowerU is shown 

in Figure 38; here it can be clearly seen that the wattage sensor output is in discrete steps 

between 0.061W and 0.064W.and that idle power draw of a GPU hovers on a value over around 

67W. 

 

 

Figure 38: [NEST-GPU] Example of idle GPU power envelope 

 

The test is configured to set up the network and perform a ‘warm-up’ 50ms pre-simulation in 

order to put the system into a steady state, followed by a 10.000ms simulation which is then 

timed; the results are in the following plots. 
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Figure 39: [NEST-GPU] Single active GPU power reading 

 

From the plot in Figure 39 we can see that there is a network building phase – the first plateau 

– that pulls the power draw up from the idle state, then a ‘pop’ for the very first actual simulated 

milliseconds – 50ms which are required to put the network into a working ‘steady state’ and 

usually discarded in regular data taking –, a ‘drop’ when this is finished and then a more or less 

smooth line – the second plateau – for the remaining 10.000 simulated milliseconds. 

 

When in this regime the average power draw that NEST-GPU can push a single H100 to reach 

is around 247W with an absolute maximum of 252W. If we take into consideration all GPUs 

the total draw is 449.5W. Runtimes are 3.8s for building and 27.3 for the actual simulation. 
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Figure 40: [NEST-GPU] 2 active GPUs power reading 

 

As said, current testing is with a weak scaling benchmark; the same run is performed replicating 

a network of the same size on a second GPU and randomly connecting a fixed fraction of the 

neurons between the two. Here the simulation steps are necessarily interleaved with the 

exchange of messages between the GPU memories, which seems the reason why the throttling 

of the GPU frequencies by the thermal controller daemon is able to keep the average power 

draw in the steady state between 208W and 212W with and absolute maximum of 219W and 

a grand total of 554W including the idle ones. Here the building time is between 3.5s and 4.4s 

and the actual simulation takes 37.4s on one GPU and 38.2s on the other. It is apparent that 

adding inter-GPU communications – which are absent in the single GPU run – amounts to a 

significant 37% more runtime. It is being investigated how much this can be improved by 

optimizing the MPI calls – that currently require staging from the GPU memory to the CPU 

and back – with the GPU-aware ones that include support for direct accessing the GPU 

memory. 
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Figure 41: [NEST-GPU] 3 active GPUs power reading 

 

 

Figure 42: [NEST-GPU] 4 active GPUs power reading 

 

The situation is similar for the 3 GPUs and the 4 GPUs cases; having accounted for the 

advantage of the no-comms situation for the single GPU, we see that the real weak scaling is 

quite good: building times are still around 3s or less either for the 3 and 4 GPUs cases while 

actual simulation runtimes are between 37.7s and 38s for the 3 GPUs case and 38.4s and 38.6s 

for the 4 GPUs case, meaning a less than 3% difference in runtime between datasets which are 

two, three and four times the size of the single GPU case. Of course, the power consumption 
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goes up as well, with 3 GPUs drawing between 208W and 

213W on average in the steady state with a grand total of 697W including the idle one and 4 

GPUs drawing between 204W and 211W on average in the steady state and a grand total of 

829W. 

 

For reference, we found that the very same problem run on the 4 NVIDIA A100 GPUs of the 

TextaRossa partition of the Dibona cluster runs consistently slower in the 2 and 4 GPUs cases 

– between 39s and 40s in the former and 42s and 43s in the latter – with a power draw that does 

not exceed 156W per active GPU in the steady state – while the single GPU case is actually a 

little faster, with 24.7s and a 184W average power draw in the steady state. 

 

The very same benchmark was performed with the CPU-only version of the NEST code 

running on the ARM cores on the IDV-E platform. Following the investigation done in D6.2 

we directly chose the optimal process/cores layout for the platform, 16 MPI processes using 8 

OpenMP threads each for a grand total of 128 busy cores and fixed the size to be the same of 

the single GPU run on the IDV-A. In the plot in Figure 43 is the polling of the internal probe 

for power consumption of both CPU sockets as returned by the sensors command with a 0.7s 

time interval between readings. 

 

Figure 43: [NEST-GPU] IDV-E power reading 

 

Here the building and pre-simulation phase are less distinguishable, appearing as an irregular 

slope up to the steady state plateau; maximum power draw is 184W while average power in 

the steady state is 174W, with 466s for the 10.000 simulated milliseconds of network activity. 

For completeness, we report in Figure 44 the output of the Power Distribution Unit connected 

to the IDV-E node as queried by the system scripts available on the system. The slope is 

consistent with the previous plot, reaching a steady state after a little less that 100s; the total 

power output is reported as 416W in the steady state (with a 467W spike) which with an 

estimated 206W in idle (the lowest point in the plot) is consistent with more or less 200W more 

when running at full load. 
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Figure 44: [NEST-GPU] IDV-E PDU reading 

 

KPI IDV-A 

single GPU 

IDV-A 

multi-GPU 

IDV-E 

Simulated milliseconds/s   366.3   259.1 ÷ 267.4   21.5 

Energy to solution (kJ)       6.7       7.6 ÷ 8.2 (per GPU)   81.1 

Synaptic updates/J 1814.7 1600.0 ÷ 1482.8 149.9 

Table 17: [NEST-GPU] KPIs for the neural network application 

2.6 RAIDER – INFN 

In this section we report the results obtained from the execution of the RAIDER application 

implemented with APEIRON framework on the twin-FPGA IDV-E node first, and then on a 

couple of IDV-E nodes (four interconnected Xilinx U280 FPGA boards in total). 

RAIDER is a high throughput online streaming processing application implemented on FPGA 

and its task is to perform particle identification (PID) on the stream of events generated by the 

RICH (Ring Imaging CHerenkov) detector in the CERN NA62 experiment, using neural 

networks. 

 

Figure 45: [RAIDER] The workflow for the generation of CNN kernels in RAIDER 
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In this case we adopt a Convolutional Neural Network (CNN) 

developed and trained offline by using Tensorflow/Keras, the first step of the workflow for the 

CNN generation shown in Figure 45. 

The model receives as input a 16x16 image of the hit photomultipliers (PMTs) map - depicted 

in Figure 46 - for each physics event and its goal is to produce an estimate for the number of 

charged particles (0, 1, 2, >=3) for any RICH detector event, that corresponds to the number of 

ring tracks that can be reconstructed from the pattern of  PMTs that have been illuminated by 

the Cherenkov light cone emitted by a charged particle traversing the detector. 

 

 

Figure 46: [RAIDER] Example of input images for the CNN  

(left class 0, center class 1, right class 2). 

 

To prepare the training and validation data for the CNN, we prepared different data sets 

composed by events extracted directly from NA62 database using the experiment analysis 

framework. The ground truth, used for training, was provided by the seedless offline 

reconstruction method. 

To limit the FPGA resources footprint, as second stage, we performed a quantization step on 

the model using QKeras, resulting in two different fixed-point representations: <8, 1> for 

weights and biases and <16, 5> for activations. 

As last step, the quantized model is translated into the corresponding Vitis HLS implementation 

using HLS4ML tool; implementation validated with Vivado C/Verilog co-simulation in terms 

of resources usage, performances (throughput and latency) and efficiency (referring to the 

classification accuracy of the CNN model). Lastly, the model can be synthetized as kernel IP 

to be integrated in the APEIRON framework and deployed on the FPGA. 

Since the instantiation interval of the CNN obtained from HLS4ML scales with the size of the 

image, we expect to have a throughput for a single kernel implementation much smaller than 

the 10 MHz required by the NA62 L0 trigger. So, in order to improve the performances, 

RAIDER application has been designed with multiple processing kernels displaced in different 

nodes, capable to receive data/events from the network thanks the HAPECOM communication 

APIs. 

 

We used two different setups to test the performance of this RAIDER implementation depicted 

in Figure 47 and Figure 56: 
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• Four interconnected Xilinx® Alveo U280 installed on 

the IDV-E node in a ring topology, 2 FPGAs for each of the two IDV-E nodes. 

• Four interconnected Xilinx® Alveo U200 installed in the INFN Roma APE Lab in a 

ring topology, one FPGA for each of the four single Intel(R) Xeon(R) Silver 4410T 

CPU nodes. 

 

In particular, we are interested in studying the throughput of the overall system, since it is one 

of the most important requirements for the integration in trigger and data acquisition systems 

in HEP experiments. The interconnected boards are used as nodes of a RAIDER deployment 

via APEIRON framework with distinct roles: 

• Preprocessing node: data are loaded from Host memory and sent through the network 

via an HLS kernel (krnl_sender). Data are then processed by 3 Imagifier HLS kernels 

which turn the PMT hitlist information into a 256bit word (16x16 B&W image) that is 

sent to the Computing node through the internode ports of the INFN Communication 

IP. As second task, this node is in charge of receiving the output of the CNN 

computation and storing it on Host memory via an HLS kernel (krnl_receiver). The 

processing time, from the first packet sent to the last received, is measured on this node. 

• Computing node: images coming from external links are taken as input and dispatched 

to various CNN HLS kernels (each of them connected to a different INFN 

Communication IP intranode port) to compute the predictions. Results are then sent 

back to the preprocessing node. 
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Figure 47: [RAIDER] Test setup on the Xilinx® Alveo U200 installed in the INFN Roma1 APE Lab 

 

All tests performed in both testbeds have been done by using a 200 MHz global clock in the 

hardware setup. This clock increasing with respect to the one used for the D6.2 measures has 

been possible thanks to the improvement of the INFN Communication IP (described in detail 

in the D2.9). Another difference with respect to the D6.2 application is that the data - to be sent 

through the network from the preprocessing node – are now loaded from the BRAM instead of 

the DDR FPGA memory. This change is due to a limit that we’ve seen while testing the 

application loading events from DDR memory: while increasing the number of CNN kernels 

in the setup to test RAIDER scaling, we noticed that, working with 3 CNNs or more, the 

throughput reachable was always of 1.278MHz. This corresponds to the instantiation interval 

of the sender HLS kernel of ~160 clock cycles, as can be seen from the report obtained in 

output of the compiling Vitis process depicted in Figure 48. 

 

 

Figure 48: [RAIDER] Vitis synthesis report of krnl_sender HLS kernel 
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For this reason, we decide to work with data loaded from the BRAM for the whole tests 

reported in this deliverable (in both the testbeds). 

 

2.6.1 RESULTS ON APE LAB TESTBED 
 

In this setup, we have scaled the system starting from tests on 2 nodes (one preprocessing and 

one computing) up to 4 (adding 2 more computing nodes), changing from the host code (at 

computing kernels launch) the number of running CNN on each computing node.  

For what concerns energy efficiency, CPU hosts power measurements have been performed 

using turbostat: a Linux command-line utility that reports processor topology, frequency, idle 

power-state statistics, temperature, and power on X86 processors. The measurement is 

performed concurrent to application execution on each node present in the used setup. 

 

 

   

Figure 49: [RAIDER] Application CPU hosts power profiles (4 Intel Sapphire Rapids) 

 

 

For tracking accelerator cards power profiles, FPGA setups power measurements, concurrent 

with the HLS kernels execution on both type of nodes, were extrapolated for the XRT summary 

.csv file obtained in output from the CPU host application. Following the node and number of 
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CNNs scaling, power profiles have been produced for each of 

the RAIDER configuration tested and are reported in Figure 50, Figure 51 and Figure 52. 

 

 

 

Figure 50: [RAIDER] FPGA power profiles (2 Alveo Xilinx U200 setup) 

 

 

 

Figure 51: [RAIDER] FPGA power profiles (3 Alveo Xilinx U200 setup) 

 

 

 

Figure 52: [RAIDER] FPGA power profiles (4 Alveo Xilinx U200 setup) 
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The integrated processing throughput of the RAIDER application deployed on the APE Lab 

testbed has been measured host-side by scaling the number of implemented computing nodes. 

Results are tabulated in Table 18 and plotted in Figure 53, together with the energy efficiency 

values obtained by integrating the power profiles measured for all the tested setups. 

 

# computing 

nodes 

# CNNs Throughput (Mevents/s) Energy efficiency 

(kevents/J) 

1 node 1 CNN 

2 CNNs 

0.581 

1.163 

3.015 

6.005 

2 nodes 2CNNs 

4CNNs 

1.163 

2.325 

3.838 

7.692 

3 nodes 3CNNs 

6CNNs 

1.744 

2.692 

4.298 

6.626 

Table 18: [RAIDER] Processing Throughput with an increasing number of Computing nodes (and CNN HLS 

kernels) 

 

 

Figure 53: [RAIDER] Throughput scaling with an increasing number of CNN HLS kernels 

 

The presented results show the good scaling of system performance with the number of nodes, 

while the flattening slope of the curve when the number of CNNs goes beyond 4 is mainly due 

to the saturation of the data injection rate in the krnl_sender and the instantiation interval of 

the imagifier (~70 clock cycles) in the preprocessing node. 
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2.6.2 U280 RESULTS ON IDV-E  
 

In this setup, we have tested the system starting on 2 FPGAs (one preprocessing and one 

computing) up to 4 (adding 2 more computing FPGAs) with a slightly different setup with 

respect to the one used in the U200 APE Lab testbed. Since the resources available on the 

Xilinx Alveo U280 (for example, more DSP) are larger with respect to the U200 ones, we could 

implement 3 CNNs HLS kernels on single computing FPGA computing (a Vitis report of the 

hardware occupation is reported in Figure 54) since a single CNN takes ~25% of the maximum 

DSP resource. 

 

 

Figure 54: [RAIDER] Vitis synthesis report of hardware project to be deployed on Computing node.  

In red, the DSP utilization is reported. 

 

 

 In addition to this, taking into account the limitations in terms of throughput found in the APE 

Lab testbed, we decided to deploy up to 3 imagifier HLS kernel on a single preprocessing 

FPGA. The resulting hardware setup is so reported in Figure 55 and Figure 56, in which are 

depicted, respectively, the design used for single and double node RAIDER execution on IDV-

E testbed. 
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Figure 55: [RAIDER] Test setup on the Xilinx® Alveo U280 installed in the IDV-E testbed (single node) 

 

  

 

 

Figure 56: [RAIDER] Test setup on the Xilinx® Alveo U280 installed in the IDV-E testbed (double node) 

 

The integrated processing throughput of the system has been measured host-side and results 

are tabulated in Table 19. 
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# computing FPGAs # CNNs Throughput (Mevents/s) 

1 FPGA 3 CNNs 1.813 

2 FPGAs 6 CNNs 3.409 

3 FPGAs 9 CNNs 4.874 

Table 19: [RAIDER] processing time per event with an increasing number of Computing FPGAs (and CNN HLS 

kernels) 

 

For what concerns energy efficiency, CPU hosts power measurements have been performed by 

using sensors: a free and open-source application that provides tools and drivers for monitoring 

temperatures, voltage, and fans. The measurement has been performed concurrent to 

application execution on each node present in the used setup and are reported in Figure 57.  

From CPU power profiles, it is possible to notice a ~4W difference between the two nodes 

used in the IDV-E testbed. 

 

 

Figure 57: [RAIDER] CPU hosts power profiles (2 Ampere Altra Max processor) 

 

 

 

For tracking accelerator cards power profiles, FPGA setups power measurements, as for the 

APE Lab testbed case, were extrapolated for the XRT summary .csv file obtained in output 

from the CPU host application. As can be seen from Figure 58, Figure 59 and Figure 60, 

Computing FPGAs 2 and 3 seems to have a power average slightly larger than the node 1: this 

is probably due to the fact that the nodes 2 and 3 are placed in a different IDV-E server with 

respect to the one in which the node 0 and 1 are In particular computing FPGA 2 and computing 

FPGA 3 are hosted in a air-cooled node (tcnode14), while computing FPGA 1 is hosted in node 

tcnode15 equipped with the two-phase cooling system developed in TEXTAROSSA. 

 



 

textarossa.eu   D6.3 | 74 

 

Figure 58: [RAIDER] FPGA power profiles (2 Alveo Xilinx U280 setup) 

 

 

Figure 59: [RAIDER] FPGA power profiles (3 Alveo Xilinx U280 setup) 
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Figure 60: [RAIDER] FPGA power profiles (4 Alveo Xilinx U280 setup) 

 

KPIs 

To make a comparison with the KPIs presented in D6.2, we report as baseline the performance 

values obtained for the RAIDER setup in the previous deliverable in Table 20. For what 

concern the energy to solution and energy efficiency measurements, we considered correct to 

insert the relative FPGA energy consumption together with the node total energy data: this 

allows us to disentangle the different contributions to the total energy consumption and 

highlight the performance of the FPGA accelerator board alone.  

Our goal is to show the updates of the application with respect to the past one and the scaling 

results obtained via the capabilities of the APEIRON framework and the adoption of the 

IDV-E platform. 

 

KPI RAIDER @100 MHZ 

[1 FPGA, 1CNN] 

RAIDER @100 MHZ 

[1 FPGA, 2CNNs] 

purity/efficiency (per class) efficiency: 

- 0: 92% 

- 1: 79% 

- 2: 75% 

- 3+: 76% 

purity: 

- 0: 83% 

- 1: 88% 

- 2: 70% 

- 3+: 80% 

efficiency: 

- 0: 92% 

- 1: 79% 

- 2: 75% 

- 3+: 76% 

purity: 

- 0: 83% 

- 1: 88% 

- 2: 70% 

- 3+: 80% 

time to solution [s]  9.701 4.898 

throughput  

[events/s] 

278324.152 551245.410 

energy to solution [J] 563.174 

(262.090 FPGA) 

267.831 

(137.902 FPGA) 

energy efficiency [events/J] 4794.255 

(10301.805 FPGA) 

10079.328 

(19579.121 FPGA) 
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Table 20: [RAIDER] Baseline KPIs evaluated on the execution of the 

RAIDER application on a single Xilinx Alveo U200 FPGA, processing 2.7M events with a global clock of 100 MHz 

 

Since the updates of the INFN Communication IP discussed in D2.9, it is now possible within 

the RAIDER application to synthetize an hardware bitstream capable of work with a global 

clock of 200MHz. This clock increasing has been applied in the test for either testbed described 

in the previous section. 

 

For the APE-Lab testbed setup, the integrals of both CPUs and FPGAs power profiles -depicted 

in the previous graphs – have been used to compute the energy-to-solution and energy 

efficiency values which are reported in Table 21, Table 22 and Table 23. 

 

KPI RAIDER @200 MHZ 

[2 FPGA, 1CNN] 

RAIDER @200 MHZ 

[2 FPGA, 2CNNs] 

time to solution [s]  4.644  2.332 

throughput  

[events/s] 

581385.208 

 

1162762.305 

 

energy to solution [J] 895.422 

(370.672 FPGA)  

 

449.622 

(186.117 FPGA)  

energy efficiency [events/J] 3015.271 

(7284.055 FPGA) 

 

6005.044 

(14506.937 FPGA) 

Table 21: [RAIDER] KPIs evaluated on the execution of the RAIDER application on a two Xilinx Alveo U200 FPGA 

system, processing 2.7M events with a global clock of 200 MHz  

 

 

KPI RAIDER @200 MHZ 

[3 FPGA, 2CNN] 

RAIDER @200 MHZ 

[3 FPGA, 4CNNs] 

time to solution [s]  2.332 1.161 

throughput  

[events/s] 

1162762.305 

 

1744120.135 

 

energy to solution [J] 703.460 

(312.914 FPGA) 

 

351.029 

(156.593 FPGA) 

energy efficiency [events/J] 3838.171 

(8628.577 FPGA) 

7691.672 

(17242.109 FPGA) 

Table 22: [RAIDER] KPIs evaluated on the execution of the RAIDER application on a three Xilinx Alveo U200 

FPGA system, processing 2.7M events with a global clock of 200 MHz 

 

 

KPI RAIDER @200 MHZ 

[4 FPGA, 3CNN] 

RAIDER @200 MHZ 

[4 FPGA, 6CNNs] 

time to solution [s]  1.548 1.003 

throughput  2325478.642 2692072.654 
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[events/s]   

energy to solution [J] 628.258 

(283.615 FPGA) 

 

407.512 

(184.206 FPGA) 

energy efficiency [events/J] 4297.597 

(9519.944 FPGA) 

6625.572 

(14657.541 FPGA) 

 

Table 23: [RAIDER] KPIs evaluated on the execution of the RAIDER application on a fourXilinx Alveo U200 FPGA 

system, processing 2.7M events with a global clock of 200 MHz 

 

For the IDV-E testbed setup, the integrals of both CPUs and FPGAs power profiles, depicted 

in Figure 58, Figure 59 and Figure 60Figure 58: [RAIDER] FPGA power profiles (2 Alveo 

Xilinx U280 setup), have been used to compute the energy-to-solution and energy efficiency 

values which are reported in Table 24, Table 25 and Table 26. To note: the energy values 

reported are obtained - in the case of 3 and 4 FPGAs used - working on a combination of two 

Ampere Altra nodes with just one provided with the two-phase cooling system developed 

within the TEXTAROSSA project. 

 

KPI RAIDER @200 MHZ 

[2 FPGA, 3CNNs] 

time to solution [s]  1.48956 

throughput  

[events/s] 

1812622.012 

energy to solution [J] 216.170 

(133.004 FPGA) 

energy efficiency [events/J] 12490.147 

(20300.090 FPGA) 

Table 24: [RAIDER] KPIs evaluated on the execution of the RAIDER application on a two Xilinx Alveo U280 FPGA 

IDV-E node, processing 2.7M events with a global clock of 200 MHz 

 

KPI RAIDER @200 MHZ 

[3 FPGA, 6CNNs] 

time to solution [s]  0.792 

throughput  

[events/s] 

3409090.909 

energy to solution [J] 197.301 

(105.489 FPGA) 

energy efficiency [events/J] 13684.675 

(25595.171 FPGA) 

Table 25: [RAIDER] KPIs evaluated on the execution of the RAIDER application on a three Xilinx Alveo U280 

FPGA configuration distributed over 2 IDV-E nodes, processing 2.7M events with a global clock of 200 MHz 

 

KPI RAIDER @200 MHZ 

[4 FPGA, 9CNNs] 
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time to solution [s]  0.554 

throughput  

[events/s] 

4873646.209 

energy to solution [J] 165.277 

(101.055 FPGA) 

energy efficiency [events/J] 16336.183 

(26718.126 FPGA) 

Table 26: [RAIDER] KPIs evaluated on the execution of the RAIDER application on a four Xilinx Alveo U280 FPGA 

configuration distributed over 2 IDV-E nodes, processing 2.7M events with a global clock of 200 MHz 

 

Finally, in Table 27, we consider the improvement factor over the KPIs baseline with RAIDER 

implemented on a single FPGA. For the comparison with both testbeds, we choose to report 

the values relatives to the higher throughput configuration obtained (since the throughput is 

one of the main goals of RAIDER application, developed to works in an HEP experiment with 

a trigger rate of 10MHz).  

 

 

KPI  Improvement factor over single U200 FPGA (2 CNN) 

setup 

 APE Lab Testbed   

(4xU200, 6 CNN) 

IDV-E testbed  

(4xU280, 9 CNN) 

throughput  4.884 8.841 

energy efficiency 0.657 1.621 

Table 27: [RAIDER] Improvement factors of the KPIs for the tested designs over the baseline. 

 

 

 

2.6.3 RESULTS ON TASK+STREAM INTEGRATION ON 
IDV-E 

 

As part of Task 4.6 SW integration & Optimization we experimented how to integrate a 

RAIDER 6x6 kernel into OmpSs@FPGA framework. This proof-of-concept implementation 

was challenging as it implied mixing the task-based model that underpins OmpSs@FPGA with 

the stream model that is a natural approach to programming the RAIDER kernel. The objective 

of this exploration was to decide on the feasibility of this mixed model and the potential benefits 

that it could provide. 

Several different implementations were tested. The main results are summarized in Figure 61 

that shows the throughput in images processed per second (1 million image per second is 

equivalent to 1MHz) obtained by the different versions (please note the logarithmic scale of 

the vertical axis). 
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Figure 61: [RAIDER] Throughput with different OmpSs@FPGA implementations 

 

As shown in Figure 61 there were several versions of RAIDER implemented in the 

OmpSs@FPGA framework. Figure 62 shows how the different versions change the work 

organization. Also, a description of the features of the main versions follows: 

• CPU: This measures the performance of the RAIDER kernel optimized and executed 

in an Intel Xeon Silver 4208 CPU @ 2.1GHz. It has a throughput of 0.067MHz. 

• Plain: This initial version implementation is a direct translation of the code executed in 

the CPU to the FPGA. In this initial version the OmpSs@FPGA framework is only used 

to facilitate the communication between the CPU driver program and the FPGA and to 

measure the FPGA performance. This plain version had a throughput of 0.013MHz so 

roughly a 5x slowdown over the CPU mainly due to the sequentialization of the image 

processing and the CPU slow sending of images to process to the FPGA. 

• Mixed precision: In order to improve performance, an initial optimization taking 

advantage of the initial image pixel size was performed to use only the minimum 

number of resources in the FPGA. This optimization could not be applied to the CPU 

version as it can only exploit fixed size numbers (i.e byte multiples) but it was as simple 

as changing some type definitions in the FPGA code. The resulting code not only saved 

resources in the FPGA but also improved performance due to the lower latency of 

shorter bit operations and the minimized CPU-FPGA data transfer times reaching a 

throughput of 0.149 MHz. This version already has a 2x speedup over the CPU version. 

• OmpSs: The third reported implementation used the FTS IP developed in Task 2.5 and 

OmpSs@FPGA to improve the kernel task latency increasing throughput 

significatively to 0.470MHz. This version managed tasks inside the FPGA but already 

in a sequential fashion.  

• OmpSs+Stream: The final proof-of-concept version used the FTS to send tasks that 

pipeline the different images among the different processes in dataflow. This 

significantly improves performance as different images are in process in the same 

hardware kernel in the different processing steps. This implementation was able to 

reach 2.44MHz. This version is close to reaching the objective of 10MHz considering 

that under the OmpSs Framework it is trivial to divide the work into 4 or more kernels 

(as showed in section 3.12). 
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Figure 62: [RAIDER] Different OmpSs@FPGA implementations organization 

 

 

Taking into consideration that the objective of the work presented in this section was limited 

to explore the feasibility of joining the task and stream models we consider that the results 

presented are highly successful as they demonstrate not only the aforementioned feasibility but 

show a promising venue to leverage it to achieve some significant performance goals. Giving 

this results more work should be devoted in this direction to integrate the changes into the 

automatic tools to facilitate development and to evaluate ways to further improve performance 

and even better mix both models in more intuitive ways. 

 

2.7 TNM – INFN 

The tensor network methods (TNM) application combines multiple simulation frontends for 

simulation quantum systems. For TEXTAROSSA, we consider the following sub-applications: 

• Quantum matcha TEA: gate-based quantum circuit emulator for digitized quantum 

circuits (analyzed in deliverable D6.2). 
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• Quantum green TEA: solver for the Schrödinger equation 

or Lindblad equation; within this analysis, we restrict ourselves to finding the ground 

state of a system. 

2.7.1 Towards mixed precision 

In the current development goals, mixed precision algorithms are not on the agenda for the 

tensor network methods. Nonetheless, we take TEXTAROSSA as motivation to compare 

different precisions for the calculations of the TNM. This data helps us to decide in the future 

if mixed precision can be beneficial for our application. In deliverable D6.2, we already 

presented data for Quantum matcha TEA and single precision versus double precision complex 

numbers for a quantum circuit. Now, we turn to quantum green TEA, where we added the 

possibility to run simulations with real data types and switch to higher precision towards the 

end of search; real data types are suitable as long as the Hamiltonian is also real. The ground 

state energy of a system with 128 qubits can be calculated via the Jordan-Wigner 

transformation (E=-162.6123001775688(7), J=1.0, g=1.0). 

For the comparison, we use the following configuration: 

• TEXTAROSSA-node Dibona (Atos) 

• Quantum green TEA (Version pre_v0.3.17) 

• single-cpu simulation 

• likwid 5.2.2 and per-cpu energy measurement 

Figure 63 and Figure 64 show the same trend for runtime and energy consumption where the 

double complex data point (black) serves as reference for simulations before the 

implementations done within TEXTAROSSA. The colormap shows how many of the last 

sweep are in double precision; not all sweeps have to executed based on an exit criterion. We 

observe that using only single-precision sweeps leads to an increased error. Already two 

double-precision sweeps are sufficient to bring the error on par with the best simulations. The 

optimal setting here is five single-precision sweeps followed by potentially five double 

precision sweeps, while actually exiting after the ninth sweep. 
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Figure 63: [TNM] Execution time vs error varying the number of final sweeps in double precision 

 

Figure 64: [TNM] Energy consumption vs error varying the number of final sweeps in double precision 
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In summary, the ability to run with different precisions and 

increase during runtime the precision is a useful path for quantum green TEA and future 

implementation, e.g., an automatic increase of the precision independent of the user input. 

These changes have been implemented on the Fortran level of the quantum green TEA library. 

2.7.2 Hybrid simulation: data parallelism via MPI 
versus parallelising a single simulation 

One a single node as targeted by TEXTAROSSA, one can find the optimal path between 

running a batch of simulation in a hybrid MPI-openmp/threading scenario. For the quantum 

green tea application, we focus on threading via the MKL library. We use the following setup: 

• Justus2 cluster (bwHPC): 2xIntel Xeon 6252 Gold with 2x24 cores; we run quantum 

green tea v0.3.29 on Justus2. 

• Batch of 96 identical simulations, overloading node by one MPI thread as one MPI 

thread is not executing any computational workload in the master-worker approach. 

• We have N workers, an total time T for all 96 simulation (wall-time), the time t for a 

single simulation, and the speedup S for a single simulation. The number of MPI threads 

is 48 / N. 

• The data points are for the quantum Ising model in one dimension at the quantum 

critical point. 

 

TNM hybrid 

simulation 

MKL threads 

Time total T [mm:ss] Time t for single 

simulation [mm:ss] 

Speedup S for single 

simulation  

1 6:16 3:08 Reference 

2 6:17 1:34 1.99 

3 7:26 1:14 2.5 

4 7:35 0:57 3.3 

6 7:43 0:39 4.9 

8 18:55 1:11 2.7 

12 21:38 0:54 3.5 

16 33:30 1:03 3.0 

24 51:01 1:03 2.9 

48 134:44 1:24 2.2 

Table 28: [TNM] Hybrid simulation with MPI and threading via MKL library. We use simulation of the quantum 

green tea library out of the Quantum TEA suite. 

We observe two main trends in Table 28. To minimize the total simulation time, MPI is always 

the best approach at constant resources. The speedup of the MKL library peaks for this setup 

at 6 threads. With scalable resources, running 96 MPI threads with each 6 MKL threads across 

multiple nodes minimizes the wall-time. The minimum of time t as a function of MKL threads 

might be problem dependent and platform dependent, e.g., which is the size of the generalized 
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matrix problems to be solved in the simulation or the NUMA 

modes implemented on the architecture. 

2.7.3 Device comparison CPU versus GPU 

Motivated by the mixed precision results on the Fortran level, we implemented the ground state 

search of quantum green TEA on the Python side of our library supporting switching precision 

during the sweeps as well as GPU support. We consider a two-dimensional quantum Ising 

model and its ground state search via a Tree Tensor Network (TTN). We run on CINECA's 

Leonardo, single-core for CPU simulations (Intel Xeon 8358 CPU, with 32 cores running at 

2.6 GHz), single GPU (NVIDIA custom Ampere GPU, 64GB HBM2) and highlight in the 

following three figures three aspects: 

1. For larger system sizes, the GPU gives a benefit in terms of speedup, see Figure 65; 

2. both devices show a speedup when moving sweeps, i.e., iterations of our search, to 

single precision, see Figure 66; 

3. except all sweeps being done in single precision, the same precision for the ground 

state is reached (lower ground state energy is better), here shown for at least two 

double precision sweeps at the end, both for CPU and GPU, see Figure 67. 

 

Figure 65: [TNM] Execution time vs system size 

 

Figure 66: [TNM] Execution time vs number of sweeps in single precision 
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Figure 67: [TNM] Ground energy state (lower is better) vs number of single precision sweeps 

 

 

Algorithmic improvements for sampling 

In addition to the above studies on aspects of different precision and parallelization, we have 

undertaken some algorithmic improvements which lead to an improvement of the energy 

consumption of the library via the improved computation time. The following example is on 

the problem of sampling the classical outcomes of a quantum state represented as a tensor 

network, which are discussed in detail in M. Ballarin's work [11]. Out of the various example, 

we pick the analysis of a tree tensor network representing the ground state of the quantum Ising 

model while we try to reach a given threshold of probability coverage. Our new algorithm has 

shown a speedup, but we verify that the speedup is also reflected in the energy consumption 

on Dibona node. The key data are: 

• TEXTAROSSA Dibona node (Atos) 

• qtealeaves python library 

• single-core simulation 

• likwid 5.2.2 and per-core energy measurement 

Figure 68 and Figure 69 the speedup of the new algorithm in computation time and the same 

ratio in terms of energy consumption. 
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Figure 68: [TNM] Speedup after algorithmic improvements 
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Figure 69: [TNM] Improvement ratio in energy efficiency after algorithmic improvements 

2.7.4 Algorithmic improvements for Hamiltonian 
representation 

We were furthermore able to optimize the algorithm how we represent a Hamiltonian (matrix) 

and apply it to a state (vector), i.e., a generalized matrix vector multiplication. This application 

is the foundation of the ground state search and time evolution within quantum green TEA. 

The results show the relative computation time of a ground state search with respect to the best 

method, i.e., the icTPO (indexed compressed tensor product operator), see Figure 70. The 

tensor product operator (TPO) and our starting point before the TEXTAROSSA project are 

about three times slower in the example system; the indexed tensor product operator (iTPO) 

and an alternative algorithm running as reference point (sparse-matrix product operators (SPO) 

and indexed SPO (iSPO)) are about two times slower than the icTPO. The results are obtained 

for random all-to-all two-body interactions in a quantum Ising type of Hamiltonian with 

additional randomized local fields. The simulations run on the Leonardo machine at CINECA, 

as single-CPU simulation. Future steps are to benchmark how algorithmic improvement 

develops in a parallel algorithm. 
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Figure 70: [TNM] Relative CPU time w.r.t icTPO 

 

 

2.8 ScalFMM (Mathlibs-INRIA) 

The Fast Multipole Method (FMM) is a highly efficient algorithm for computing long-range 

forces in N-body simulations, which are prevalent in fields such as astrophysics, molecular 

dynamics, and electrostatics. The traditional FMM algorithm reduces the computational 

complexity of calculating pairwise interactions from O(N2) to O(NlogN) or even O(N), 

depending on the implementation and the desired accuracy. 

  

TBFMM - a fork of ScalFMM - is high-performance task-based FMM implementation where 

the algorithm is decomposed into a series of discrete tasks, each representing a portion of the 

computation. These tasks are defined with clear dependencies, forming a Directed Acyclic 

Graph (DAG) that represents the execution flow of the entire computation. This DAG includes 

tasks for operations such as particle-to-particle interactions, particle-to-multipole translations, 

multipole-to-multipole translations, and more, depending on the specific version of the FMM 

algorithm being used. 

  

In the TEXTAROSSA project, we developed a new scheduler to decide how the tasks should 

be distributed on the different processing units. Those processing units are usually 

heterogeneous with a mix of CPUs/GPUs (IDV-A) or CPUs/FPGAs (IDV-E). Our scheduler 

is detailed in WP4, and WP6 is tied to its use and analysis. 
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We provide the results in Figure 71. We executed a simulation 

of 1 million particles on two hardware configurations, Intel CPU + NVIDIA V100 and AMD 

CPU + NVIDIA A100 (similar to IDV-A). We compared our scheduler against two state-of-

the-art alternatives. Our scheduler, MulTiPrio, demonstrates very good results. In a more in-

depth study, we showed that our scheduler is especially competitive when the tasks are irregular 

(i.e., of various granularities). 

  

Thus, MulTiPrio represents an innovative approach to dynamic task scheduling that 

significantly benefits the execution of TBFMM by reducing the overall computation time while 

maximizing hardware utilization. 

 

 

Figure 71: [FMM] Performance results for TB-FMM on two hardware configurations 

 

The execution time is provided (the lower the better) 

 

 

2.9 Chameleon (Mathlibs-INRIA) 

 

Chameleon is a software library designed to optimize the execution of dense linear algebra 

computations on heterogeneous computing systems. It provides high-performance 

implementations of various linear algebra operations, adapting to the underlying hardware to 

achieve efficient execution. The library leverages task-based programming models to 

decompose complex operations into smaller tasks, facilitating their scheduling and execution 

across different types of processing units, such as CPUs and GPUs. This approach allows 

Chameleon to dynamically balance the workload and utilize available hardware resources 

effectively. 
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Within the Chameleon library, key kernels such as GEQRF, POTRF, and GETRF are 

implemented to support a range of linear algebra computations: 

• GEQRF (QR Factorization): This kernel computes the QR factorization of a matrix. QR 

factorization is a process that decomposes a matrix AA into the product of an 

orthogonal matrix QQ and an upper triangular matrix RR. The GEQRF kernel is crucial 

for solving systems of linear equations, eigenvalue problems, and many other 

applications in scientific computing. In the context of Chameleon, the GEQRF 
operation is broken down into tasks that can be executed in parallel, exploiting data 

locality and minimizing data movement for improved performance on heterogeneous 

systems. 

• POTRF (Cholesky Factorization): The POTRF kernel performs the Cholesky 

factorization of a symmetric positive-definite matrix AA, decomposing it into the 

product of a lower triangular matrix LL and its transpose LTLT. Cholesky factorization 

is particularly useful for solving linear systems where the matrix is symmetric and 

positive-definite, such as in optimization problems and numerical simulations. 

Chameleon optimizes the execution of POTRF by scheduling tasks efficiently across 

available resources, taking advantage of the specific characteristics of the matrix to 

enhance performance. 

• GETRF (LU Factorization): This kernel computes the LU factorization of a general 

matrix. LU factorization decomposes a matrix AA into the product of a lower triangular 

matrix LL and an upper triangular matrix UU, possibly with a permutation matrix PP 

due to partial pivoting. GETRF is a fundamental operation in linear algebra, enabling 

the solution of systems of linear equations, inversion of matrices, and computation of 

determinants. In Chameleon, the GETRF operation is managed through a task-based 

approach, allowing for concurrent execution of tasks and efficient use of heterogeneous 

computing resources. 

 

As for ScalFMM, we used our scheduler on Chameleon and provided the result in Figure 72. 

We compared MulTiPrio against DMDAS and heteroprio, on Intel CPU + NVIDIA V100 and 

AMD CPU + NVIDIA A100 (similar to IDV-A). Our new scheduler is competitive with 

DMDAS but is slightly slower. The main reason is that DMDAS use high-tuned priorities 

provided by the developers (which for example inform the scheduler about the critical path 

without the need of analysis). Our scheduler is able to use them too, but in the given results we 

use a version where our scheduler tries to find the critical task autonomously. 

We provide two execution traces, see Figure 73 and Figure 74, to illustrate the difference. We 

observe that when priorities are utilized, the number of ready tasks is well-controlled, meaning 

that the most critical tasks are computed first. 

 



 

textarossa.eu   D6.3 | 91 

 

Figure 72: [CHAMELEON] Performance results for Chameleon on two hardware configurations 

Flops per second are provided (the higher the better 
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Figure 73: [CHAMELEON] Execution trace (emulation) for a Cholesky factorization without using user’s priorities 

 

 

Figure 74: [CHAMELEON] Execution trace (emulation) for a Cholesky with user’s priorities 

 

 

 

2.10 UrbanAir - PSNC 

 

As described in previous deliverables, selected UrbanAir kernels were adapted to benefit from 

usage of heterogeneous resources, exploiting CPUs and NVIDIA GPUs. While results are 

provided for strong scalability, the usual scenarios for assessing air quality runs on domain of 

size exceeding the memory resources of a single GPU, therefore we focus on weak scalability. 

The toolchain includes C++ compiler, the CUDA toolkit, threads (OpenMP) for shared-

memory parallelization (single node) and MPI for data exchange between GPUs, all available 

at IDV-A platform. To monitor energy consumptions of kernels running on GPUS, GPower 

project tool was used, also available on IDV-A TEXTAROSSA platform. As previously, the 
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tests were conducted on PSNC Altair machine equipped with 

NVIDIA V100 and the newly available IDV-A equipped with NVIDIA H100. 

 

The UrbanAir-gcrk starts with solver initialization, followed by a guess of initial wind velocity, 

estimation of pressure and initialization of boundary condition. Eventually, iterative solver is 

started where for each iteration reduction and preconditioner (to speedup solver) subroutines 

are called, and Laplacian operator is solved. Every sub-routine is provided with a separate 

implementation for CPU and GPUs, so that within a compilation user can decide whether to 

run on CPUs or GPUs or use a mix of them. 

 

The global domain is divided between the workers, and each receives a 3D block called 

subdomain, which size is determined by the hardware used. The domain decomposition is done 

manually before the compilation for additional compiler optimizations.  On a single node with 

CPUs only, OpenMP is used to exploit shared memory. To exchange data between the nodes, 

and between GPUs, MPI paradigm is used. On order to achieve the best performance on GPUs, 

the size of subdomain on GPUs is the maximum possible (memory constraint). The 

implementation allows to execute simultaneously on CPUs and GPUs – on GPUs maximum 

possible size of domain is assigned, while the remaining is solved on CPUs – the latter need to 

be carefully chosen so that parts executing on GPUs do not have to wait for iteration done on 

CPUs. However, on currently available fat nodes with multiple GPUs, the most efficient 

execution is to use accelerators and use CPU only to handle communication between GPUs.  

Once the domain is divided into subdomains, it is then additionally divided into blocks for 

optimal cache utilization. As of communication, it is overlapped with computation: 

computation of boundary conditions is separated from computation of inner domains, so that 

the data at boundaries is exchanged with neighbors while the inner domain is still computed. 

 

UrbanAir-gcrk iterates over whole domain doing stencil computations. Every subdomain is 

assigned to exactly one GPU and after each iteration the data between subdomains is exchanged 

using additional HALO cells (boarders of the subdomain). To increase performance on 

NVIDIA V100 and newly emerged H100 GPUs cards, and to support wind-flow-specific 

settings, additional improvements were provided: i) additional boundary conditions /data were 

placed in shared memory to speedup, ii) further optimization of Laplacian operator 

implementation for GPUs was introduced, iii) number of communication in rhsdiv kernel was 

limited, iv) further optimal size of the block of threads within subdomain for each sub-kernel 

is selected based on some auto-tuning (kernel compile – run – compare results). After each 

iteration, a global sum of variables is calculated – reduction algorithm was improved to benefit 

from shared memory in multi-GPU environment. With these changes provided, further up to 

10% decrease of time-to-solution is observed. 

 

Adaptation to GPUs and optimization is a game changer, not trivial though, in terms of time-

to-solution decrease, as reported already in D6.2. For applications were data to be computed 

can be equally divided between the workers, it is easier to adapt as the workload for each GPU 

is the same and developer needs to focus on providing implementation for an accelerator and 

how to just exchange data between subdomains. As the previous results and those in following 

subsections have described executions on GPUs are superior to CPUs, though the best 

efficiency can be achieved only with a GPU fully loaded with data to be computed. 
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2.10.1 Multi-node environment 
 

To test UrbanAir-gcrk in multi-node environment, PSNC’s Altair HPC system was used, with 

up to 6 nodes available, each equipped with 8 NVIDIA V100 GPU cards Two tests were 

conducted based on strong and weak scalability. Figure 75 presents the strong scalability for 

5M grid points problem size. With more GPUs added, the number of iterations solved within 

one second increases. Provided optimizations allows to reach up to 11% increase in 

performance, which eventually drops when more GPUs are used, because the problem size per 

GPU becomes too small to efficiently utilize GPU. Figure 76 presents weak scalability for a 

fixed problem size – 5M grid points per GPU. Although the number of iterations solved initially 

drops when more GPUs are added, it then oscillates close to 40 for the remaining GPUs, making 

it possible to solve 240M grid points problem within the same amount of time. 

 

 

Figure 75: [UrbanAir] Iterations per second (problem size: 6.5M) 

 

Figure 76: [UrbanAir] Iterations per second (5M per GPU) 
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The 5M grid points per GPUs is suboptimal because the GPU is not fully loaded with data it 

computes. Figure 77 presents comparison of achieved speedup between 5M and 50M grid 

points (maximum size on NVIDIA V100 due to memory constraints). It is clearly visible that 

the larger problem size is, the better speedup can be achieved, thus obtaining results in a shorter 

amount of time. Similarly, weak scalability of UrbanAir-gcrk is better with GPUs fully loaded 

with data. Figure 78 presents efficiency comparison between 5M and 50M grid points per GPU. 

While efficiency is better for a maximum executable problem size, it decreases with more 

GPUs used, and thus the time-to-solution becomes slightly longer. Nevertheless, with GPUs 

we are able to run UrbanAir-gcrk over much larger areas within a reasonable amount of time. 

 

Figure 77: [UrbanAir] Speedup comparison for different domain sizes 

 

 

Figure 78: [UrbanAir] Efficiency (weak speedup) comparison for different domain sizes 
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2.10.2 IDV-A results 

 
Table 29Table 29: [UrbanAir] KPIs overview presents KPIs for UrbanAir-gcrk, which are then 

discussed in the following subsections. In previous deliverable, D6.2, initial baseline results 

were discussed, comparing execution on CPUs vs GPUs. PSNC Altair system and Dibona 

(predecessor of IDV-A) were used. 

 

KPI for computational efficiency KPI for energy 

- Time-to-solution 

- (strong and weak) speedup 

- number of iterations / second  

  

− Iterations / Watt 

Table 29: [UrbanAir] KPIs overview 

 

2.10.2.1 Computational efficiency 
 

NVIDIA H100 GPU cards available at IDV-A node allows to run larger UrbanAir-gcrk 

problems, comparing to V100 available on Altair PSNC system: 59M grid points instead of 

50M. More important difference comes with performance, for the same problem size (50M) 

the H100 GPU cards offer 2x decrease in execution time comparing to V100 GPU, see Figure 

79. 

 

 

Figure 79: [UrbanAir] Time-to-solution on GPUs: V100 vs. H100 
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Figure 80 compares speedup of UrbanAir-gcrk across different systems, configurations and 

code optimizations. Dibona is the former IDV-A system, results for which were presented in 

D6.2. On final IDV-A, three different configurations are compared: 

- IDV-A with traditional cooling system (wo-2phase) 

- DV-A with two-phase cooling system installed (w-2phase), 

- IDV-A with two-phase cooling system on which optimized version of UrbanAir-gcrk 

was run (w-phase-opt). 

 

The speedup characteristic is much the same for each configuration, with slightly decreases 

with more GPUs being used. The worse result is observed for w-phase-opt, while the best 

speedup is achieved on Dibona and wo-2phase. While w-phase-opt provides the worse 

speedup, it achieves the best iterations/s KPI, see Figure 81. It is worth mentioning that thermal 
controller of the 2-phase cooling is actively monitoring GPUs for its load to ramp-up their 

frequency whenever required. Therefore, it provides some overhead, or rather very slight 

performance decrease of applications running on GPUs. In case of UrbanAir-gcrk, it impacts 

time-to-solution the more, the more GPUs are used. Provided optimizations mitigates this 

impact. Compared to the initial version of IDV-A, Dibona, 10% increase in number of 

iterations per second is observed. 

 

 

Figure 80: [UrbanAir] Strong speedup comparison for 59M grid points 
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Figure 81: [UrbanAir] Iterations per second for 59M grid points 

 

2.10.3 Energy efficiency 
 

To measure energy efficiency, the methodology proposed in D6.2 is used. Figure 82 details 

comparison of energy consumption of UrbanAir-gcrk run for 59M grid points domain (strong 

scalability) for different number of GPUs (rows in Figure) and three different systems (columns 

in Figure): Dibona (previous version of IDV-A, left column), IDVA-wo-2phase (IDV-A 

without 2 phase cooling system, left middle column) and IDVA-w-2phase (with two phase 

cooling system installed, right middle column) and IDVA-w-phase-opt (two phase cooling 

system installed, additional optimizations of kernels). For each system, adding more GPUs 

results in less power consumption of each, which is due to fewer grid points to be computed 

by each GPU. Dibona, IDVA-wo-2phase and IDVA-w-2phase have the same characteristic of 

energy consumption – after reaching the highest level of energy utilization, power draw 

remains more or less constant during the entire execution. It is worth noticing that power draw 

during execution is 7% higher compared to Dibona. In contrast, additional optimizations 

introduced (IDVA-w-2phase-opt) provides different power characteristics. It starts with 

reaching the highest level of energy consumption and almost immediately the power draw 

drops to an even lower level than observed on Dibona. Taking this into account, and that time-

to-solution is shortened when running on IDVA-w-2phase with optimized code, the consumed 

power should be the smallest among others. 
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Figure 82: [UrbanAir] Energy usage characteristic for 59M grid points 

 

Figure 83 presents comparison of energy used for running UrbanAir-gcrk on different systems. 

As discussed above, runs on Dibona were the most energy efficient until more optimizations 

were introduced to UrbanAir-gcrk. Please note that only GPU power usage being used in 

computation is taken into account. The CPU power usage is neglected as the CPU is only used 

to orchestrate data exchange between GPUs. Figure 84 presents energy usage when all GPUs 

available at the node are taken into consideration, i.e. for a single GPU run, energy usage of all 

4 GPUs available are summed. As one can expect, the most energy efficient execution is when 

all available GPUs are used for computations. It is important to notice that introduced 

optimizations resulted in the most energy-efficient run on IDV-A. 
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Figure 83: [UrbanAir] Energy consumption for 59M grid points, only used GPUs accounted. 

 

 

 

Figure 84: [UrbanAir] Energy consumption for 59M grid points, unused GPUs accounted. 

 

 

UrbanAir-gcrk scales weakly very well when entire GPUs is occupied by data, as discussed in 

previous subsections. Figure 85 compares IDV-A with and without optimization with respect 

to time-to-solution (top), and energy consumption (bottom) for a fixed problem size per GPU 

(59M grid points). With the new version, 4% decrease in time-to-solution is observed, and 22% 

decrease in energy consumed (when all 4GPUs are used). 
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Figure 85: [UrbanAir] Time-to-solution and energy consumption for 59M grid points per GPU 

 

Figure 86 presents the number of iterations per kW for different number of GPUs and systems. 

When only used GPUs are taken into account, the optimized version running on IDV-A with 

two phase cooling installed is able to compute the highest number of iterations. The lowest 

number of iterations per kW is solved with regular version running on IDV-A with or without 

2-phase cooling. Similar results are obtained when all GPUs, even unused ones, are taken into 

account of energy consumption. 
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Figure 86: [UrbanAir] Iterations / kW 

 

 

2.10.4 KPIs 
 

UrbanAir-gcrk KPIs are discussed in the previous subsections, and are here summarized in 

tabular form: 

 

- For a fixed problem size (strong scalability): 

o Table 30 – Time-to-solution 

o Table 31 – Iterations /s 

o Table 32 – Iterations / kW 

o Table 33 – Iterations / kW (unused GPUs accounted) 

 

- For a fixed problem size per GPU (weak scalability): 

o Table 34 – Time-to-solution 

o Table 35 – Iterations / s 

o Table 36 – Iterations / kW 

o Table 37 – Iterations / kW (unused GPUs accounted) 
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KPI Time-to-solution [s] 

GPUs Dibona IDVA-wo-2phase IDVA-w-2phase IDVA-w-2phase-opt 

1 53.2 49.5 49.0 47.0 

2 28.01 25.9 26.2 25.30 

4 14.8 14.0 14.5 13.90 

Table 30: [UrbanAir] KPI Time-to-solution (strong) 

 

 

KPI Iterations / s 

GPUs Dibona IDVA-wo-2phase IDVA-w-2phase IDVA-w-2phase-opt 

1 9.4 10.1 10.2 10.64 

2 17.85 19.3 19.08 19.76 

4 33.78 35.71 34.48 35.97 

Table 31: [UrbanAir] KPI Iterations / s (strong) 

 

KPI Iterations / kW (used GPUs) 

GPUs Dibona IDVA-wo-2phase IDVA-w-2phase IDVA-w-2phase-opt 

1 31.33 29.71 30.01 37.72 

2 31.88 29.25 29.18 35.29 

4 31.28 30.79 29.73 33.31 

Table 32: [UrbanAir] KPI Iterations / kW (strong, used GPUs) 

 

KPI Iterations / kW (all GPUs) 

GPUs Dibona IDVA-wo-2phase IDVA-w-2phase IDVA-w-2phase-opt 

1 18.43 18.36 18.55 21.62 

2 25.50 24.13 24.03 28.23 

4 31.28 30.79 29.73 33.31 

Table 33: [UrbanAir] KPI iterations /kW (all GPUs, strong) 

 

 

KPI Time-to-solution [s] 

GPUs IDVA-2phase IDVA-2phase-opt 

1 49 47 

2 50 47.8 

4 50.1 47.79 

Table 34: [UrbanAir] KPI time-to-solution (weak) 
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KPI Iterations / s 

GPUs IDVA-2phase IDVA-2phase-opt 

1 10.2 10.63 

2 10 10.46 

4 9.98 10.46 

Table 35: [UrbanAir] KPI Iterations / s (weak) 

 

KPI Iterations / kW 

GPUs IDVA-2phase IDVA-2phase-opt 

1 30.01 37.72 

2 14.92 17.85 

4 7.34 8.96 

Table 36: [UrbanAir] KPI Iterations / kW (used GPUs, weak) 

 

KPI Iterations / kW (all GPUs) 

GPUs IDVA-2phase IDVA-2phase-opt 

1 18.55 21.62 

2 12.34 14.4 

4 7.34 8.96 

Table 37: [UrbanAir] KPI Iterations / kW (all GPUs, weak) 

2.11 FIPLib: FPGA Image Processing Library – ENEA/INFN 

 

2.11.1 FIPLib on single FPGA 
In this section we report the results achieved implementing the FPGA Image Processing Library 
(FIPLib) through the Vitis HLS flow. FIPLib is implemented as a collection of C++ kernels 
and utilizes the Vitis HLS flow to translate the C++ library's kernels, interconnected through 
streams, into bitstreams. Currently, FIPLib encompasses nearly 70 functionalities, each 
designed with a streaming behavior: data are read from the input streams and are written to the 
output streams. The width of all streams is controlled by a template parameter that determines 
both the data path width and the available parallelism. The functionalities within FIPLib can be 
classified as follows: 

1. Stream Management: Encompasses stream copy, stream split, stream merge operations. 
These modules can also adapt the stream protocol (internal stream or AXI stream) and the 
stream width (increase/reduce stream width by factor 2 and 4) 

2. Data Mover: Serves as the interface between DDR/HBM and streams. 
3. Parameter Initialization: Establishes weight values for distinct filters like Sobel, Gaussian, 

and Box filters and for structuring elements for morphological operators. 
4. Pixel-based Operations: Orchestrates pixel-based operations on input images, yielding 

output images through operations such as multiplication, subtraction, addition, 
complementation, logical operations, minimum, maximum, and linear scaling. 
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5. Color Space Conversion: Undertakes pixel-based 
transformations, converting images from the RGB color space to the YUV color space and 
vice versa. 

6. Image Masking: Executes pixel-based operations that derive output images based on pixel 
values from either of two input images, based on the binary masking image.  

7. Line-based Operations: Requires complete reading of one or more lines prior to initiating 
the output of processed images. This category encompasses diverse filters (2D convolution 
with kernels of dimensions 3x3, 5x5, 7x7), median filtering (3x3, 5x5), morphological 
operators like dilation and erosion, horizontal mirroring, and 2x up-sampling through 
bilinear interpolation. 

8. Store and Forward Transformations: Demands full image read before generating the 
output image. This includes operations such as histogram equalization, contrast 
maximization, and vertical mirroring.  

All functions share a consistent structure, and they encompass the subsequent parameters: 

− Input and Output streams 

− Function specific parameters (such as kernel weights in convolutional filters) 

− Image size (including the number of rows and columns) 

− Number of images to be processed before the function restarts. 

  

These functions, or tasks, can be interconnected via streams and are invoked within a 

designated DataFlow section. Tasks, within a DataFlow section, are executed concurrently, 

with synchronization achieved through streaming communications. In Figure 87 we provide an 

excerpt of a basic image-processing kernel, accompanied by its graphical representation within 

a process network: 

 

#pragma HLS dataflow 
loadInput<dt16 >(inMem, s1, ImgSize, NImg); 
streamCopy<dt16 >(s1, s2, s3, ImgSize, NImg); 
do5x5medianFiltering<dt16 >(s2  ,s4, Rows, Cols,  
NImg); 
diffImages<dt16 >(s3, s4, s5, ImgSize, NImg); 
storeOutput<dt16 >(outMem , s5, ImgSize, NImg); 

 

Figure 87:[FIBLib] Codelet and graphics showing a simple image processing kernel 

 

The key point in achieving optimal FPGA processing performance is the maximization of 

parallelism, both in data access and data processing. Within FIPLib, four distinct types of 

parallelism are employed: 

− Spatial Parallelism: This form of parallelism involves the concurrent processing of N 

image components, optimizing the utilization of parallel resources. 

− Fine-Grain Pipeline Parallelism: Employed in tasks such as stream management, data 

movers, and pixel-based operations, this type of parallelism operates at the granularity 

of an individual pixel component. 

− Medium-Grain Pipeline Parallelism: Implemented in line-based operations, this type 

of parallelism is centered around processing an entire line of the image, hence the unit 

of parallelism is one line of the image 

− Coarse-Grain Pipeline Parallelism: Observed in store and forward transformations, 

this parallelism form encompasses the entirety of an image as the unit of parallel 

processing. It is applicable only when processing a sequence of images. 
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To demonstrate FIPLib capabilities, let’s refer to an algorithm, ALGO1, which draws a pencil-

like sketch of a given input color image. ALGO1 uses the following set of kernels, ImgProc, 

as building block, see Figure 88. 

 

Figure 88: [FIPLib] Basic image processing pipeline used in ALGO1 

 

The ImgProc set of kernels processes images (Rows, Cols) with 8 bits per pixel (8bpp, 256 

levels of grey). It cleans the input image through a 5x5 median filter and uses a cascade of three 

7x7 gaussian filters to remove the high frequency components of the image; the difference with 

the cleaned input image allows to extract the high-frequency components (smoothed borders) 

which are reported as a drawing on a whit paper (Negate kernel) and further smoothed through 

a final 5x5 Gaussian filter. Thanks to the streaming behavior of the kernels, at the steady state 

ImgProc can process N pixel components of the input image per clock cycle, being N the width, 

in bytes, of the streams. 

 

The basic pipeline is instantiated three times to process the R, G, and B channels of a color 

image. This image is read/written from/to the DDR memory through data movers kernels, with 

the stream width being twice the width of the processing kernels. 
  

The input image is separated/merged using the splitRGB and mergeRGB kernels. The 

structure of ALGO1 is reported in Figure 89. 

 

 

Figure 89: [FIPLib] Kernels in ALGO1 
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As observed, the size of the streams of the split/merge RGB 

kernels is twice the size of the in/out streams of the Image Processing Pipelined kernels. This 

is because data arriving at the R, G, and B channels has 1/3 of the throughput of the memory 

channels. As a result, new data is presented at the R (or G, or B) channel processing pipeline 

every 3 clock cycles. Therefore, we halved the size of the streams (and consequently the 

parallelism) by a factor of two. This approach allows the inner pipeline to process data with an 

efficiency of 2/3 instead of 1/3. 

Counting the number of operations performed by ALGO1 to process a (Rows; Cols) RGB 

image (refer to the expressions reported in the ImgProc figure), we find that the number of 

operations to compute ALGO1 is given by 

NALGO1≈1.4×103×Rows×Cols 

being operations seized as either 8-bit integer or 16-bit integer (multiply in the Gaussian 

Filter) or 32-bit (addition in the Gaussian Filter). 
After synthesizing the design produced by the HLS flow, we ran ALGO1 to process a 

sequence of 3000 4096x4096 RGB images. We measured the time from the start of the send of 
the first image to the FPGA memory to the end of the reception of the last image processed by 
the FPGA. The time to process all the images is 65.8 s, so one image is processed in 
TExeFPGA=21.9 ms and the sustained speed is 

S = NALGO1/TExeFPGA=2.35×1010/2,19×10-2=1.07×1012 Op/s 

The resources used by the ALGO1 are reported in Table 38. 

  

  # % 

LUT 121127 10.9% 
BRAM 328 19.4% 
DSP 4376 48.6% 

Table 38: [FIPLib] Resources used by ALGO1 

  

ALGO1 clock frequency is fck=200 MHz. As the number of clock cycles to process one 
image is Nck= TExe× fck=4.3×106, ALGO1 is sustaining  

NALGO1/ Nck = 5.5×103 Ops/cycle 

To evaluate the advantages of FIPLib, we implemented ALGO1 on a multicore Intel Xeon 

Haswell CPU using the OpenCV library [see https://opencv.org]. We left to the OpenCV the 

management of the parallelism and we saw that 9 cores were fully used during the processing. 

We processed the same sequence of 3000 RGB images used in the FPGA tests. The processing 

time for the whole sequence is 508.5 s, so the time needed to process one image is 

TExeopenCV=170 ms and the speed-up achieved through the FPGA implementation w.r.t. openCV 

is S = 7.8 

FPGAs are commonly regarded as computing devices capable of reducing power 

consumption. Let's assess and quantify this aspect through measurements on FPGA kernels 

implemented using the FIPLib and compare their energy usage with the corresponding 

OpenCV implementation on the CPU. 

To quantify the power consumption during a computation, let’s consider the energy used by 

the application to be run, being the energy defined as  
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where D is the running time of the application, and 

  

PA(t) = P(t) - PIdle 

the power used by the application at time t, computed as difference between the node instant 

power and the power absorbed by the node when no user processing is running.  

 

To perform the power measurements, we accessed the Baseboard Management Controllers 

(BMCs) of the computing node through the Intelligent Platform Management Interface (IPMI): 

in this way, with a sampling period of 1 s, we can read the instant power absorption of the node. 

As P(t) is the power erogated by power supply unit, it includes the power used both by the CPU 

and  by the FPGA. 

To compute EA, we first estimate PIdle measuring the instant power absorbed when there are no 

user processes running, then we take the instant power measurements, along the application 

run, to compute EA. 

To express the global performance of the execution of an algorithm implementation on a 

platform, we use the Energy Delay Product (EDP) [12]. 

 
EDP = EA×D      

EDP [Js] considers both the energy consumed by the application and its execution time. Using 

EDP, we can distinguish between two designs that consume the same amount of energy by 

identifying the faster one. Smaller EDP indicates more efficient design implementation. 

Figure 90 reports PA(t) when running ALGO1 to process the 3000 RGB images on CPU, 

through OpenCV, and on FPGA, through the FIPLib. 

 

 

Figure 90: [FIPLib] Power absorption of ALGO1 
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The values for EA (i.e. the areas below the two plots), the 
computing times, and EDP are reported in Table 39 (computing time includes FPGA 
programming time, filesystem accesses, and all the needed initializations).  

 

  
Energy used by 

ALGO1 run 

(kJ) 

Time used 

by ALGO1 

run (s) 

EDP for 

ALGO1 run 

[kJ*s] 

FPGA / FIPLib  0.92 91 60 

CPU / openCV 69.22 530.6 35198 

Table 39: [FIPLib] Energy and time used for ALGO1 

  

FPGA implementations outperform CPU implementations in both energy efficiency and speed, 
using 75 times less energy and 7.8 times less time. 

 

 

2.11.2 Multi-FPGA Implementation 
 
One of the possible improvements for the application is to perform image processing by 

working on streams of pixel of 256 bit width. However, this possible update translates in a 

huge requirement in terms of resource to implement the RGB kernels described in the previous 

section (in particular, since each ImgProc hw function requires ~32% of the available DSPs of 

the board). This made it impossible to implement the total application on a single FPGA. To 

cope with this problem, we chose to deploy FIPLib on a multi-FPGA setup exploiting the 

APEIRON framework: in this way, we were able to split the overall image processing by 

implementing a single RGB kernel on each node, each of them dedicated to a single color 

stream processing. Implementing FIPLib HLS kernels as APEIRON tasks means to change the 

interface of each of them (to cope with the standard required by the framework to compile the 

entire project. An example of this type of change is reported in Listing 1. 

 

SINGLE FPGA FPLib IMPLEMENTATION 
 

 
extern "C" { 
void ImgProc( 
             hls::stream<io_stream_16B>  &s_in, 
             hls::stream<io_stream_16B>  &s_out, 
             unsigned int ImgSize, 
             unsigned int NbImages, 
             unsigned short int ImgRows, 
             unsigned short int ImgCols, 
             unsigned int channel) 
{ 
... 
} 
} 

 

MULTI-FPGA FPLib IMPLEMENTATION 
(APEIRON) 

 
#include “ape_hls/hapecom.hpp” 
  
extern "C" { 
void ImgProc( 
             message_stream_t 
message_data_in[N_INPUT_CHANNELS], 
             message_stream_t 
message_data_out[N_OUTPUT_CHANNELS], 
             unsigned int ImgSize, 
             unsigned int NbImages, 
             unsigned short int ImgRows, 
             unsigned short int ImgCols, 
             unsigned int channel_id) 
{ 
... 
} 
} 
 

Listing 1: [FIPLib] Single vs multi FPGA 
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Another requirement for the implementation via APEIRON was to substitute the basic Vitis 

HLS stream connection approach (stream.write, stream.read) with the HAPECOM APIs send() 

and receive() functions in order to allow the communication between them by exchanging 

Apelink packets through the network. A snippet of the code is reported in Listing 2. 

 

SINGLE FPGA FPLib IMPLEMENTATION 
 
 

while (NbWordToTransfer > BUFFER_SIZE) 
{ 
      if (phase){ 
                  buffer2Stream(outStream, Buff1, BUFFER_SIZE); 
                  stream2Buffer(inStream, Buff2, BUFFER_SIZE); 
      } 
      else{ 
                 buffer2Stream(outStream, Buff2, BUFFER_SIZE); 
                 stream2Buffer(inStream, Buff1, BUFFER_SIZE); 
      } 
       phase = !phase; 
       NbWordToTransfer -= BUFFER_SIZE; 
} 
 
void buffer2Stream(hls::stream<io_stream_16B>& outStream, 
dt16 Buff[BUFFER_SIZE], unsigned int size) 
{ 
#pragma HLS inline off 
           io_stream_16B tmp; 
          tmp.keep = 0xFFFF; 
          tmp.last = false; 
          // copy Buff to stream 
           for (unsigned int i = 0; i<size; i++){ 
#pragma HLS pipeline 
tmp.data = Buff[i]; 
outStream.write(tmp); 
           } 
} 
 

MULTI-FPGA FPLib IMPLEMENTATION 
(APEIRON) 

 
#include “ape_hls/hapecom.hpp” 
 
while (NbWordToTransfer > BUFFER_SIZE) 
{ 
      if (phase){ 
                 send(Buff1, BUFFER_SIZE*sizeof(word_t), coord, 
task_id, ch_id, message_data_out); 
                  stream2Buffer(inStream, Buff2, BUFFER_SIZE); 
      } 
      else{ 
                 send(Buff2, BUFFER_SIZE*sizeof(word_t), coord, 
task_id, ch_id, message_data_out); 
                 stream2Buffer(inStream, Buff1, BUFFER_SIZE); 
      } 
       phase = !phase; 
       NbWordToTransfer -= BUFFER_SIZE; 
} 

 

 

Listing 2: [FIPLib] Single vs multi FPGA implementation 

 

The system was composed by 4 interconnected Xilinx® Alveo U200 (installed in the INFN 

Roma1 APE Lab) in a ring topology. The bitstream flashed on each board implemented a 

project depicted in Figure 91 and composed by 3 different HLS kernels: 

• RGB2Mem: connected to INFN Communication IP intranode port 0, it is built 

combining the overcited mem2stream and splitRGB kernels 

• Mem2RGB: connected to INFN Communication IP intranode port 0, it is built 

combining the overcited stream2mem and mergeRGB kernels 
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• ImgProc:  connected to INFN Communication IP 

intranode port 1, its functionality is described in the previous setup. 

 

 

 

Figure 91: [FIPLib] APEIRON project for single FPGA bistream 

 

 

In the final setup to be deployed on the four-FPGA system, each board (and so each hardware 

project flashed) is enabled to work on a specific task. In fact, the FPGA 0 is used to load the 

RGB images from the memory, to split them into color streams of data and to send them 

through the network in which the FPGA 1, 2 and 3 are used to process respectively a single 

color stream of data and to send back results to the FPGA 0 memory. 

The FIPLib multi-FPGA deployment and execution schemes are depicted in Figure 92, while 

a detail on which kind of processing HLS kernels (previously descripted) are used on each 

board is represented in  Figure 93. 
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Figure 92: [FIPLib] multi-FPGA deployment and execution scheme 

 

 

 

Figure 93: [FIPLib] Kernel displacement in multiple FPGA setup. Internal datapath set at 32 bytes 

 

To test the application performances, we choose to FIPLib on images of difference sizes, 

measuring the execution time and the power consumption in each of the cases. 

In detail, FIPLib execution time and power consumption has been measured exploiting the 

XRT runtime library, which allows the user to measure FPGA internal voltages and currents 

values during the application run and to insert time checkpoints to analyze the timeline of 

running HLS kernels. 

 

The performances result for processing images of sizes 512x512 and 4096x406 are respectively 

depicted in Figure 94 and Figure 95 and reported in Table 40. 
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Figure 94: [FPLIB] Multi FPGA APEIRON Image Processing on 512x512 images execution power profile 

 

 

Figure 95: [FPLIB] Multi FPGA APEIRON Image Processing on 4096x4096 images execution power profile 

 

 

 Image Size 

 512x512 4096x4096 

Processing Time 3.05 s 4.28 s 

Throughput 2950.62 fps 46.70 fps 

Energy consumption 0.53 kJ 0.71 kJ 

Processed Images per 

Joule 

16.98 fpJ 0.28 fpJ 

Table 40: [FIPLib] Multi-FPGA APEIRON Implementation performances 
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2.11.3 Single- and Multi-FPGA implementation 
comparison 

 

 

 

Figure 96: [FIPLib] CPU, Single- and Multi-FPGA implementation performances comparison 

 

In Figure 96, performances obtained from the previous described FIPLib implementations 

(CPU, Single-FPGA, Multi-FPGA) are compared focusing on throughput and processing 

images per joule values obtained from the processing of different sizes of images. 

In terms of throughput, it can be seen a large improvement while working on 512x512 images 

on a multi-FPGA setup: this is coherent since the possibility of increase the system datapath to 

32 byte wrt to the limit of 16 bytes in the single-FPGA system. A slightly improvement can be 

seen also while working on 4096x4096 images: in this case the throughput is limited from the 

bandwidth of the INFN Communication IP used in the APERION framework (since the size 

of packets to be sent on the network scales with the numbers of columns of the image). 

In terms of energy, the scaling in number of used FPGA boards is coupled to a huge loss in 

processing images per joule (higher loss in energy when lower improvement in throughput). 

 

2.12 NBody - BSC 

This section shows the results of the N-Body simulation application. This application allows 

evaluation and comparison of different use cases of the IDV-E computing node. It also provides 

a way to verify the successfulness of the different software stack integrations developed in the 

project. 

This section presents results when running the application in a single FPGA, multiple FPGAs 

without FPGA-to-FPGA communication, multiple FPGA with direct FPGA-to-FPGA 
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communication using APEIRON communication framework 

and finally, multi-node multi-FPGA using OMPIF over ethernet. 

N-body simulation computes the interaction of a set of particles due to gravitational forces. The 

input is a set of particles with initial positions, velocities, and masses. Both positions and 

velocities are represented by 3-dimensional vectors. Data is represented with single precision. 

During the simulation, two steps are repeated iteratively. The first one is the computation and 

accumulation of forces that each particle exerts over all other ones. This part is the most 

computationally expensive, because the number of forces grows proportional to n² where n is 

the number of particles. The second one is the update of the particle velocity and position for 

a given time step. Therefore, most of the resources are dedicated to the force computation step. 

 

 

2.12.1 OmpSs@FPGA on IDV-E single FPGA 
This implementation uses one of the two available FPGA devices, it’s used as a baseline and 

by a means to evaluate thermal and power profile of the IDV-E cooling system described in 

deliverable D3.2. 

The design is created using the OmpSs@FPGA toolchain [13] which is described in deliverable 

D4.6. Figure 97 shows a high-level diagram of the resulting design. 

 

 

Figure 97: [NBody] Single node n-body FPGA design 

 

Each block represents an IP core or module, and lines represent data buses. Purple boxes 

represent each of the application accelerators in the design. The stacked boxes represent 

multiple instances of the same accelerator. Gray boxes represent management modules and I/O 

infrastructure. 

The n-body design implemented contains one instance of the Nbody solver and update particles 

kernels and 8 instances of the calculate forces accelerators. Each of the calculate forces kernels 
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calculates forces for 16 particles in parallel. This distribution 

of resources is done because force calculation is the most compute intensive part of the 

application. 

Table 41 shows the amount of resources used by this design. 

 

Resource Used Available Used % 

LUT 600625 1303680 46.071507 

LUTRAM 99094 600960 16.489285 

FF 800548 2607360 30.703392 

BRAM 614 2016 30.456348 

URAM 8 960 0.8333334 

DSP 5131 9024 56.859486 

IO 6 624 0.9615385 

GT 16 24 66.66667 

BUFG 12 1008 1.1904762 

MMCM 1 12 8.333334 

PCIe 1 6 16.666668 

Table 41: [NBody] Resource usage of the single-node n-body for the IDV-E alveo U280 

 

 

In this implementation, the host copies data to FPGA memory and then submits a single FPGA 

task that will solve the problem for a given number of particles and timesteps. This is shown 

in Figure 98. 

 

 

 

Figure 98: [NBody] Diagram sequence of the n-body computation for single FPGA 
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The host first copies data to the FPGA memory by submitting 

a DMA operation to the QDMA module, which implements the PCIe communication between 

the host and the FPGA. Then, a single solve nbody task is submitted. This task then 

communicates with the hardware runtime to create and submit tasks to the calculate forces and 

update particles accelerators in order to solve the n-body problem for a given number of 

particles and time steps. Finally, the host copies the results back to main memory after the solve 

nbody task is finished. 

 

Single FPGA implementation reaches a performance of 37.43 Gpps (Giga pairs per second) 

while consuming 94.84W. This yields a power efficiency of 0.395 Gpairs/Watt. 

More details as well as comparison with other platforms are described in deliverables D1.4 and 

D4.6. 

 

Regarding thermal performance, IDV-E shows better behaviour when comparing to other 

platforms. We compared against actively air-cooled Alveo U200, a passively cooled Alveo 

U55c and the U280 using in quattro two-phase cooling technology from IDV-E as described 

in deliverable D3.2. 

Regarding memory configurations, Alveo U200 uses 64GB DDR memory, Alveo U55c 

integrates 16GB HBM memory instead of DDR and IDV-E Alveo U280 has 8GB HBM and 

32GB DDR, however, in our tests, only HBM is used. 

All three devices make use the same design, using roughly the same number of resources. 

Therefore, power draw from design logic is expected not to change across the devices as they 

are the same device family (AMD Virtex UltraScale+) using the same manufacturing process. 

 

Figure 99, Figure 100, Figure 101 and Figure 102 show temperature and power usage for during 

an n-body execution of the same problem size in U200, U55, and IDV-E's U280 air cooled and 

2 phase cooled devices respectively. 

 

 

Figure 99: [NBody] Temperature and power for an actively air-cooled Alveo U200 
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Figure 100: [NBody] Temperature and power for a passively air-cooled Alveo U55c 

 

Figure 101: [NBody] Temperature and power air cooled IDV-E's Alveo U280 
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Figure 102: [NBody] Temperature and power 2-phase cooled IDV-E's Alveo U280 

 

Those figures show many differences regarding temperature highlighting differences in the 

cooling solutions used in each case. 

The temperature for the Alveo U200 seems to remain stable throughout the execution. This is 

the expected outcome as the fan controller should adjust fan speed depending on the thermal 

load. This can be seen in Figure 99 at around 150s into the execution, the temperature slightly 

drops as the fan speed increases. Also, idle temperature is higher than the other two platforms 

as the fan will run at less speed at lower thermal loads.  

Alveo U55c shows lower idle temperature. This is due to the case airflow being relatively high 

disregarding FPGA’s thermal load, which is the expected behavior in a passive cooling 

solution. However, when computation starts, the amount of dissipated power increases, but the 

airflow does not significantly increase, causing the temperature to increase throughout 

execution reaching 96ºC in this execution. Insufficient airflow when thermal demand is high 

could lead to thermal protection shutting down the device to prevent catastrophic failure. 

Finally, IDV-E cooling system shows bigger thermal mass as temperature increases at a lower 

rate than other devices at the start of the execution. A larger thermal mass allows to absorb 

peaks in thermal load. Temperature drops slightly at around 160 seconds; this suggests that the 

cooling system is reacting to the change in temperature as was the case for active cooler in the 

Alveo U200. 

 

Those charts show also large differences in power usage across the evaluated devices and 

temperatures. 

On Alveo U200, average power usage is 110W, which is higher than the 95W that the U280 

uses. This difference can be attributed to the different memory used. This board uses 64GB 

DDR memory instead of the 16GB DDR + 8GB HBM of the U280. Also, active cooling has 

an impact, since the integrated fan has a non-negligible power draw that also is included in 

measurements. 
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On Alveo U55c, even though power draw is at the start of the 

execution is 80W, this quickly increases due to the temperature change in the FPGA chip. This 

is a known effect in MOSFET-based integrated circuits [14]. At the end of the execution power 

draw is just over 102W. On longer executions, power seems to stabilize at around 103 W. 

On the IDV-E, when using air cooling, behavior is similar to the U55c. However, cooling 

performance is worse. In fact, executions are shorter because on longer executions, 

overtemperature protection is tripped to avoid catastrophic failure. This can be seen as the x 

axis on Figure 55 shows a shorter span of time. This is caused by the airflow in the node being 

insufficient to properly cool the boards. On longer executions, the power draw reaches around 

115W just before the device powers down itself. Reported power consumption reported is 

slightly lower as we run shorter executions in order not to get so close to the thermal limit. 

In the 2-phase cooled IDV-E power usage remains stable throughout the execution, staying 

close to the 94W average. On top of running cooler overall, this cooling method allows us to 

run workloads for extended periods of time without triggering thermal protection. 

All in all, power efficiency of the FPGA in 2 phase cooled IDV-E is highest of the devices 

evaluated, as shown on Table 42. Cooling solution plays an important role in power efficiency, 

as the device running hotter results in higher power draw. Even in the case of passive solutions 

the influence of temperature on power consumption can negate power savings of the active 

components. Furthermore, temperatures can reach dangerous levels in particular workloads if 

server chassis air flow is not adjusted accordingly. 

 

Device Performance 

(Gpps) 

Power (W) Energy efficiency 

(Gpps/W) 

U200 36.4214 112 0.3265 

U55c 37.4103 103 0.3629 

U280 IDV-E (air) 37.4343 107 0.3487 

U280 IDV-E (2-phase) 37.4348 94.8 0.3947 

Table 42: [NBody] Comparison of performance, power and power efficiency across different devices 

 

These power measurements only consider the FPGA device's power. In all cases except for the 

Alveo U200, cooling is passive and therefore power used by the cooling infrastructure is not 

included in measurements. Table 43 shows power consumption of the full node including 

cooling infrastructure for the air-cooled and 2-phase-cooled versions of the IDV-E when using 

1 and 2 FPGAs. 

 

Power (W) 1 FPGA 2 FPGA 

Air cooling 354.3846154 424.8186813 

2 phase cooling 384.1043956 447.6978022 

Table 43: [NBody] Comparison of power consumption on air cooled and 2-phase cooled IDV-E 

 

As table shows, when considering the power consumed by the cooling infrastructure, it 

consumes more power than the air-cooled alternative for this configuration. However, the 

difference in consumed power when using one or two FPGAs is lower in the two-phase cooling 

system (+16.5%) than in the air-cooled version (+19.8%). Figure 103 shows a comparison 

between both versions of the IDV-E. For the cooling version, a breakdown of the used power 

between the computing node and the cooling system. For the air-cooled version, measuring 

power consumed by cooling fans is not possible as only full node power usage is reported. 
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Figure 103: [NBody] Sequence diagram of multi-fpga n-body execution 

 

Power consumption of the 2-phase cooling system remained constant at 73W throughout all 

experiments independently of the power used by the IDV-E node. 

Therefore, if the system used more FPGAs and the trend continues, a 2-phase cooled IDV-E 

node with more FPGAs would be more efficient than the air-cooled alternative. 

This trend is shown in Figure 104. 

 

 

Figure 104: [NBody] Sequence diagram of multi-fpga n-body execution 

 

This figure shows the power consumption trend for air-cooled and 2-phase-cooled IDV-E for 

different number of FPGAs. 

For nodes with 8 FPGAs as the ones used in MEEP project [15], two-phase cooling would be 

more efficient than air-cooling the FPGAs. Also, in our experiments, CPUs are only used for 
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FPGA task submission, no workload is being executed in the 

CPU, leaving almost all the cores in idle state. If workloads actively use CPUs, we expect 2-

phase cooling to be even more efficient as cooling load increases. 

It is also worth noting that the current air-cooled configuration is insufficient and cannot be 

used for workloads that run in the FPGAs for an extended time. 

 

2.12.2 OmpSs@FPGA on IDV-E multiple FPGA 
In this use case, we use both FPGAs in the IDV-E to run the n-body simulation. In this case, 

the host processor manages execution across the FPGAs without relying in the FPGAs directly 

communicating between them. 

To distribute work among multiple FPGAs, it’s not possible to submit a single task that 

computes the full n-body problem. The host process must create tasks for each particle block 

and move data from one FPGA to another. This workflow is shown in Figure 105. 

 

Figure 105: [NBody] Sequence diagram of multi-fpga n-body execution 

 

The sequence diagram in Figure 105 clearly shows that the amount of communication between 

the host system and the FPGA is much larger than the single device implementation described 

in Figure 97. This is true for task execution commands since the host must send an individual 

command for each task to process every block of particles. Also, the amount of data copies 

quickly grows. Data that needs to be moved from one device to another needs to be copied 

from the source device memory to host main memory, and then copied again to the destination 

device memory. If P2P transfers were supported, data could be copied from one device to 

another without going through the host. This can decrease the total amount of data movements, 

but keeping track of where each individual block of particles is stored in a given point in time 

has a non-negligible overhead that will limit performance as the problem size and number of 

devices grow. 
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Another disadvantage of this approach is that task scheduling 

quickly becomes a bottleneck. The host may not be fast enough creating tasks, checking that 

their dependences are ready and sending them to the appropriate device to keep accelerators 

busy. 

 

All in all, there’s a performance degradation when moving to a 2-device implementation. 

This is shown in Figure 106. 

 

 

Figure 106: [NBody] Performance comparison between using 1 and 2 FPGA 

 

This chart shows performance in Giga pairs per second (Gpps) for single and multi FPGA 

implementation. The design used for the multi-FPGA is the same as in the single node 

implementation shown in Figure 97, but the solve nbody accelerator is not used. Tasks are 

submitted directly submitted to calculate forces and update particles accelerators. 

 

Even though this approach may work for problems that can be partitioned in larger blocks that 

do not need communication between them, the all-to-all pattern of the n-body simulation makes 

it unfeasible to efficiently implement this application following this approach.  

 

2.12.3 OmpSs@FPGA + APEIRON 
To overcome issues regarding data copies and task scheduling of the host directly managed 

multiple devices, we implemented direct FPGA-to-FPGA data transfers. Communications 

between FPGA devices are implemented using APEIRON framework from INFN (described 

in D2.9). We use the apeiron API to send and receive data from the application accelerated 

kernels to the switch. The switch then routes packets to the destination FPGA in the network.   

Figure 107 shows a diagram representing the design of the of the n-body using apeiron to 

implement inter-FPGA communications. 
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Figure 107: [NBody] body design diagram showing ompss accelerators and apeiron communication modules 

 

Each of the blocks shown in the figure represents different IP cores in the design. The diagram 

shows application accelerators (purple blocks) connected to the hardware, which schedules 

tasks and to device memory. Hardware runtime sends commands to accelerators using an AXI 

stream interface. Accelerators read and write data to memory using AXI-4 interfaces. Yellow 

blocks are the apeiron communication modules. Apeiron sender and Apeiron receiver modules 

are connected like other application accelerators. 

 

When an accelerator needs to send or receive data, a command is sent to the apeiron sender or 

receiver. Then it reads data from memory, builds apeiron packets and sends them to the switch 

through a stream interface. Then the switch sends the data though the appropriate QSFP port 

on the board. The receiver works in the opposite direction, receives data from the switch and 

writes it to memory. This process is shown along with all n-body execution flow in Figure 108. 
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Figure 108: [NBody] Ompss + apeiron sequence diagram 

 

This figure shows a sequence diagram showing a high-level view of the interaction of 

application accelerators and apeiron modules. This diagram shows the case of two FPGA 

devices connected to the host via PCIe using the QDMA module and between devices via QSFP 

using apeiron modules. 

 

First, data is copied to all devices, then a single solve nbody task is submitted to each device. 

Then, for each timestep, forces between each particle pair are computed. Each of the two nodes 

compute forces for half the particles. Then, velocity and position of the particles assigned to 

each node are updated. Finally, the updated particles are sent to all other nodes. 

Data send and receive operations are usually done in parallel and data movements can be 

overlapped with task execution. Also, multiple calculate forces tasks are run in parallel in 

multiple accelerators, although not shown in the diagram for clarity. 

Comparing with flow described in Figure 105 for the host directly managing multiple devices 

it is obvious that the number of data movements are greatly reduced when data can be 

transferred between devices without host intervention. Also, the number of communication 

operations related to task submission and synchronization involving individual task execution 

for each particle block is greatly reduced. 

This approach allows performance to scale when using multiple devices, as shown in Figure 

109. 
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Figure 109: [NBody] Performance for different n-body FPGA implementations 

 

The chart clearly shows that performance using apeiron for communications between both 

FPGAs performs much better than the previous host-centric approach. In fact, speedup achieved 

using this approach provides a speed up of 1.99x when compared to the single FPGA 

implementation. This is very close to the ideal speedup of 2x the results from doubling the 

available resources. 

 

Also, power efficiency is maintained when moving from one to two FPGA devices. This is 

thanks to the low overhead caused by communications between FPGAs and between the host 

and FPGA devices. Energy efficiency results for different implementations are shown in Figure 

110. 

 

 

Figure 110: [NBody] Energy efficiency of n-body implementations 
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2.12.4 OmpSs@FPGA multinode applications 
 

We evaluated the distributed n-body implementation across a larger number of devices. 

The design follows the same approach as the implementation using apeiron described in section 

3.12.3. Scalability tests are run in the MEEP cluster [14]. This cluster contains 96 Alveo U55c 

accelerator cards connected using 100G Ethernet installed across 12 different nodes. These 

cards use the same FPGA part as the Alveo U280, but without DDR. Also, the same application 

accelerators are used and therefore, per-FPGA performance should be the same as the IDV-E. 

In the MEEP system however, an external 100G ethernet switch is used instead of using the 

apeiron switch to route data packets to their destination. 

Nevertheless, setup should provide a good approximation of the performance achievable by a 

cluster of IDV-E nodes and allows us to evaluate the distributed approach across multiple 

nodes with multiple FPGA devices each. 

 

Tests have been carried using up to 64 FPGAs across 8 different nodes. Scalability results are 

shown in Figure 111. 

 

 

Figure 111: [NBody] Measured performance and ideal across different number of devices 

 

This figure shows scalability results for the n-body application. For each number of nodes, it 

shows the actual, measured performance and the ideal performance. Ideal performance is the 

result of multiplying the performance of one FPGA by the number of devices. 

Data presented in Figure 111 shows that measured performance very closely matches the 

expected performance. In the case of 64 FPGAs performance is 98% of the ideal performance. 

This demonstrates that the proposed distributed solution could still be efficient in a larger 

system comprised of several IDV-E nodes. 

 

We compared scalability with a classical CPU-based system. The chosen system is 

MareNostrum 4, which as 3456 nodes with two Intel Xeon Platinum 8160 CPUs, 

94GB of DDR4 RAM each, and 14nm Intel technology. It also features a 100Gb Intel Omni-

Path Full-Fat Tree network. In our test, we measure performance for up to 56 nodes. 

Results are shown in Figure 112. 
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Figure 112: [NBody] MareNostrum 4 n-body scalability 

 

This figure shows performance across different number of nodes. The chart shows two lines, 

one with the actual measured performance and another line with the expected ideal 

performance. Ideal performance is the product of the number of nodes by the performance on 

single node. While scalability is good, reaching 94.6% of the expected ideal performance, it’s 

slightly lower than the 98% of the FPGA system.  

Table 44 shows a summary of performance and power efficiency for IDV-E, MEEP multi-node 

FPGA system and MareNostrum4. The table reports the main KPIs (performance and power 

efficiency) obtained by the multinode system compared against the same numbers obtained in 

the MareNostrum4 supercomputer to show that the experimental system developed is able to 

compete with a current supercomputer in terms of performance while delivering more than 2x 

times better power efficiency even if the FPGAs technology is 16nm against the next 

generation 14nm MareNostrum4 processors. 

 

Cluster (size) Performance 

(Gpairs/s) 

Power (W) Power efficiency 

(Gpair/W) 

IDV-E (1) 37.43 94.84 0.394 

IDV-E (2) 74.69 189.64 0.393 

MN4 (32) 1488.08 9459.0 0.157 

MN4 (56) 2536.60 15504.2 0.163 

MEEP(32) 1175.26 3227.9 0.364 

MEEP(64) 2322.98 6472.7 0.359 

Table 44: [NBody] Summary of performance, power consumption and power efficiency across different clusters 
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3 Summary and Concluding 
Remarks 

 

In this deliverable we presented application benchmarks and results with respect to the KPIs 

defined in the D6.1 deliverable and as they were advanced throughout D6.2 up to the state that 

they reached on the final platforms. Next subsections detail the relevant results and for each 

application.  

 

3.1 Smart Cities - CINI-UNIPI 
The key lessons learned thanks to the work at application levels are: 

  

1) Edge server applications for surveillance of smart cities can be set-up but to sustain in real-time 

combination of multiple complex algorithms like YoloV5+ Deep Sort a compute blade with a 

powerful GPU (Tesla A100) and processor (Xeon) should be adopted. 

2) RISC-V computational capabilities, particularly in scalar version, and considering 

commercially available solutions are still far in performance from other platforms like those 

based on Intel and/or ARM. 

3) For ARM the SVE version in Fujitsu performed worse than the ARM Neoverse N1 in Ampera 

Altra Max (the one in IDV-E) that is not using SVE; this can be justified by the fact that the 

algorithms were not optimized for a scalar vector extension version of the processor. 

4) The availability of FPGA Xilinx Alveo in IDV-E can be exploited by porting the Yolo 

calculation on it while keeping the DeepSort on the ARM processor and hence a gain in speed 

can be achieved roughly by a factor of 2. However, the performance are still below those that 

can be achieved using Intel Xeon plus a GPU Like Tesla A100. 

5) Posits alone, implemented via SW library emulated by the processor, but without a hardware 

support, cannot bring an advantage vs. architectures like Tesla A100 already supporting 

natively mixed-precision (FP64, FP32, BF16, INT8, INT4) 

  

  

These results are important output for the European community working on defining an EU-

based alternative to the monopolio of Intel/AMD plus NVIDIA GPU solution.   

In future projects and benchmarking activity of CINI-UNIPI will be extended to consider also 

RISC-V architectures with Vectorized Instruction Set and compare them to ARM-based 

(Neoverse N1, A64FX) and Intel-based GPP architectures. 

 

 

3.2 MathLib - CNR 
 

CNR developed some multi-GPU kernels for efficient use of heterogeneous architectures 

embedding last generation of Nvidia GPUs, as in the IDV-A platform. Activities were focused 

on the design of new algorithms and implementation patterns which can exploit at the best the 

combination of distributed-memory/shared-memory programming models, leveraging multiple 
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GPU accelerators.  Benefits of the library have been 

demonstrated both on IDVA and the Italian Leonardo supercomputer, accessed by an Early 

Access Grant obtained by the CNR team. The lesson learned is that for effective use of the new 

architectures it is not sufficient to re-factor legacy libraries and codes, but it is needed to rethink 

basic algorithms. The library was used as benchmark for the IDV-A platform and some project 

toolchain for energy consumption measurements before and after the installation of the new 2-

phase cooling system, showing that this system has small impact on the performance results of 

the main kernel although can reduce the average power and then its total energy consumption.    

3.3 RTM - Fraunhofer 
Both Floating Point formats Posit 16 bit with one exponent bit as well as Float 16 bit 

demonstrated the potential to be successfully used for RTM calculations based on the 

Marmousi reference data set. Different scenarios are available. Common is the storage of the 

wavefield in reduced precision. This can be extended by also calculating the kernel in reduced 

precision as well as stacking the image in reduced precision. If the Kahan summation is used 

for the stacking procedure all the numerical operations can be executed very well in reduced 

precision. The deviation towards the reference solution can be improved by calculating the 

kernel in Float32 or stacking the image in Float32. This presumes that the core provides the 

capability to perform Float32 as well as reduced precision operations. 

 

3.4 HEP - INFN 
 

The comparative analysis of the different available architectures yields valuable insights on the 

KPIs (throughput and energy efficiency) for the applications of interest. For the CPU only 

version of both the applications we observed a better scaling in energy efficiency running on 

the Intel(R) Xeon(R) Platinum 8470 based platform (IDV-A) with respect to the Dibona AMD-

based cluster. Obviously, we have to take into account that the IDV-A platform shows a 

baseline power consumption of around 400 W due to a 200 W consumed by the two CPUs 

when idle plus 200 W accountable to the thermal control daemon. So in absolute terms, in the 

current state of the IDV-A, the Dibona shows better results regarding energy efficiency. We 

expect that these results will be reverted after some optimization activities on the thermal 

control daemon. 

On the other hand, the ARM-based IDV-E node proved more effective on both throughput and 

energy efficiency compared to the Dibona and IDV-A nodes.  The IDV-E architecture reaches 

the same throughput of the more performant of the two X86_64 ones (IDV-A) while surpassing 

by roughly a 50% the more energy efficient of them (Dibona) in the energy efficiency KPI. 

When considering the performance of the IDV-A platform in comparison with the Dibona one 

in the CPU+GPU configuration of the two HEP applications, the improvement in Pixeltrack 

throughput KPI is noticeable and expected in the IDV-A node . The slightly worse performance 

of CLUE on IDV-A for the throughput KPI compared to that measured on Dibona node needs 

further investigation, and possibly specific code tuning for the H100 GPU. Regarding the 

energy efficiency KPI, there is a slight advantage in using the Dibona node; again this hints for 

further investigations and possibly code tuning for the H100 architecture. 
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3.5 NEST-GPU - INFN 

The comparison of the CPU and GPU versions of the hpc_benchmark test is smashingly in 

favor of the latter; in order to have a more complete reference against the D6.2 baseline this 

same multi-node benchmark is to be performed on the Dibona ARM cluster – the IDV-E used 

here is a single node so that inter-node communications were not gauged – but we do not expect 

a reversal. The same test is still to be performed on the state-of-the-art Intel CPUs of the IDV-

A; on those, as in D6.2 we expect somewhat shorter runtimes at the cost of significantly 

increased energy-to-solution compared with those obtained on the ARM CPUs of the IDV-E 

mentioned in section 2.5 above but nothing close to the more than 17 times faster and 10 times 

smaller energy-to-solution a single IDV-A GPU can muster. 

Even if the no-communications benchmark is faster than the multi-GPU ones the weak scaling 

that can be assessed with up to 4 GPUs of a single node IDV-A is quite good; for the accessible 

problem sizes that can be accommodated in the IDV-A in its current deployment the 

communications do not seem to be pose a significant hindrance yet – it remains to be seen for 

larger number of GPUs, possibly on more interconnected nodes – and there seems to be some 

performance to be squeezed out of optimizing the inter-GPU communications, as mentioned in 

section 2.4. 

3.6 RAIDER - INFN 
 

The further co-development of the application, of the APEIRON scalable HLS framework, and 

of the INFN Inter/Intra-FPGA Communication IP lead to significant improvements wrt the 

baseline reported in Deliverable D6.2.  

In particular, in both testbeds used, we showed the scalability of the application in terms of 

throughput KPI, leveraging on the capabilities of the APEIRON framework in terms of multi-

FPGA deployment and execution.  

As can be extrapolated from the energy efficiency KPI values reported for the two testbeds, for 

this class of applications a good scaling in term of energy efficiency can be reached only if the 

added nodes have enough processing capabilities that allow to increase the integrated 

processing throughput at a higher rate of the additional energy consumption they introduce in 

the system. This is the case of the IDV-E testbed (1 IDV-E node with 2 Alveo U280 FPGA 

boards), while in the INFN APE-Lab testbed we found the opposite situation, where the 

increased processing throughput capabilities when scaling the number of nodes (1 Intel node 

with 1 Alveo U200 FPGA board) were not enough to compensate for the increased energy 

consumption in the system. This is due to the higher density of FPGAs per node in the IDV-E 

system (2 per node vs 1 per node), to the higher energy efficiency of the Ampere Altra 

processors compared to the Intel Xeon Silver counterparts in the APE Lab small cluster, and 

to the higher energy efficiency of the U280 FPGAs compared to the U200. 

 

Regarding RAIDER integration with OmpSs, mixing task-based and streaming models can 

lead to increased performance with good programmability. However, tools and models need to 

be developed to exploit the advantages of both models. We also plan to further evaluate the 

integration of stream kernels into the task-based model. We plan to port the application to the 
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MEEP machine with multiple FPGAs (64) and take advantage 

of the FPGA-to-FPGA direct link communication with the APEIRON communication 

framework (to reach a set of 32 FPGA pairs) if the kernel requires more than one FPGA to be 

deployed with enough performance as the preliminary tests suggest. 

3.7 TNM - INFN 

Regarding the Quantum matcha TEA (gate-based quantum circuit emulator for digitized 

quantum circuit, the relevant KPIs were reported in deliverable D6.2 as a baseline for the IDV-

A node performance. Unfortunately, we were not been able to run our application on the IDV-

A yet given the short timeline of its availability, we plan to do it and report results in the next 

weeks.  

For Quantum green TEA, i.e. solver for the Schrödinger equation or Lindblad equation, this is 

a new application developed after Deliverable D6.2. We reported a strong scaling study 

with multi-threading and MPI on single node towards finding the optimal split in hybrid multi-

threading/MPI. The study was conducted using a node of the Justus2 cluster (bwHPC), with 

2xIntel Xeon 6252 Gold with 2x24 cores, showing a ~5 speedup wrt the single core 

configuration. We pointed out the bandwidth towards the main memory as the main limiting 

factor to scalability, and we will repeat the same study on the IDV-A node in the next week 

and compare results. Furthermore, algorithmic improvements and comparison between 

performance on CPU and GPU on a CINECA Leonardo Booster node have been reported; the 

latter will be repeated on the IDV-A node in the next weeks.  

The outcomes and knowledge gained during the TEXTAROSSA project for the TNM will be 

applied via the collaboration of the Quantum TEA team with HPC or via its open-source code. 

In 2023, we have been working together with CINECA and Quantum Matcha TEA was 

installed on Leonardo. Moreover, the software is open-source and will be made public step-

by-step in the future such that features as the data type switching are available to the public. 

Moreover, the code is used for European projects as Pasquans2 or EuRyQa, Marie-Curie 

fellowships like the UniPhD program at the University of Padova, or the QRydDemo project 

funded by the German Ministry of Education and Research. The applications within these 

projects have and will profit from the intellectual property gained during TEXTAROSSA. 

3.8 MathLib - INRIA 
 

Our work focuses on task scheduling in heterogeneous architectures. Our novel scheduler can 

accommodate any combination of hardware types, including CPU/GPU and CPU/FPGA 

configurations, for instance. The primary advantage of our scheduler is its flexibility to be 

easily enhanced to improve the energy efficiency of task-based applications. We are actively 

developing this aspect, and our short-term objective is to demonstrate its benefits. Accordingly, 

our next milestone involves developing an energy-centric strategy and evaluating its 

performance on the Chameleon and ScalFMM platforms. 

3.9 UrbanAir - PSNC 
 

The work carried out focused on exploiting heterogeneous resources, namely GPU 

accelerators, by UrbanAir-gcrk. Comparing to execution on CPUs, the time-to-solution was 
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decreased 9x (multinode enviornment), while energy 

efficiency was increased by 2x (single node). With further work, for the same accelerators up 

to 10% increase in iterations per second was achieved, and up to 22% increase in energy 

efficiency. It clearly demonstrates that with proper implementation GPU accelerators are 

bringing possibility to run more efficiently in terms of execution time and energy efficiency 

compared to execution on CPUs. While there is memory constraint on GPU limiting the 

maximum size of a problem to be solved, there is no such constraint in multiple node 

environment, where each accelerator can compute its portion of data, so that a significantly 

larger problem can be solved. The eventual gains in speedup and energy efficiency depend on 

the problem and algorithms used. For problems similar to UrbanAir-gcrk, where there are grid 

points in 3D space and the value of each is calculated at each iteration/timestep by the same 

scheme (e.g. exchanging data with its neighbors), the adaption to heterogeneous may be 

simpler and benefits easier to achieve. The reason for this is that in such cases the problem can 

be divided equally between accelerators, where each accelerator is computing their data 

independently, and just exchange the data with when neccesary at each timestep. It is important 

to remember that only fully utilized GPUs are bringing the maximum gain in computational 

performance (and thus time-to-solution). 

3.10 FIPLib - ENEA 
 

The aim of the study performed over this image processing application was to design a library, 

this is FIPLib, written in C++ and useful for a stream-based hardware design to be implemented 

on an FPGA board via the Vitis HLS tool. It has been proved that, taking into account the 

limited computing resources on the accelerator card, it is possible to synthetize a bitstream to 

be flashed on the FPGA capable of overperforming (in terms of throughput and energy 

consumption, as reported in the previous section) its CPU model counterpart.  

In addition to this, exploiting the capabilities of the APEIRON framework built over the INFN 

Communication IP, it has been proved that it is possible to implement even larger (in terms of 

resources) image processing application thanks to the possibility of multi-FPGA deployment. 

The results presented in the previous section shows, in fact, how it is possible to implement 

FIPLib processing kernels over multiple boards maintaining the stream-based execution via the 

usage of the APEIRON HAPECOM Communication API. However, even if throughput 

performances seems to scale well with the number of boards in the setup, the energy 

consumption remains a parameter to take into account since the improvement in terms of 

processed image per second could result into a loss in terms of processed images per Joule with 

respect to the single FPGA implementation.  

 

3.11 NBody - BSC 
 

Evaluation of OmpSs@FPGA in diferent scenarios has highlighted that in task-based 

programming models, task management overhead can be critical for performance. It quickly 

can become a bottleneck, especially when using multiple accelerator devices as shown in 

section 3.12.2. Also, efficiently moving data between accelerator devices is critical when 

managing multiple devices, as shown in section 3.12.3. 
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Furthermore, proper cooling, which is often overlooked, can 

cause a non-negligible impact on energy efficiency and even on system usability if it is not 

properly addressed, as shown in section 2.12.1. 

The work in the multinode capabilities of OmpSs@FPGA as shown in section 3.12.4, is 

expected to continue. Next steps include the inclusion of a Virtual Memory system in the 

OmpSs@FPGA framework to provide better scalability. Furthermore, we expect to leverage 

the Implicit Message Passing programming model, already under review, in a RISC-V 

manycore system with the help of the Fast Task Scheduler developed in Task 2.5. We plan to 

continue using NBody as a part of the test benchmarks used to evaluate these new 

developments along with other different applications (as maybe RAIDER, HPCG, etc.). 
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