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Partners

• 11 partners
• 6 linked institutions
• 5 countries
• Lead by Massimo Celino

(ENEA)
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Project Motivation

• Performance and energy efficiency remain main HPC challenges
• Users are in demand of higher performance
• Power often limits the available performance

• Heterogeneous systems try to address these challenges
• Increased complexity
• Large knowledge gap with domain experts
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Objectives

• Increase performance while keeping energy bounds
• Hardware stack redesign

• Infrastructure improvements (2-phase cooling and thermal management)
• Experimental Hardware platforms (GPU and FPGA based)

• Software stack redesign
• Use application-specific accelerators
• Efficient multi-device and multi-node runtime support

• Lower the entry barrier for new users to heterogeneous HPC systems
• Provide a set of application-specific IP blocks for different tasks
• Develop tooling for leveraging these IPs
• Provide tools for resource management
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Hardware prototypes
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Hardware platforms: IDV-A

• Developed by Atos
• 4 Nvidia H100 GPUs
• 2 Intel Xeon 8470 CPUs

(2x54 cores)
• 2-phase cooling system
• >3500W Thermal Design Power
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Hardware platforms: IDV-E

• Developed by E4
(based on Ampere Mt.Collins)

• 2 Ampere Altra Max CPU
(2x128 ARMv8 cores)

• 2 AMD Alveo U280 Accelerator cards
• 2-phase cooling system
• 950W TDP
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Evaporative Cooling (two-phase cooling)

• Use fluid phase change for energy exchange
• Electronic device cooling (evaporation)
• Waste heat reject (condensation)

• Impact on thermal control strategies

IDV-A IDV-E
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Thermal Management

• Thermal control prevents ICs (CPUs, GPUs, FPGAs) from burning
• Use Dynamic Frequency and Voltage Scaling to reduce power (and heat)
• Heat spikes are quick (~10ms)
• Cooling actuators (pumps, fans) have to adapt to load changes
• Power actuators (DVFS) need to take into account thermal mass and actuator 

inertia
• Fan vs. pump, heatsink vs. block + fluid, etc.

• Transient models of the evaporative cooling loop have been developed
• Hierarchical thermal controller has been designed
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IDV-A Prototype
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IDV-A Prototype
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IDV-A Prototype
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IDV-E Prototype
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IDV-E Prototype
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IP project contributions
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void cholesky_blocked(const int nt, float *A[nt][nt])
{
   for (int k = 0; k < nt; k++) {
      #pragma oss task inout(A[k][k])
      potrf( A[k][k] );
      for (int i = k+1; i < nt; i++) {
         #pragma oss task in(A[k][k]) inout(A[k][i])
         trsm( A[k][k], A[k][i] );
      }
      for (int i = k+1; i < nt; i++) {
          for (int j = k+1; j < i; j++) {
             #pragma oss task in(A[k][i], A[k][j]) inout(A[j][i])
             gemm( A[k][i], A[k][j], A[j][i] );
          }
      }
      #pragma oss task in(A[k][i]) inout(A[i][i])
      syrk( A[k][i], A[i][i] );
   }
}

OmpSs@FPGA
OmpS-2 task-based programming model
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Cholesky source code

Task graph



Hw IP for Task Scheduling

• A HW Fast Task Scheduler IP allows OmpSs@FPGA and many-core nodes to 
schedule tasks with negligible overhead 

Speed-up over SW scheduling (30 RISC-V cores)

• In many-core RISC-V nodes 
results in over 100x speedup 
in task scheduling

• In OmpSs@FPGA allows 
near perfect scalability (as 
shown later)
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OMPIF: OmpSs MPI for FPGA
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• MPI-like API called from the FPGA code →OmpSs MPI for FPGAs (OMPIF)
• OMPIF hardware runtime handles calls to the API
• FPGA-to-FPGA communication

• Distributed task: Special type 

of task used to start the 

application on all FPGAs.

void OMPIF_Send(const void* buf, int size, int dest, int tag)

void OMPIF_Recv(void* buf, int size, int source, int tag)

void OMPIF_Allgather(void* data, unsigned int size);

void OMPIF_Bcast(void* data, unsigned int size, int root);

int OMPIF_Comm_rank();

int OMPIF_Comm_size();



APEIRON: Low-Latency FPGA communication

• Communication between kernels in the same or different device
• 3D mesh routing
• HLS kernel interface

IP Architecture

size_t send(void* data, size_t size, int dest_node,

int kernel_id, int channel,

message_stream_t message_data_out[N_CHANNELS]);

size_t receive(void *data, int channel,

message_stream_t message_data_[N_CHANNELS]);

Kernel API
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Results
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• A communication-reduced CG solver for extreme-scale sparse linear systems on 
GPU-accelerated supercomputers

      

Math library (IDV-A)

• An innovative AMG preconditioner 
(BCMG) developed in Textarossa 
shows significative benefits if 
compared with the state of the art 
(Nvidia AmgX library) on a 
HPCG-like benchmark
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TAFFO

• A suite of compiler passes integrated with LLVM to automatically tune the 
computation precision.

• Employs value range analysis from input data ranges provided by the programmer 
via attributes

      

TAFFO allows fast tuning of NN precision requirements

Imagenet V2 classification accuracy with different precisions
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Quantum TEA (IDV-A)

• Quantum TEA simulates quantum systems using Tensor Network Models

      

S: Single precision real, D, Double precision real, 
Z: Double precision complex

Precision tuning (lower is better)

• Via precision tuning of the 
different layers of the TNM 
we can obtain performance 
gains while maintaining 
precision
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UrbanAir (IDV-A)

• Predicts air quality in in complex urban areas using a multi-scale model 

Energy (lower is better)GPU scalability

• Parallelized using cuda
• 11% higher performance 

(IDV-A vs. Dibona)
• 25% further improvement 

by using mixed precision
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Raider/APEIRON  (IDV-E)

• Predict the number of charged particles in each RICH detector physics event  
(@10MHz) using a CNN on FPGA

Performance and energy efficiency (higher is better)

• Distribute processing 
across multiple FPGA

• Use APEIRON for 
low-latency 
communications
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Nbody/OmpSs (IDV-E)

• Simulate gravitational interactions between particles

• Distributed processing 
using OmpSs@FPGA & 
OMPIF

• Near-ideal scalability in 
large number of nodes

• Energy efficiency 
improvements due to 
cooling technology

Scalability IDV-E Power
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Conclusions

• Two-phase cooling is a new reliable and sustainable solution for effective thermal 
management of exascale systems.
• It is feasible to effectively reject heat in warm climates without using chillers or 

cooling towers
• Thermal management has a big impact on energy efficiency
• Algorithm redesign is often required to exploit large scale complex architectures

• Developer tools (programming models and toolchains) are key
• Multi-FPGA architectures are interesting for particular workloads

• Fast inter-FPGA communication is needed
• Programmability is still an issue

• Two-phase cooled IDV-A and IDV-E provide a starting point for greener HPC
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