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Executive Summary 
This document reports the activities done by TEXTAROSSA partners CINI (UNIPISA), INFN and BSC with 

reference to consolidated specifications of accelerator IPs in WP2, revised according to the comments 

received by the reviewers at the mid-term (M18) project review.  

In order to assess the feasibility of some specifications, for the target IP preliminary architectures are 

also discussed and some preliminary design activities and synthesis, mainly in FPGA technology, have 

been carried out. This will allow also having an exploration of the design and performance space. 
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1. Introduction 
This document reports the activities done by TEXTAROSSA partners CINI (UNIPISA), INFN and BSC with 

reference to consolidated specifications of accelerator IPs in WP2, revised according to the comments 

received by the reviewers at the mid-term (M18) project review.  

In order to assess the feasibility of some specifications, preliminary architectures of the IPs are also 

shown and some preliminary design activities and synthesis, mainly in FPGA technology, have been 

done. 

Particularly, Section 2 deals with specification and with preliminary design space and performance 

analysis of accelerator IPs using alternative data arithmetic vs. conventional floating point 32 bit 

(FP32). These accelerators aim at achieving data compression and efficient computation of DNN (Deep 

Neural Network).  

Section 3 discusses the specifications of accelerators for innovative security services based on Post 

Quantum Cryptographic (PQC) techniques, that may be useful also for future evolution towards 

homomorphic encryption. 

Sections 2 and 3 show how the proposed accelerators can be integrated with RISC-V computing core 

like the RSC-V 64B Ariane IP and the RISC-V with support of the Vector extension. 

Section 4 refers to INFN Communication IP cores for low-latency inter-core and intra-core 

communications between HLS kernels. 

Section 5 refers to BSC Fast Task Scheduling IP for high performance computing systems and 

OmpSs@FPGA framework. 

Conclusions are drawn in Section 6. 



  

textarossa.eu   D2.1 | 11 

2. Accelerators with alternative data arithmetic for AI 
computing and data compression  

2.1. Specifications on IP macrocells with data arithmetic 
alternative to IEEE-754 FP  

This Section focuses on the specifications about IP macrocells having an alternative data arithmetic vs. 
classic IEEE-754 [16] Floating Point (FP) types and complementary to other solutions already 
investigated in EPI1. 

Moreover, this Section will refer to specifications on Posits arithmetic [14] considering also the 
relevant industrial exploitation impact. 

The section will cover specifications on IP cores design and on IP core verification procedures, and also 
the KPIs will be highlighted. 

Specifications on alternative IEEE-754 FP data arithmetic and TEXTAROSSA complementarity 
to EPI  

The specifications about the research and development activities of accelerator IP cores having an 
alternative data arithmetic vs. classic IEEE-754 floating-point types are dictated by the following 
considerations: 

- Growing constraints on memory utilization, power consumption, and I/O throughput have 

increasingly become limiting factors to the advancement of high performance computing 

(HPC) platforms and of the edge computing units needed, in a digital continuum scenario, by 

the users to access Cloud server and HPC applications. IEEE-754 floating-point types (32 bit 

for single-precision and 64 bits for double-precision) have been the de facto standard for 

floating-point number systems for decades, but the drawbacks of this numerical 

representation [14] leave much to be desired. Alternative representations are gaining 

traction, both in HPC and machine learning environments and many group in academia and 

industry are investigating alternatives.  

- For example, commercial accelerators used in HPC applications like the GPUs from NVIDIA, 

support classic FP64 and FP32 data arithmetic plus alternative arithmetic: in the A100 GPU 

there is the support also for BF16 and FP16 (scaled versions on 16 bits), TF32, a custom format 

which uses the same 10-bit mantissa as FP16 to ensure accuracy while sporting the same 

range as FP32, thanks to using an 8-bit exponent, and INT8 and INT4 (i.e. integers at 8 and at 

4 bits, respectively). In https://www.nvidia.com/en-us/data-center/a100/, for HPC 

applications formats like TF32 are suggested to be used, since TF32 can target similar accuracy 

than FP32 but is optimized for speed for NVIDIA GPUs.  

- A mixed precision approach similar to what is proposed by NVIDIA is also adopted in the 

accelerators for the EPI SGA1:  

Bfloat16 and its conversion to integer (INT) is supported in https://www.european-processor-

initiative.eu/dissemination-material/data-movement-reduction-for-dnn-accelerators-

enabling-dynamic-quantization-through-an-efpga/; FP32 and FP64 are supported in the STX 

https://www.nvidia.com/en-us/data-center/a100/
https://www.european-processor-initiative.eu/dissemination-material/data-movement-reduction-for-dnn-accelerators-enabling-dynamic-quantization-through-an-efpga/
https://www.european-processor-initiative.eu/dissemination-material/data-movement-reduction-for-dnn-accelerators-enabling-dynamic-quantization-through-an-efpga/
https://www.european-processor-initiative.eu/dissemination-material/data-movement-reduction-for-dnn-accelerators-enabling-dynamic-quantization-through-an-efpga/
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accelerator, see https://www.european-processor-initiative.eu/wp-

content/uploads/2022/06/Matheus-Cavalcante-@-RISC-V-Week.pdf 

- The TEXTAROSSA project, according to the project proposal, aims at finding innovative 

solutions to computing problems and complementary to the research carried out in EPI SGA1 

so that the results of TEXTAROSSA may enrich the output of EPI SGA1 and be an input for 

further development in EPI SGA2. 

Summarizing the above points, one key specification for the IP cores to be developed in WP2 of 
TEXTAROSSA is SPEC1: researching alternative data arithmetic to FP32, that is not limited to looking 
to FP16 (or BF16) or INT8/4.  

 

Specifications on Posits and relevant industrial exploitation impact 

To address the above SPEC1, a new data format that has been recently proposed in literature as a 
drop-in replacement for the IEEE-754 floating-point representation, but is still not adopted in EPI SGA1 
accelerators like Atrevido/Avispado form Semidynamics, embedded FPGA from Menta or STX from 
Fraunhofer/ETHZ,  is the Posit format.  

 
To be noted that, at the state of art, the interest on Posit format has not been limited only to academia 
but involves also industry:  

 
In Europe the French company Kalray has shown Interest on Posits.  
In the paper https://link.springer.com/chapter/10.1007/978-3-031-09779-9_2 “A Posit8 
Decompression Operator for Deep Neural Network Inference“, Springer LNCS, volume 13253, July 
2022, the CTO of the company B. De Dinechin et al. proposes a hardware operator to decompress 
Posit8 representations with exponent sizes 0, 1, 2, 3 to the IEEE 754 FP16 representation with the 
motivation to leverage the tensor units of the Kalray manycore processor which already supports 
FP16/FP32 matrix multiply-accumulate operations for deep learning inference. According to the 
paper, adding instructions to decompress Posit8 into FP16 numbers allows to further reduce the 
footprint of DNN parameters with an acceptable loss of accuracy or precision. 

 
In Asia the company VividSparks has shown the industrial interest on Posits as reported in 
https://www.vivid-sparks.com/supports Posits as a promising alternative to traditional floating-point 
systems, both as a stand-alone replacement and combined in a mixed-precision environment.  

 
A first standardization of Posits has been recently released, see 
https://www.posithub.org/posit_standard4.12.pdf 

  
Development of the Posit type and its support in hardware is still ongoing, and research continues to 
explore the application of Posits in different domains, how to best implement the type in hardware, 
and where the type fit with other numerical representations. 

 
Therefore, from the above considerations we have defined the specifications summarized in Table 2.1 
for the research in TEXTAROSSA on IPs with innovative data arithmetic:  
 

 

 

https://www.european-processor-initiative.eu/wp-content/uploads/2022/06/Matheus-Cavalcante-@-RISC-V-Week.pdf
https://www.european-processor-initiative.eu/wp-content/uploads/2022/06/Matheus-Cavalcante-@-RISC-V-Week.pdf
https://link.springer.com/chapter/10.1007/978-3-031-09779-9_2
https://www.vivid-sparks.com/
https://www.posithub.org/posit_standard4.12.pdf
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SPEC1 Researching alternative data arithmetic to FP32, which is not limited to looking at FP16 
(or BF16) or INT8/4. 

SPEC2 Developing solutions based on Posit 8 and Posit 16, the most promising from already 
industrial interest from companies in Europe 

SPEC3 Focusing on computing problems including machine learning and DNN, mainly for 
inference 

SPEC4 Aiming at a computing accuracy similar to FP32 

SPEC5 Design of an IP core for light support of Posit, i.e. capable with a limited complexity 
overhead to add the support of Posit to computing cores, compliant to RISC-V 
instruction set and already equipped with an integer ALU and a FPU. This IP will be 
called Light PPU (Posit Processing Unit) and will be developed in WP2-Task 2.3 

SPEC6 Design of an IP core to give full support in hardware to all basic Posits arithmetic 
operations between at least 2 operands (addition, subtraction, multiplication, 
division); this IP should be interfaceable to RISC-V instruction set processors already 
equipped with an integer ALU. This IP will be called Full PPU (Posit Processing Unit) will 
be developed in WP2-Task 2.1 

SPEC7 Since the complexity overhead of the Full PPU is expected to be higher than the Light 
PPU, as consequence the Full PPU should be integrated also in RISC-V processors 
without adding an FPU. Hence, to support compatibility with float computation the Full 
PPU should support also conversion from float to posit, computing in posit format and 
viceversa computing from posit to float. 

SPEC8 Light PPU in SPEC5 and Full PPU in SPEC6 should be interfaceable with RISC-V well 
known open cores like CVA6 (Ariane), that is a 64bit RISC-V core available from 
https://github.com/openhwgroup/cva6, and Ibex, that is a 32-bit RISC-V core available 
from https://github.com/lowRISC/ibex by using the possibility of custom opcodes 
offered by the RISC-V instruction set. Hence, Light and Full PPU operations will 
represent an extension of the instruction set rather than a separate coprocessor on 
the AXI bus.  

SPEC9 Textarossa aim at providing IP cores that implement a single computing lane working 
on 2 operands. A vectorized multi-lane, i.e. multi-operands, version of the Light and 
FULL PPU IPs is out of Textarossa scope, and may be achieved in future projects having 
the results of Textrossa WP2s as input  

Table 2.1: Specifications for accelerator IP cores with alternative data arithmetic vs. IEEE-754 FP types 

Specifications on IP cores verification procedures and performance KPIs 

In order to verify the functionalities of the developed IPs, namely the Light PPU and the Full PPUs, 
TEXTAROSSA envisages to implement the hierarchical approach shown in Table 2.2 considering the 
following key performance indicators (KPI):  

- Achievement of a computing accuracy similar to the use of FP32 but with a data compression 

factor (in storage and data transfer) higher than 2 for Light PPU vs a state-of-art FPU; 

https://github.com/openhwgroup/cva6
https://github.com/lowRISC/ibex
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- Achievement of a computing accuracy similar to the use of FP32 and both  a data compression 

factor (in storage and data transfer) higher than 2 and an increase efficiency computing 

speed/complexity-overhead vs. state-of-the-art FPU. 

 

Table 2.2: Specifications for verification procedures for the IP cores in WP2 of Textarossa 

2.2. Preliminary design space exploration for specification 
consolidation 

To consolidate the specifications in Table 1 we,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Light PPU co-processor with only conversions FP32 to Posit8/16 and viceversa 
 
The Light PPU will be developed focusing only on the compression abilities of posits by providing a co-
processor with only the following conversions as objectives: 

- Conversion from IEEE 32-bit float (a.k.a binary32) to posit16/8 and vice versa (see Figure 2.1) 

Computing 
kernel 

Implementation of basic computing kernels typical of DNNs: e.g. weighted 
multiplications and accumulation in GEMM: GEneral Matrix to Matrix Multiplication, 
non-linear activation function. 

Mini-apps Implementation of reference Neural Networks (e.g. LeNet) on reference benchmark 
data sets (e.g. MNIST, CIFAR, GTRSB)  

Complete 
application  

Collaborating with other Textarossapartners (Fraunhofer IISB) to test via an FPGA 
platform the use of Posit vs. Float 32 for a complex algorithm, like the reverse time 
equation in the Oil&Gas Fraunhofer application case. 
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- Conversion from fixed point (various sizes according to posit) to posit16/8 and vice versa 

By exploiting the possibility of customizing the opcodes foreseen in a RISC-V instruction set, the 
selection of the specific conversion can be done by the new opcode itself used as control input of a 
multiplexer.  
 
As reported in Figure 2.2, top, this light PPU co-processor can be paired with a RISC-V core that already 
has a floating-point unit without disrupting the already present pipeline: e.g. CVA6 Ariane 64b RISC-V 
available https://github.com/openhwgroup/cva6. 
Hence, as a specification for the FPGA implementation activity in WP2, we have integrated a CVA6 
Ariane 64b RISC-V core (with its original ALU and FPU) to our Light PPU co-processor, synthesizing it 
targeting a Xilinx Genesys 2 FPGA [15], thus obtaining a functional RISC-V core that supports INT, FP 
and Posits and that could run a general-purpose Linux distribution. 
Since the Posit computation in the case of Figure 2.2 is done via translation in FPU domain and use of 
the FPU, then Posits can be useful for data compression vs. float but not to increase computation 
efficiency.  
 

 
 

Figure 2.2: Light PPU possible integration mode within the RISC-V instruction set (with ALU and FPU) 
 

On the other hand, with the Full PPU IP core that gives full support to all arithmetic operation to Posits 
we can equip a RISC-V core with the ALU but without the FPU. Indeed, the FPU may be replaced by 
the FULL PPU, see Figure 2.3.  
Hence, to support compatibility with algorithms having float computation the Full PPU should support 
also conversion from float to posit, computing in Posit format and vice versa computing from  posit to 
float. Hence, the Full PPU gives both Posit and (via translation) Float computation support. 
 
As a specification for the FPGA implementation activity in WP2, we have integrated an Ibex RISC-V 
core (with its original ALU, but missing the FPU) to our Full PPU co-processor, synthesizing it targeting 
an Alveo U280 Xilinx FPGA, the same foreseen in the IDV-E TEXTAROSSA WP5, thus obtaining a 
functional RISC-V core that supports INT, FP and Posits and that could run a general-purpose Linux 
distribution. 
 
Since the Posit computation in the case of Figure 2.3 is done directly while the computation of Floats 
is done via translation in Posit domain and use of the Full PPU, then Posits can be useful for both data 
compression and increased computation efficiency vs. float. Obviously, the Float calculation according 
to the scheme in Figure 2.3 is less efficient than in platforms where there is also a dedicated hardware 
FPU.   
As a third possibility, the scheme in Figure 2.4 foresees the integration of RISC-V with ALU and FPU 
plus the Full PPU. In such case there will be a higher hardware complexity that in the cases in Figures 
2.2. and 2.3 but all computation domains will be optimized: integer on the ALU, FP type on the FPU 

https://github.com/openhwgroup/cva6
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and Posits on the Full PPU: Format conversion will be still possible thanks to the support foreseen in 
the Full PPU. 
 

 

 
 

Figure 2.3: Full PPU possible integration mode within the RISC-V instruction set (with ALU, but 
replacing the FPU) 

 

 
 

Figure 2.4: Full PPU possible integration mode within a RISC-V processor with ALU and FPU 
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3. eXtreme Secure Crypto IP 

3.1. Specifications of advanced secure services 
This chapter focuses on the specification of advanced security features to be supported by dedicated 
IP macrocells to be developed in WP2, Task 2.2.  

As already specified in Section 2, TEXTAROSSA aims at being complementary to EPI SGA1. 

In EPI SGA1 UNIPI has developed and delivered to SiPearl, in order to be integrated in Rhea1, a suite 
of cryptographic accelerators covering symmetric encryption (AES 128 bits and 256 bits), Asymmetric 
encryption (ECC-based schemes like ECDH.ECIES, ECDSA), hashing functions like SHA2 and SHA3 from 
256 bits to 512 bits, True Random Number Generator (TRNG) and  a Cryptographic Secure Pseudo RNG 
(CSPRNG). Each cryptographic accelerator can be connected to an Arm or a RISC-V processor via an 
AXI4 interface.  

Details on Cryptographic IPs developed in EPI 1 are public and can be found at the following link: 

https://www.european-processor-initiative.eu/dissemination-material/crypto-tile-factsheet/ 

In order to be complementary to the security developments in EPI1 and to cover new security features 
of interest, the activities in WP2 of TEXTAROSSA about security have been specified to cover the 
following cutting-edge cryptography specifications (SPEC_SEC1-4): 

SPEC-SEC1: TEXTAROSSA will develop an IP macrocell accelerating the computing kernel of 
Homomorphic Encryption (HE) algorithm, which in Cloud and HPC server applications are needed 
when to ensure the data privacy of different users the Server is considered untrusted.  

Indeed, in standard cryptographic system only the communication edge-cloud (i.e. client-server) is 
encrypted and the data of different users are stored in plain text mode in the server. Instead, in HE 
the data on the server are kept encrypted but HE ensures the property that operations data in the 
server on the encrypted data of the suers give the same results (from here the term Homomorphic 
where “homo” means “the same”) as doing the operations on the decrypted data. 

Since WP2 of TEXTAROSSA aims at developing IPs accelerating wide-spread adopted algorithms, then:  

SPEC-SEC2: we will accelerate one of the first and well-known SW implementation of the HE approach, 
the SEAL library from Microsoft. The latter is supported also by INTEL on its AVX512 instruction-set 
and by the NVIDIA GPU AI framework called CLARA. 

Moreover,  

SPEC-SEC3: TEXTAROSSA will develop an IP core implementing in HW the eXtendable Output Functions 
(XOF) SHAKE 128/256, which is a new hashing function vs. the SHA2 and SHA3 accelerators developed 
in EPI1.   

To be noted that SHAKE is already adopted by algorithms like Crystals-Dilithium for digital signature 
using Lattice LWE (Learning With Errors) Codes that have been recently standardized for Post-
quantum crypto applications.  

Hence, this will realize a  

SPEC_SEC4: TEXTAROSSA IP will be a first step towards Post-quantum Cryptographic  applications.  

https://www.european-processor-initiative.eu/dissemination-material/crypto-tile-factsheet/
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These specifications will be further discussed in Sections 3.2 and 3.3. 

Before proceeding to the IP macrocells design, a preliminary benchmarking campaign has been carried 
out to assess the performance on different CPU architectures of the aforementioned cryptographic 
functions.  

This analysis aims at: i) consolidating the specification of designing IP macrocells (using SystemVerilog 
Language and synthetizing the IP macrocell in Xilinx FPGA technology); ii) defining the main limits and 
bottlenecks of such algorithms; iii) defining at the beginning of the design process possible HW/SW 
strategies and specifications to improve performance in terms of computation time and energy 
efficiency. 

3.2. Homomorphic Encryption: SEAL-Embedded Library  
Homomorphic Encryption (HE) is a specialized type of encryption that allows specific computations on 
the encrypted data and generates a cyphertext that, once decrypted, matches the result of operations 
performed on the plaintext data. HE is nowadays considered a strong privacy-preserving solution that 
allows users to share data with clouds or any non-secure server. 
However, HE requires high computational resources and memory consumption, which limits its use in 
resource-constrained IoT devices. Different HE libraries exist, and the main ones are: Microsoft SEAL 
[1], PALISADE [2], and HELib [3]. Nevertheless, all of them are not specifically designed for resources-
constrained devices. The SEAL-Embedded library [4] is the first HE library targeted for embedded 
devices that employ several optimizations to perform the encoding and encryption of data, featuring 
the CKKS Homomorphic Encryption scheme.  
An assessment of the SEAL-Embedded library has been carried out to evaluate its performance on 
different CPUs, and the results will be presented in the next section. 
 

Benchmark on RISC-V CPUs 

The source code of the SEAL-Embedded library can be found in [5]. Two different RISC-V processors 
have been selected for the benchmark campaign, and two different environments have been 
implemented on the FPGA Board Zynq UltraScale+ MPSoC ZCU106 equipped with the System-on-Chip 
(SoC) XCZU7EV-2FFVC1156.  
Figure 3-1 shows the proposed hardware systems running the benchmark. The selected RISC-V 
processors are: 

• The 32-bit RISC-V RISCY, whose HDL code can be downloaded in [6]. The left side of Figure 3-1 

shows the complete system implemented in the target FPGA which encompasses the RISCY CPU, 

256 kB of on-chip memory, and AXI4 peripherals (i.e. JTAG and serial UART interface). 

• The 64-bit RISC-V CVA6, whose HDL code can be downloaded in [7]. The right side of Figure 3-1 

shows the complete system implemented in the target FPGA which includes the CVA6 CPU, 512MB 

of memory (i.e. onboard DDR4), and AXI4 peripherals (i.e. JTAG and serial UART interface). 

Both systems run at 100 MHz of frequency on the target FPGA. 
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Figure 3.1: RISCV-based systems for benchmarking the SEAL-Embedded library. 

 
The proposed systems permitted to find out the main bottleneck of the SEAL-Embedded library, which 
relies on the encryption function based on Ring Learning With Errors (RLWE) computation.  
Table 3-1 shows the benchmark results. The first column indicates the selected polynomial degree for 
the RLWE encryption. This parameter impacts both the message size (i.e. the size of the message 
blocks that must be provided to the encryption function, reported in the Msg size column) and the 
security strength of the RLWE encryption. Further details about the SEAL-Embedded library can be 
found in [4]. Despite the SEAL-Embedded being targeted for resource-constrained devices, it cannot 
be successfully executed on the RISCY CPU for Poly-Degree higher than 4096 (256 kB of memory are 
not enough). In addition, the latency for the encryption process is extremely high: around 3 seconds 
are required to encrypt 8 kB with 4096 Poly-Degree.  
 

Poly-Degree Msg size CVA6 (64-bit) RISCY (32-bit) 

1024 2048 B 17.19 ms 207.10 ms 

2048 4096 B 37.09 ms 444.22 ms 

4096 8192 B 273.80 ms 2806.43 ms 

8192 16384 B 1184.19 ms -- 

16384 32768 B 5861.02 ms -- 

 
Table 3.1: Benchmark results for the encryption function of the SEAL-Embedded Library. Column 1 
indicates the selected polynomial degree for the RLWE encryption, column 2 indicates the message 
size in Bytes, column 3 shows the results for the CVA6 processor and column 4 the results for the RISCY 
processor. Both CPUs run at 100 MHz. 
 

Hardware accelerator specifications definition 
 
Table 3.2 summarizes desired specifications of the hardware accelerator for the SEAL-
Embedded library. 
 

Spec Target Further Specification Condition Comments 

SPEC-SEC1 IP macrocell 
accelerating the 
computing-

 Must Have  
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intensive kernel 
of HE algorithm 

SPEC-SEC2 IP macrocell the 
SEAL library 
from Microsoft 

 Starting from SEAL 
Embedded library 
version 

Must Have  

SPEC-SEC5 

Communication 
Interface 

AXI4 - Memory 
Mapped (MM) 

Must Have 
Standard AXI4 Slave MM interface 
for the communication with CPU. 

AXI4 – Direct Memory 
Access (DMA) 

Nice to 
Have 

DMA for High-Throughput data 
exchange from/to memory. 
Depending on the needs could be 
implemented.  

SPEC-SEC6 

Supported 
parameters 

Poly-degree for the 
RLWE symmetric 
encryption. Hardware 
support for all the 
parameters (i.e. from 
1024 to 16384). 

Must Have  

SPEC-SEC7 

Latency for 
encryption 

Desired latency for 
encryption of 8 kB 
(with the polynomial 
degree of 4096) could 
be hundreds of 
milliseconds. 

Must Have 
Depending on the needs the 
performance can be improved 
respect to the defined specification. 

Table 3.2: Specification definition of the hardware accelerator for the SEAL-Embedded library. 

 
Testing procedure for the IP macrocell and KPIs 
 
Please note that to test the IP under development the idea is repeating tests like those in 
Table 3.1 in the target FPGA platform (e.g. an FPGA Board like the Zynq UltraScale+ MPSoC 
ZCU106 equipped with the XCZU7EV-2FFVC1156) but with the presence of the new 
accelerated IP.  
The KPIs to analyze the achieved implementation results will be: 

- The functional equivalence of the accelerated algorithm (HW-SW) with the original 

pure SW algorithm, 

- The complexity overhead of the accelerator in FPGA technology, 

- The computation speed-up thanks to the sue of the accelerator IP macrocell vs a non- 

accelerated (pure SW) implementation. 

 

3.3. eXtendable Output Functions (XOF) SHAKE-128/256 
An eXtendable Output Function (XOF) is a variable-length HASH function in which the length of the 
output can be chosen to meet the requirements of individual applications. The XOFs can be specialized 
to hash functions or used in a variety of other applications. The reference standard for the XOF is the 
NIST FIPS 202 [8], where two XOFs are specified: SHAKE-128 and SHAKE-256. Several NIST Post-
Quantum finalists for both Key Encapsulation Mechanism (KEM) and Digital Signature (DS) adopt the 
XOF functions SHAKE 128/256: CRYSTALS-Kyber (KEM) and Dilithium (DS), Classic McEliece (KEM), 
NTRU (KEM), Saber (KEM) and Falcon (DS). In particular, in DS algorithms the hardware acceleration 
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of XOFs becomes crucial since they are employed to HASH messages of any size. Some IoT applications, 
for instance Over-The-Air update, requires verifying the DS of large messages (e.g. up to Gigabytes) 
with low latency. Next section will show the benchmark results of the DS algorithms CRYSTALS-
Dilithium and Falcon running on both RISC-V CVA6 and ARM-A53 CPUs, aiming to identify how the 
message size affects the computation time.   

 
Performance evaluation in Post-Quantum Digital Signature Algorithms 
 
The source code of the Crystals-Dilithium and Falcon algorithms can be downloaded at the NIST official 
page for the PQC competition: https://pq-crystals.org/, https://falcon-sign.info/. In this case, we 
selected the CPUs RISC-V CVA6 and ARM-A53 because they can be reasonably used for IoT 
applications. Two different environments have been implemented on the FPGA Board UltraScale+ 
MPSoC ZCU106 equipped with the System-on-Chip (SoC) XCZU7EV-2FFVC1156: 

• A RISC-V CVA6-based system, the one reported on the right side of Figure 3-1. In this case, the 

entire system is implemented on the target FPGA at 100 MHz of frequency. 

• An ARM-A53-based hard-core system running at 1.2 GHz of frequency. The processor is 

connected to 2 GB of DDR4 memory. 

Table 3-3 reports the results for the DS verification function of CRYSTALS-Dilithium and Falcon 
algorithms with different message lengths (i.e. from 10 kB to 100 MB) on the RISC-V CVA6 CPU, while 
Table 3-4 reports similar results on the ARM-A53 CPU (in this case the message length varies from 10 
kB to 1 GB).  
 

Message 
length[byte] 

VERIFICATION FUNCTION – RISC-V CVA6 processor 

Dilithium-2 Dilithium-5 Falcon - 512 Falcon - 1024 

10k 30,27 ms 69,21 ms 14,11 ms 16,91 ms 

100K 104,85 ms 143,60 ms 83,99 ms 86,88 ms 

1M 865,77 ms 904,37 ms 799,24 ms 802,12 ms 

10M 8455,38 ms 8492,71 ms 7.933,16 ms 7.936,13 ms 

100M 84351,33 ms 84375,76 ms 79.273,83 ms 79.275,83 ms 

Table 3.3: Computation time for the DS verification function of CRYSTALS-Dilithium and Falcon 
algorithms on the RISC-V CVA6 CPU. 

 

Message 
length [byte] 

VERIFICATION FUNCTION – ARM-A53 processor 

Dilithium-2 Dilithium-5 Falcon - 512 Falcon - 1024 

10K 4,65 ms 10,37 ms 4,6 ms 6,26 ms 

100K 13,80 ms 19,52 ms 33,08 ms 34,71 ms 

1M 107,77 ms 113,49 ms 325,00 ms 326,63 ms 

10M 1.045,22 ms 1.050,89 ms 3.236,75 ms 3.238,38 ms 

100M 10.419,43 ms 10.424,82 ms 32.354,11 ms 32.355,73 ms 

1G 104.161,53 ms 104.167,26 ms 323.527,44 ms 323.529,06 ms 

Table 3.4: Computation time for the DS verification function of CRYSTALS-Dilithium and Falcon 
algorithms on the ARM-A53 CPU. 

Hardware accelerator specifications definition 
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Table 3-5 summarizes the desired specifications of the hardware accelerator for the SHAKE-
128/256 functions. 
 

 Target Specification Condition Comments 

SPEC_SEC3 implementing in HW the 
eXtendable Output 
Functions (XOF) SHAKE 

SHAKE 128 and 
SHAKE 256 

Must Have  

SPEC_SEC4 Compliant with use in 
Post-quantum 
Cryptographic 
applications.  

- Nice to Have 

SHAKE used as hashing function in 
recently standardized PQC 
signature algorithms (e.g. 
Dilithium) 

SPEC_SEC8 

Communication 
Interface 

AXI4 - Memory 
Mapped (MM) 

Must Have 
Standard AXI4 Slave MM interface 
for the communication with CPU. 

AXI4 – Direct 
Memory Access 
(DMA) 

Nice to Have 

DMA for High-Throughput data 
exchange from/to memory. 
Depending on the needs could be 
implemented.  

SPEC_SEC9 
Supported parameters 

Support both SHAKE-
128 and SHAKE-256 
functions 

Must Have  

SPEC_SEC10 

Latency/throughput 
To be further 
investigated 

TBD 

Depending on the needs, desired 
latency and throughput shall be 
identified. Data exchange via DMA 
can significantly improve 
performance. 

Table 3.5: Specification definition of the hardware accelerator for the SHAKE-128/256 functions. 

 
Testing procedure for the IP macrocell and KPIs 
 
Please note that to test the IP under development the idea is repeating tests like those in 
Tables 3-3 and 3-4 in FPGA platform (e.g. an FPGA Board like the Zynq UltraScale+ MPSoC 
ZCU106) but with the presence of the new Shake hardware IP.  
The KPIs to analyze the achieved implementation results will be: 

- The functional equivalence of the accelerated algorithm (HW-SW) with the original 

pure SW algorithm 

- The complexity overhead of the accelerator in FPGA technology 

- The computation speed-up thanks to the sue of the accelerator IP macrocell vs a non- 

accelerated (pure SW) implementation  
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4. IPs for low-latency intra-node and inter-node 
communication links 

 
The INFN Communication IPs implement a n-D Torus direct network for FPGA accelerators, allowing 
low-latency data transfer between processing tasks deployed on the same FPGA (IntraNode 
communication) and on different FPGAs (InterNode communication), see Figure 2-1. 
 

 
Figure 4.1 : Example of IntraNode (red) and InterNode (green and blue) data transfers between tasks 

 

The hardware block structure, depicted in Figure 4.2, can be split into a Network_IP  and a Routing_IP, 

described in more detail in the next sections. 

 
Figure 4.2: Architectural partition of Communication IPs 

 

The INFN Communication IPs, developed in VHDL, will be implemented as RTL-kernel in Vitis, a 
framework which allows to develop, debug, and optimize accelerated applications using standard 
programming languages for both software and hardware components. 
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In TEXTAROSSA project, target platforms are both Xilinx Alveo U200 and U280 cards, featuring the 
Xilinx UltraScale+ technology 
 
Table 4.1 collects the features of the Alveo family of boards. 

 

 
Table 4.1 – Features of the Alveo family of boards 

 
These cards provide a PCI Express interface to allow communication between the host processor and 
the network and are equipped with two 4-lane QSFP28 ports capable of 100 Gbps each. 
QSFP+ ports available allow the connection, using point-to-point, bi-directional, full-duplex 
communication channels, of each board with its two neighbors in a 1-D torus network topology (a 
ring). The relevant KPIs for the Communication IP are a) communication latency, with the aim of 
reaching sub-microsecond figures and, b) communication bandwidth, with the aim of exploiting most 
of the raw bandwidth offered by the different kind of communication channels that will be 
implemented (see section 4.2 below). 
 
The development of the Communication IP addresses the following project objectives: 
 
Objective 1 - Energy efficiency.  Implementing a direct communication between FPGAs, it avoids the usage 
of bounce buffers and the involvement of the CPUs and system bus resources in data transfers improving 
the energy efficiency of the multi-FPGA execution platform. The achievement of this objective will be 
assessed both directly (depending on the availability of the power modelling tools developed in Task 4.5) 
through measurement of the energy cost for data movements and indirectly by measuring the processed 
Events/J obtained by the RAIDER application, and comparing it with what will be obtained running the same 
processing pipeline both on a CPU only and on a CPU+GPU systems.  
  
Objective 2 - Sustained application performance. The sustained application performance of distributed 
dataflow applications, such as the RAIDER use case, are strongly affected by the performance of the 
network system. Implementing a direct FPGA to FPGA interconnect and bypassing the host network stack, 

allows to keep the communication latency in the sub-microsecond range and to increase the bandwidth 
for small messages. The achievement of this objective will be assessed both directly, measuring one-way 
communication latency and communication bandwidth, and indirectly, measuring the processed Events/s 
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obtained by the RAIDER application, and comparing it with what will be obtained running the same 
processing  pipeline both on a CPU only and on a CPU+GPU systems. 
  
Objective 3 - Seamless integration of reconfigurable accelerators. The IP enables the deployment of 
distributed dataflow applications over a multi-FPGA execution platform. 
  
Objective 4 - Development of new IPs. The INFN Communication IP is the key enabling  technology behind 
the APEIRON framework, allowing direct low-latency intra/inter FPGA communications between HLS 
kernels. 
 

4.1. Routing IP 
The  Routing_IP defines the switching technique and routing algorithm, dynamically interconnecting 
all IP’s ports and solving contentions for shared resources. 
The transmission is packet-based, in the sense that Communication IP sends, receives, and routes 
packets with header (shown in figure 4.3), a variable size payload and a footer. 
 

 
Figure 4.3: Packet’s header format 

 
The two sets of interfaces exposed, i.e. IntraNode and InterNode, are composed by a number of ports 
(M and N) that can be customized at design time. 
The IntraNode IF manages data flow to (RX) and from (TX) local tasks; each port consists of two FIFOs 
for each direction, so that header/footer and data use a specific FIFO. 
For interNode communications the routing policy applied is the dimension-order one (DOR): it consists 
in reducing the coordinates offset between current and destination node to zero while routing the 
packet, considering one dimension at time in an inverse lexicographic order (e.g. ZYX).   
The deadlock-avoidance of DOR routing is guaranteed by the implementation in the InterNode IF of 

two virtual channels for each physical channel [9]. 

The employed switching technique — i.e., when, and how messages are transferred — is Virtual Cut-
Through (VCT) [10]: the router starts forwarding the packet as soon as the routing algorithm has picked 
a direction and the receiving buffer has enough space to store the full packet. 
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4.1.1 HLS Communication Adaptor  
 
Task-side, input/output channels’ interface is decoupled from the Routing IP one, so that the user 
doesn’t have to care about the network protocol. A task should only implement a generic stream 
interface for each communication channel, based on the AXI4-Stream protocol, as follows: 
 
void example_task(  
 [optional kernel-specific list of parameters],message_stream_t 
message_data_in[N_INPUT_CHANNELS],message_stream_t message_data_out[N_OUTPUT_CHANNELS]) 
  
Where the message_stream_t type is defined as: 
typedef hls::stream<uint128_t> message_stream_t; 
 
The Communication Library leverages AXI4-Stream Side-Channels to encode all the information 
needed to forge the packet header. 
Adaptation toward/from IntraNode ports of the Routing IP is done by two IPs: Aggregator and 
Dispatcher. The Dispatcher receives incoming packets from the Routing IP and forwards them to the 
right input channel, according to the relevant fields of the header. The Aggregator receives outgoing 
packets from the task and forges the packet header, filling then the header/data FIFOs of the Routing 
IP. 

 
Figure 4.4: Schematic view of incoming and outgoing communication flow 

4.2. Network IP 
The Network_IP block, oversees managing data flow over the serial links between FPGAs. 
In the first Communication IPs release, to transfer data between each node with its neighbors we will 
use Xilinx Aurora 64B/66B cores for the serialization of the messages over the cable, and INFN APElink 
IP [11] to guarantee reliable communication, performing error detection and correction. 
In the final version we will implement also 10/25 Gbps and 100 Gbps Ethernet. 
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4.3. Communication IP Specifications 
In Table 4.2 we report the specification of the Communication IP, for both the intermediate release 
(M18) and for the final release (M30). 
 

 Intermediate Release (M18) Final Release (M30) 

Number of IntraNode ports 1, 2 1,2,3,4 

Number of InterNode ports 2 2 

Number of lanes/transceivers 
for an InterNode Channel 

2 4 

Raw Bandwidth of an 
InterNode Channel 

20 Gbps 40 Gbps 

Internal Router Datapath 
Width 

128 bit 256 bit 

Raw Bandwidth of an 
IntraNode Channel 

 12.5 Gbps 
 

37.5 Gbps 

IntraNode one-way latency  <= 500 ns <= 500 ns 

InterNode one-way latency <= 1 us <= 1 us 

Operating clock frequency 100 MHz 150MHz 

Table 4.2 – Specifications for the INFN Communication IP (intermediate and final releases) 

 

 

The number of IntraNode ports reported shows the configuration that we tested and validated (or we 
are going to test with the final revision). The number of InterNode ports is limited by the two QSFP28 
ports available in the U200 and U280 Alveo cards. We plan to increase for the Final Release the 
bandwidth of the external channels by increasing the number of lanes used. 
In the Final Release we also foresee to increase the internal datapath width (from 128 to 256 bit) and 
the clock frequency, thus enhancing communication bandwidth. 

 
 

4.4. Test and performance evaluation strategies 
 
We will implement a BIST mechanism to validate the functionalities of the Intra/Internode 
communications. Both IntraNode and InterNode IFs will be provided with a self-test mechanism to 
measure the latency and bandwidth achieved. 

 
Furthermore, relevant KPIs for the Communication IP, i.e. communication latency and bandwidth between 
HLS Kernels (both IntraNode an InterNode) will be assessed thanks to a dedicated design integrating the 
Communication IP with ad-hoc developed HLS kernels. 
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5. IP for fast task scheduling 
The objective of task 2.5 is the development of a HW IP, compatible with a RISC-V core available in 

BSC, for fast task management compliant at tool chain-level with OmpSs approach that in TEXTAROSSA 

is then linked to the Vitis HLS tool to ensure that reconfigurable units are integrated in the tool chain. 

The use of tasks to interface with the accelerators will allow the runtime to integrate both tasks 

exploiting the "Kahn channel" abstraction and standard OmpSs (OpenMP) tasks which will improve 

the scope of applications targeted by the project. Preliminary results show that using a HW manager 

to schedule tasks significantly improves the performance of the application. This IP will be a service IP 

since it interfaces with the cores and other IPs in the project. This section explains the high-level view, 

functionality and interface of the IP, while all the details are reported in Deliverable 2.10. 

As explained in Deliverable 2.10, the fast task scheduling IP is related to the following project objectives 

and strategic goals as stated in the DoA: 

• Objective 1 - Energy efficiency. The IP reported in this deliverable is designed to be integrated in 

an FPGA or attached as a runtime accelerator to a manycore system. It provides two ways of 

increasing energy efficiency: a first-order effect by improving the energy efficiency of the task-

based runtime and, a second-order effect that is achieved by improving the efficiency of the 

application being executed using the runtime.  

• Objective 2 - Sustained application performance. As with Objective 1, the IP reported in this 

deliverable contributes to sustained application performance: by improving the performance of 

the task-based runtime and also, by improving the performance of the application being executed 

using the runtime. As a fast task scheduling effectively increases application available parallelism, 

this second effect improvement is expected to be significant. 

• Objective 3 - Fine-tuned thermal policies integrated with an innovative cooling technology. The 

Fast Task Scheduling IP is expected to be able to work with the software part of the runtime by 

either, providing it with information about the power consumption of the tasks and/or enabling 

the thermal control system (in software) to actuate over the accelerators if necessary. 

• Objective 4 - Seamless integration of reconfigurable accelerators. OmpSs@FPGA runtime allows 

for seamless integration of reconfigurable accelerators (as detailed in Deliverable 4.1 and 

Deliverable 1.4). As an integral part of the framework the IP should allow for scheduling of tasks 

that are either specific to an accelerator or destined to be executed in a general-purpose unit.  

• Objective 5 - Development of new IPs. This deliverable reports the development of a new IP 

dedicate to scheduling tasks, so it directly tackles objective 5. 

• Objective 6 - Integrated Development Platform. As part of the OmpSs@FPGA runtime the IP 

reported in this deliverable will be used in applications executing on the IDV-E platform. It is 

important to highlight that IDV-E features a host CPU (ARM based) that has never before been 

used to drive computation in a PCIe attached FPGA. Developing the system in a way that is 

compatible with new different CPUs helps ensuring new host CPUs (like EPI CPUs) will be able to 

drive this kind of computations in the future. 

 

• Strategic Goal #1: Alignment with the European Processor Initiative (EPI). The Fast Task Scheduling 

IP will be aligned with EPI in its both application fields. On one side, along with OmpSs@FPGA, it 

will provide a system that can use an EPI processor to drive computations in a cluster of FPGA PCIe 

attached accelerators. Also, the second field of application of the Fast Task Scheduler is to 

accelerate a manycore system. We are doing work (to be reported in Deliverable 2.11) to integrate 
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it with a manycore system to accelerate parallel computations in such systems. The preliminary 

results are promising and have been sent to be considered for publication. 

• Strategic Goal #2: Supporting the objectives of EuroHPC as reported in ETP4HPC’s Strategic 

Research Agenda (SRA) for open HW and SW architecture. The Fast Task Scheduler IP is developed 

following the open HW model and is freely available as a standalone IP or as part of the whole 

OmpSs@FPGA framework. 

• Strategic Goal #3: Opening of new usage domains. The IP reported in this deliverable addresses a 

problem that affects current manycore platforms: their inability to exploit large-scale parallelism 

when each of the pieces of work involved (tasks) is small.  In this sense, although the IP itself 

doesn’t address any specific usage domain removing this system bottleneck opens the possibility 

of executing efficiently new applications on the objective platforms. 

5.1 Basic design and functionality 
 
This document describes the basic design and functionality of the IP for fast task scheduling (from now 

on FTS or Fast Task Scheduler). A first diagram is shown in Figure 5.1.1. 

 

 
Figure 5.1.1 IP for fast task scheduling diagram (FTS). 

 

As it can be seen in Figure 5.1.1 the system is composed of two command queues, one for input 

coming from the CPU/exterior of the FPGA (“cmd in queue”) and another going to the CPU/exterior 

of the FPGA (“cmd out queue”), two control modules (“Cmd in” and “Cmd out”) and two 

interconnection multiplexers/demultiplexers. Tasks are sent from the host CPU to the fast task 

scheduler by using commands that are temporarily stored in the “cmd in queue”.  These commands 

are processed in order by the “Cmd in” module and, depending on the accelerators availability, are 

sent to the appropriate accelerator. Commands are sent through the “cmd to accelerators” 

demultiplexer through an AXI stream interface, and only when accelerators are available (ready) in 

order to avoid interface contention and starvation. 

Once the task has been processed by the corresponding accelerator, it informs the FTS through an 

output AXI stream interface that is multiplexed to reach the “Cmd out” module with a “Finished Task” 

command. “Finished Task” command is expected to be processed in very few cycles (tens of cycles at 

most). Therefore, although some contention can be expected when several accelerators finish at the 

same time submitting this command, no significant performance drop is expected in this case.  

The “Cmd out” module is in charge of processing the “Finished Task” packet by forwarding it with the 

adequate format to the “cmd out queue” and to notify the “Cmd in” module about the new ready 

state of the accelerator in order for the FTS to forward a new task to it. 
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Tasks and Periodic Tasks 
 
In order to accomplish fast task scheduling, the prototype IP is going to be able to schedule both tasks 

and periodic tasks [12].  

Periodic systems (i.e., recurrent workloads) are a common workload in industrial environments and 

real-time applications. Those workloads use the task concept to define the different activities that 

must be executed periodically (after some amount of time). Thereby, task-based parallel programming 

models are great candidates to support recurrent workloads. We propose extending the current 

syntax of task-based parallel programming models to define the main recurrent task parameters. 

Therefore, modeling recurrent workloads can be accomplished efficiently in terms of code lines, and 

with all parallel capabilities of baseline programming models. Also, we propose using the 

reconfigurable heterogeneous platforms to efficiently manage these recurrent workloads. These 

platforms will provide an efficient management of recurrent tasks, keeping the great programmability 

provided by the parallel programming models. 

Periodic tasks are defined as tasks that repeat themselves a number of times. This repetition can be 

set a number of times (as soon as possible) or at a certain time interval defined by the user (provided 

that the task is executed in less time than the defined trigger interval). These kinds of tasks have 

demonstrated to be very powerful to address the problems of industrial environments [5.1]. The 

support for periodic tasks would also be incorporated in the programming model support in task 4.2. 

The periodic tasks syntax includes two clauses: period(N) and num_repetitions(K). An example for a 

periodic and a regular task definition is shown in Figure 5.1.2. 

# pragma omp task inout ([10] array ) num_repetitions(reps) period (1000000) 
void periodic_task ( int * array , const int reps ); 
# pragma omp task inout ([10] array ) 
void regular_task ( int * array ); 
int main (...) { 

int array [10]; 
regular_task ( array ); 
periodic _task ( array , 100); 
regular_task ( array ); 
# pragma omp taskwait 

} 

Figure 5.1.2 Periodic and regular task definition example. 
 
The main function calls the regular task, then the periodic task, and finally the regular, creating a chain 

of three task instances due to its data dependence. The periodic task has the num_repetitions clause, 

which defines that the task body will be executed reps times (in this case, the argument value is 100), 

and the period clause, which defines that the task will begin the execution every 1 second (1000000 

microseconds). The first regular task becomes ready when created as its data dependences are 

satisfied. In contrast, the other two are postponed. The recurrent task is postponed until the first 

regular task finishes, and the second regular task is postponed until the 100 repetitions of the 

recurrent task have been executed. 



  

textarossa.eu   D2.1 | 31 

5.2 Queues and Commands information 
The following section describes the structure of memories used to communicate the Host (usually 

using libxtasks) with the FTS. 

Command in and Command out queues 
 
Each queue has 1024 elements (uint64_t type) and it is divided into 16 subqueues of 64 elements. 

Each subqueue corresponds to one accelerator, starting from accelerator 0 (positions [0,63]) to 

accelerator 15 (positions [960,1023]) as shown in Figure 5.2.1. 

 1023               64 63             0 

+--------------------------------------+ 

| | | | |    ...    | | |    ...   | | | 

+--------------------------------------+ 

<--- 1 subqueue ---> 

<----------- 1024 positions -----------> 

Figure 5.2.1 Command in and Command out queues. 
 

Each command uses a dynamic number of slots in the queue. The number of slots depends on the 

command. The odd command codes make the accelerator become busy (no further commands will 

be sent to the accelerator until it returns the command out response) and the even command codes 

do not. The information is structured as shown in Figure 5.2.2. 

 63                                                             0 

+----------------------------------------------------------------+ 

| Valid |               Command Arguments                | Code  | 

+----------------------------------------------------------------+ 

|                        Command payload                         | 

|                              ...                               | 

+----------------------------------------------------------------+ 

<---------------------- 64 bits - 8 bytes -----------------------> 

 
 - [7  :0  ] Command code 
   *  0x01 - Execute task cmd 
   *  0x03 - Finished task cmd 
   *  0x05 - Execute period task cmd 
 - [55 :8  ] Command arguments 
 - [63 :56 ] Valid Entry 
   *  0x00 - Invalid 
   *  0x80 - Valid 
 - [   :   ] Command payload 

Figure 5.2.2 Commands format. 
 

As it can be seen the commands use the first position to indicate the command and the next positions 

as a payload (actual command information).  

 
Commands format 
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We have defined three initial commands in the FTS, a Execute task command, a Finished task 

command notification and a Execute periodic task command. The Execute task and Execute periodic 

task commands follow the structure shown in Figure 5.2.3. 

 63                                                             0 

+----------------------------------------------------------------+ 

| Valid |       | DesID | CompF |                | #Args | Code  | 

+----------------------------------------------------------------+ 

| 0x00  |                Task Identifier                         | 

+----------------------------------------------------------------+ 

|                     Parent Task Identifier                     | 

+----------------------------------------------------------------+ 

|             Period            |        Num. repetitions        | 

+----------------------------------------------------------------+ Λ 

|           ArgumentID          |                        | Flags | | 

+----------------------------------------------------------------+ | 1 arg 

|                            Argument                            | |  

+----------------------------------------------------------------+ v 

|                         Other arguments                        | 

|                              ...                               | 

+----------------------------------------------------------------+ 

<---------------------- 64 bits - 8 bytes -----------------------> 

 
 - [7  :0  ] Command code 
    *  0x01 - Execute task cmd 
    *  0x05 - Execute periodic task cmd 
 - [15 :8  ] Number of arguments 
 - [31 :16 ] 
 - [39 :32 ] Compute flag 
    *  0x00 - Compute disabled 
    *  0x01 - Compute enabled 
 - [47 :40 ] Destination ID where the accelerator will send the 'complete' signal 
    *  0x1F - Processing System (PS) 
 - [55 :48 ] 
 - [63 :56 ] Valid Entry 
   *  0x00 - Invalid 
   *  0x80 - Valid 
 - [119:64 ] Task identifier 
 - [127:120] 0x00 constant. This field is used to identify task commands created externally 
 - [191:128] Parent Task identifier. This field is ignored by the FTS and the accelerators, it is maintained to 
match the format of the internal command queue and the format expected by the accelerators. 
 - [223:192] Number of times that task body will be executed (Execute periodic task cmd only) 
 - [255:224] Time (us) between task body launches (Execute periodic task cmd only) 
 
Each argument is: 
 - [7  :0  ] Flags 
    *  0x00 - BRAM 
    *  0x01 - Private 
    *  0x02 - Global 
    *  0x10 - Enable input copy to wrapper BRAM 
    *  0x20 - Enable output copy from wrapper BRAM 
    * bit7 is internally used by cmd In module to store whether the input copy has been optimized or not. 
 - [31 :8  ] 
 - [63 :32 ] Argument ID 
 - [127:64 ] Argument value 

Figure 5.2.3 Execute task and Execute periodic task commands format. 
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Finally, Figure 5.2.4 shows the Finished task command format. As it can be seen this command is 

simpler as it only sends the task identifier information. This information is used by the task creator 

(runtime running in the host) to keep track of possible dependencies and could also be used by the 

FTS to identify the accelerator that has finished. 

 63                                                             0 

+----------------------------------------------------------------+ 

| Valid |                                                | Code  | 

+----------------------------------------------------------------+ 

|                     Task Identifier                          | 

+----------------------------------------------------------------+ 

<---------------------- 64 bits - 8 bytes -----------------------> 

 
 - [7  :0  ] Command code (value fixed to `0x03`) 
 - [55 :8  ] 
 - [63 :56 ] Valid Entry 
   *  0x00 - Invalid 
   *  0x80 - Valid 
 - [127:64 ] Task identifier sent to the accelerator in the execute task command 

Figure 5.2.4 Finished task command format. 

5.3 Data reuse optimizations 
In order to reduce the amount of data to be accessed by the accelerators, FTS includes an automatic 

detection of data reuse among tasks that are waiting in the command in queue. FTS can detect if two 

consecutive tasks in the command in queue are re-using the same input data. In that case, it can 

deactivate the copy flag of the argument to be reused of the second task before this task is issued to 

the accelerator. Therefore, the accelerator will only need to copy data that is not already in its local 

memory.   

Figure 5.3.1 shows two execution traces of an application when data reuse is deactivated or activated. 

This application has been annotated with FPGA tasks using OmpSs@FPGA and has been cross-

compiled for and executed on a Zynq 7000 family board (two Cortex-a9 at 666MHz + FPGA running at 

100Mhz) as a proof of concept. This is using two different versions of the FTS mentioned above to 

coordinate the two accelerators (IPs) and the software running on the two cores in the SMP, showing 

that FTS IP will be able to interface with cores and other IPs in the project.  Horizontal lines in the trace 

show the states (different colors) on the SMP threads (two lines on the top of each execution trace) 

and two accelerators (two lines on the bottom of each execution trace), along the time.  

Task execution in an accelerator has, with no optimizations, three states (colors): copy in data (first 

starting with a flag - olive green), kernel execution (second - dark olive green) and the last one copy 

out data (brown). 
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Figure 5.3.1 Execution traces of an application using two accelerators. Execution traces show the 
same time duration. Top: FTS has data reuse deactivated. Bottom: FTS has data reuse activated for 
tasks in the Command in queue. 
 
On the execution trace on the top of the figure we can see that there are always three states (different 

states start and end with flags), which is not ideal. Those tasks are always re-using the same input 

vector but the accelerator is not conscious about this fact and is copying the input vector all the time. 

On the other hand, the execution trace on the bottom shows the performance achieved once FTS 

includes the data reuse feature. In this case FTS can automatically detect data to be reused in an 

accelerator and help to almost remove all input copies modifying the argument copy flags of the task 

descriptions. 

Note however that there are still tasks in the execution trace on the bottom of Figure 5.3.1 that have 

three states and no data reuse is detected. This happens because originally data reuse detection 

among the tasks is only performed among tasks waiting in the Command In queue and no detection 

is done between a task being executed and tasks that arrive later to the Command In queue.  This 

situation may happen in several applications: a task is submitted (first one) by the runtime, it 

immediately starts execution in the accelerator, and then, another task is submitted by the runtime. 

Since the first one has already started, no detection can be done between Command In queues 

commands. This can be solved by taking care of the task being executed in the accelerator at that 

moment. FTS has been improved to detect and be able to catch this situation.  This can be seen in 

Figure 5.3.2. The execution trace on the bottom incorporates that feature. Only the first task of all 

tasks being executed has to copy the data, significantly improving the first FTS version (no data reuse) 

and allowing first task executing-second task in Command In queue data reuse. The extra-copy seen 

in the execution trace of the Figure 5.3.2 (bottom) is because the accelerator was completely empty 

when a new task was submitted. The overall performance improvement with data reuse can be 

significant as it can be seen in Figure 5.3.2. 
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Figure 5.3.2 Execution traces of an application using two accelerators. Execution traces show the 
same time duration. Top: FTS has data reuse deactivated. Middle: FTS has data reuse activated for 
tasks in the Command in queue. Bottom: FTS has data reuse activated for tasks in the Command In 
queue and tasks being executed. 

5.4 Test and performance evaluation strategies 

In order to verify that the Fast Task Scheduling IP complies with the functionality requirements 

described in this deliverable it has been extensively tested, both as a standalone IP and as a part of 

the OmpSs@FPGA framework. The IP details are described in Deliverable 2.10 while some of the initial 

testing as a part of the OmpSs@FPGA framework is described in Deliverable 4.1. It is important to 

highlight that at the moment of delivering this document the IP is being used in a production-ready 

environment, so the IP is fully functional and meets the initial requirements. 

The future work to be done with the IP will be driven by the performance results obtained in the 

evaluation and by the framework features that will be developed as the IP needs to be fully compatible 

with the implementation requirements of these features (like power measurement and control). 
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6. Conclusions 
This document reports the activities done by TEXTAROSSA [13] partners CINI (UNIPISA), INFN and BSC 

with reference to the consolidated specifications of accelerator IPs in WP2 and preliminary design and 

synthesis results, manly in FPGA technology. 

CINI UNIPI in Section 2 has presented the specification and preliminary design results of accelerators 

with mixed-precision (using fixed, float and posit formats), for data compression and for efficient 

computation of DNN (Deep Neural Network). 

CINI UNIPI in Section 3 has presented the specification and preliminary design results of accelerators 

for innovative security services based on Post Quantum Cryptographic (PQC) techniques taking into 

account the NIST standardization effort. The proposed accelerator will be useful also for homomorphic 

encryption where SW libraries from Microsoft have been proposed already in the market. 

In section 4 the specifications for both the intermediate and final releases and preliminary design of 

the INFN Communication IP  enabling low-latency interFPGA and intraFPGA communications are also 

presented . 

The IP for Fast Task Scheduling has been presented in section 5. The complete documentation of the 

IP can be found in Deliverable 2.10 with a complete schematic, code and verification of the IP. The 

information presented in this deliverable summarizes the high-level functionality of the Fast Task 

Scheduling IP, how it can be used from a host software driver and the advanced data optimizations 

introduced in the hardware. 

The proposed IPs are interesting, also in view of synergies between TEXTAROSSA and the other 

initiatives like EPI and the European Pilot, since all the proposed accelerators can be integrated with 

RISC-V computing cores like the RISC-V 64b Ariane IP and the RISC-V with support of the Vector 

extension in the EPAC (European Processor Accelerator). 
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