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Executive Summary  
This document reports the activities done by Textarossa partner CINI (UNIPISA), with reference to 

preliminary HDL design, verification, and synthesis of accelerator macrocells in WP2 for IP with data 

compression.  

The IP with data compression, that according to what foreseen in D2.1 is called Light PPU (Posit 

Processing Unit),  has been implemented in FPGA technology.  

Moreover, it has been integrated with a RISC-V open core like the Ariane RISC-V 64 bits to 

demonstrate the feasibility of integrating the Light PPU within a SoC based on RISC-V. 

The IP with data compression is designed according to the specifications defined in D2.1 [1]. 

The IP can be accessed at:  

https://bitbucket.org/federicorossifr/ppu_public/src/master/ 

The proposed work has been also submitted to the review of the scientific community and has been 

accepted on IEEE Transactions on Emerging Computing. 

https://bitbucket.org/federicorossifr/ppu_public/src/master/
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1. Introduction 
This document D2.6 reports the activities done by Textarossa partner CINI (UNIPISA) in WP2.  

D2.6 deals with the preliminary HDL design, using SystemVerilog, verification and synthesis of an IP 

for data compression that exploits the data compression capability of Posits. 

D2.6 follows the revised D2.1 specifications [1]. 

The main innovation vs. what is already available in the state of art and in other EuroHPC projects like 

EPI, is in the hardware support of a new arithmetic format called Posit that, particularly for ML and 

DNN applications, has been proved in recent literature [2-4] to have a high compression effect:  

Posit data format can ensure up to 4x compression for the same quality of floating point 32 (FP32), 

where quality is measured, as example, for a detection or classification task as accuracy (i.e. ratio 

between correct detection/classification and the total number of detection/classification done). 

This deliverable is organized as follows: 

Section 2 discusses the Posit numbers and a SW library implementing them called CppPosit, focusing 

on their data compression properties vs Floating-point numbers. 

Section 3 discusses the RISC-V Posit Instruction Set Architecture design and implementation to support 

thanks to the Light PPU; at minimal overhead, the translation from/to Posits and Floats, and from/to 

Posits and integers can ensure that the computation of a DNN can be done using conventional ALU and 

FPU, but the storage can be done more effectively in Posit format. 

Section 4 discusses in Subsection 4.1 Hardware results when implementing the IP, called Light PPU, 

in FPGA technology according to the specifications defined in D2.1, and then verified and integrated 

with a Ariane RISC-V 64 bits processor core. In Subsection 4.2 functional benchmarks for DNN 

examples are shown. 

Conclusions are drawn in Section 5, where also the IP repository is listed. 
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2. Posit numbers and CppPositLibrary 
A posit number (see Fig. 2.1) is represented by a signed integer on 2’s complement. It can be 
configured with the total number of bits N and maximum number of exponent bits ES. We define such 
a posit as Posit ⟨N, ES⟩.  
The Posit format can have at most four fields: i) sign on 1-bit, ii) regime with a variable size (run-length 
encoded), iii) exponent with at most ES bits and iv) fraction with a variable length.  
An example of a posit number instance is shown in Fig. 2.1. Note that, if the regime field is large 
enough, it is possible that the exponent field has less bits available than ES. In this case the actual 
exponent value is computed by padding zeros to the right of the exponent bits in the format. 

 
Figure 2.1: example of a Posit number  
 

The length l of the regime corresponds to the number of identical bits following the sign bit: 

 
The regime length is l. Depending on the value of the bit b, the regime value k will be computed as 
follows: 

 
The regime value is a scale factor for a special constant that depends on the posit configuration, 
called useed. The useed value is computed as follows 

 
Hence, the real value r associated with a posit represented by the integer P on two’s complement 
(with sign s) is computed as in Equation: 

   
The value F is the length of the fraction field.  
Note that there will always be an implicit one in front of the fraction (i.e. 1.f1, f2, . . . , fF ), without 
any subnormal number differently from IEEE binary32 numbers. 
 
Software support for posits is enabled by our cppPosit library  cppPosit, developed in Pisa and 
maintained by the Pisa authors, see here the public and open source part 
https://github.com/eruffaldi/cppPosit 
The library uses templatization to define different posit configurations during compilation. The posit 
operations are put into four different levels L1-L4 with increasing computational complexity.  

https://github.com/eruffaldi/cppPosit
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The main features of the cppPosit library are: 
 

● Template-based posit definition and configuration 
● Compile-time selection of different backends (software or hardware based) 
● Use of operator overloading to hide backends implementation detail to end-user 
● Ability to seamlessly target hardware accelerators or co-processors with operator overloading 

directly on the application code. 
 
Thanks to this library we can transparently use the lightweight PPU in a neural network framework 
without changing the application code; indeed, we just to re-compile the application with a proper 
flag to enable the use of newly inserted RISC-V instructions. 
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3. Light PPU IP and interfacing to RISC-V 
 

3.1 Light PPU IP design 

 

The goal of this work is the design of an IP core for lightweight PPU (Posit Processing Unit) to be 

connected to a 64b RISC-V processor in the form of a co-processor with an extension of the Instruction 

Set Architecture. 

Please note that the theory of Posit arithmetic, the structure of Posit numbers and their compression 

data benefit vs. classic integer and floating-point formats, particularly for DNN computation, have been 

already discussed by us in published works such as [2-4]. Therefore, the goal of this deliverable is on 

the design and verification of digital IPs supporting data compression for DNN thanks to the light 

support of Posits. 

We focus on the compression abilities of posits by providing a co-processor with only conversions in 

mind, called light PPU, (as in Figure 3.1 below). 

The difference between D2.6 and D2.2 is that D2.2 presents an AI accelerator IP giving full hardware 

support to posits number and hence using the IP in D2.2 the FPU of a RISC-V processor can be replaced 

by the Full PPU. 

Instead, in D2.2 the idea is minimizing the circuit complexity overhead and hence the proposed IP 

supports only the data compression using Posits with Float to/from Posit translation, but operations 

have to be done still in the FPU.  

We can convert binary32 floating point numbers to posit numbers with 16 and 8 total bits (and a variable  

number for the exponent since Posit 16,0 and Posit16,1 is considered). 

 

In order to provide a circuit design for our light-PPU we considered several key points to simplify the 

final logic design: 

1. IEEE floating point values are encoded in a module and sign-like representation while posits 

are encoded using 2's complement representation. Therefore, when converting from IEEE floats 

we just ignore the sign and build the positive posit. Then we use the sign to apply the 2's 

complement to the result if negative. 

2. Given a Posit<16,0> the size of the regime spans from a minimum of 2 to a maximum of 15 

bits. As a result, the mantissa size spans from a minimum of 0 to a maximum of 12 bits. This 

means that, given a 23-bit mantissa IEEE Float, the 8 least significant bits of the float are set to 

0. The same concepts hold for Posit<8,0>. 

3. We can build the Posit<X,0> regime arithmetically shifting an appropriate value by the 𝑋  least 

significant bits of the FP32 normalized exponent. For Posit<16,0> we shift the signed integer 

represented by 215 or (8000)16 in hexadecimal notation. For Posit <8,0> we shift the signed 

integer represented by 27. 

4. Decoding the regime is particularly interesting since we need to employ a find first set module 

(or find first unset) to evaluate the regime length. The output of the find first set module is the 

index i of the highest set bit (discarding the sign if present). For Posit<16,0> the regime length 

is actually computed as l=14-i. 

 

Figures 3.1, 3.2 and 3.3 show simplified versions of the light-PPU architecture. 
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Figure 3.1: Logical circuit for the 32-bit floating point to posit16,0 converter 
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Figure 3.2: Logical circuit for the posit16,0 to 32-bit floating point converter. 

 

Figure 3.3: Overall architecture for the light PPU 

 

 

 

Figure 2.3: PPU Light overall architecture 
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3.2 Integration with RISC-V CPUs Ariane 64bits 

 

The proposed co-processor, as shown in Figure 3.4, can be paired with a RISC-V core that already has 

a floating-point unit (e.g., the Ariane 64b RISC-V) without interrupting the existing pipeline.  

On the other hand, we can use this unit to enable ALU computation of posit numbers with the posit-to-

fixed conversion modules on a RISC-V core that does not support floating-point: 

1.  If the RISC-V processor embeds an FPU the light PPU can be used as a wrapper, providing a 

data compression by a factor up to 4, with little accuracy degradation. The cost of compression 

and decompression is the cost of converting a posit to a float and vice-versa. 

2.  If the RISC-V processor does not embed an FPU or we want to exploit only the ALU, the light 

PPU can function as a wrapper of fixed-point representation. Indeed, once we have converted 

between posit and fixed-point, the basic arithmetic operations can be computed just with the 

ALU. Also note that, for half of the posit domain, that is the [-1,1] range, the conversion 

between posit and fixed point is a simple left shift of 2 positions followed by a 0 padding on 

the most significant bits to reach desired fixed-point size. 

 

We investigated the first use-case by outfitting a CVA6 core with our PPU co-processor and 

synthesizing it for a Xilinx Genesys 2 FPGA, resulting in a working RISC-V core capable of running a 

general-purpose Linux distribution.  

The integration within the RISC-V core (Ariane CVA6 code, [7, 8]) can be done using the possibility 

to customize the instruction set. 

The posit-based compression IP proposed in D2.6 can be integrated in addition to the Ariane integer 

ALU and in addition to the Ariane FPU.  

 

 

 
 Figure 3.4: PPU possible integration modes within the RISC-V instruction set (with/without the FPU) 

 

Table 3.1 Shows the implemented RISC-V instructions and opcodes for the new light PPU instructions. 

Note that we are leveraging the custom opcode space in the 6 least significant bits 0x0b. 



  

 

17 

 
Table 3.1: ISA extension for the light PPU with conversions between 16-bit/8-bit posits and FP32/Fixed 
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4. Implementation results and benchmarks 
 

4.1 Hardware implementation results  

 
We chose the Xilinx Genesys 2 board for the hardware implementation (equipped with a Kintex 7 

XC7K325T-2FFG900C FPGA component).  

We chose this board to reduce the work required to construct our PPU inside a RISC-V core. We did, 

in fact, use the ARIANE RISC-V core that was originally built for this board.  

The resulting design was then implemented on the same board.  

This approach of using the same prototyping board also facilitates a fair comparison of the RISC-V 

without the Light PPU and the RISC-V with the Light PPU. 

The Genesys 2 board can be connected to a host controller for configuration and diagnosis via an UART 

interface. 

 

For the PPU component, we performed power, circuit complexity, and propagation delay (worst case 

combinatorial propagation delay of the PPU) reports: 

1. Look-up table (LUT) utilization:  747/203800 (0.36%) LUTs used. 

2. Component latency: 6.332ns (worst propagation delay). 

 

Finally, the new instruction set architecture was merged into the Ariane RISC-V core and synthesized 

for the Xilinx Genesys 2.  

The following key performance indicators (KPIs) were obtained: 

 

1.  Clock frequency: 125MHz (the same of the original Ariane design on the same board, so adding the 

Light PPU does not change the maximum achievable frequency) 

 

2. Total power on FPGA components (Kintex 7): 2.056W of which the contribution of the Light PPU 

is less than 1%. 

 

3. Look-up table (LUT) utilization:  63805/203800 (31.54%) LUTs used, of which only 0.36% is due 

to the added Light PPU. 

 

To be noted that the target of Textarossa is the implementation of the IP on FPGA, not on a ASIC, and 

hence the KPI of keeping the same frequency of the original Arian design in the range of hundred of 

MHz for FPGA is a good result. An ASIC implementation can be part of future evolutions of this IP 

design but is out of scope for Textarossa.    

 

Moreover, the work on Textarossa in D2.2 and D2.6 refers to single line posit processing units. A 

vectorization of the Posit operators could be evaluated as a future extension of this work to become 

compliant with vectorized RISC-V instructions thus creating a Vector Processing Unit (VPU). 

   

We validated the new ISA assuring the coherency between the two versions of cppPosit, compiled with 

or without the light PPU support. In the former case, the ISA instructions were emulated in the Spike 

simulator and the operation results were compared to the latter case in which posit operations were 

implemented completely in cppPosit. 

We developed a test-bench using the same HDL language used for the light PPU unit to test the 

functionality of the newly introduced components. We tried every combination for the inputs and tested 

the outputs of conversion against our cppPosit software library. This means that we have also verified 

the correct handling of all the corner cases, such as the redundant negative zero and the redundant 

representations for the Infinity and Not-A-Number in IEEE 32-bit floats. 
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4.2 DNN Benchmarks  

 

To assess the variation of accuracy with the compressed formats, we tested two well-known datasets 

often used in literature for benchmarking [2, 5, 6 10] (the MNIST dataset and the GTSRB datasets on 

the networks shown in Figure 4.1, pre-trained using 32-bit floats). We then tested the model using the 

posit compression to assess accuracy variations. 

 

We used the following neural network (LeNet-5) as benchmark base for weight compression: 

 

 
Figure 4.1: example neural network used for test of the light PPU data compression IP 

 

We also give earlier accuracy results on this neural network in Figure 4.1 utilizing both posit and 

binary32 integers with varying workloads for completeness. This result was reached by using posit 

compression for the weights and computing using binary32 (fp32) format. We measured the relative 

speedup to a software-based posit compression. 

 As a result, we investigated the overall system compression times with the weights of a tiny LeNet-5 

neural network, yielding the result displayed in Table 4.1. 

 

 

LeNet 

 MNIST GTRSB 

FP32 98.83% 91.8% 

posit(16, 1) 98.83% 91.8% 

posit(16, 0) 98.50% 90.5% 

posit(8, 0) 98.34% 90.4% 

 
Table 4.1: Accuracy performance of Posit vs FP32 for different benchmark data sets (MNIST [5]  

and the German Traffic Road Sign Benchmark [6]) 
 

To assess the performance of the customized core we ran the same benchmarks used in the simulation 

phase on the ARIANE RISC-V core, equipped with the OpenPiton 12 Linux distribution (based on the 

ARIANE Linux 4.2).  

As before, timing performance was measured using C++ internal software chrono directives. This 

approach involves the conversion between posits and floats at each operation (e.g. sum or 

multiplication).  

As a result, for each operation, we are performing two more instructions for type conversion. Table 4.2 

and 4.3 summarizes the results obtained with the evaluation of this trade-off. Note that the value 

obtained with IEEE FP32 is totally independent from the presence of the light PPU. 
 

 



  

 

20 

 

 w/ PPU (s) wo/ PPU (s) Speedup 

posit 8,0 5.4 58.87 10.90 

posit(16, 0) 11.6 64.54 5.56 

 
Table 4.2:  Real HW (FPGA) timing performance on a 10-layer convolutional neural network with and without the 

synthesized hardware PPU light support for the cppPosit library. 

 

 

 

 Time (s) DNN size (bytes) Compression 

IEEE FP32 2,1 224894 - 

posit(16, 0) 11.6 112874 1.99 

posit(8, 0) 5.4 56864 3.95 

 
Table 4.3: Tradeoff between processing time and compression factor of Posit vs FP32 for  DNN  

 

We may instead take an entire posit network and convert it beforehand to IEEE FP32, in order 

to exploit compression as much as possible without slowing down actual image processing. 

This use case is relevant if we think about resource constrained environments where volatile 

memory is scarce (e.g. embedded or automotive systems) or when frequent transfer of network 

models are done (e.g. smartphones with recognition software). Moreover, these systems often 

use an adaptive approach where, depending on the surrounding environment (e.g. snow, night-

time, off-road etc.), different machine learning models need to be loaded. This means that 

having multiple models on volatile storage can highly benefit from compression even when 

they are not actually loaded into main memory. In this case, we need to decompress the network 

into IEEE FP32 format only one time at the beginning of execution.  

This will lead to a much slower start but a faster computation time (that is the same as IEEE 

FP32 in Table 4.3). Table 4.4 summarizes the results of this evaluation. 

 

 

 Time (s) DNN size (bytes) Compression 

IEEE FP32  224894  

posit(16, 0) 51.5s 112874 1.99 

posit(8, 0) 49.8s 56864 3.95 

Table 4.4: Trade-off between compression time of the network in Figure 4.1 and compression factor 
Processing time was obtained from the real hardware implementation  
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5. Conclusions and IP repository 
In this work we dealt with the preliminary HDL design, using SystemVerilog, verification and synthesis 

of an IP for data compression exploiting posit arithmetic. 

The key novelty is the hardware support for a new arithmetic format called Posit, which has been shown 

to have a strong compression effect, notably for ML and DNN applications: 4x compression for the 

same quality. 

We designed the data compression IP using FPGA technology targeting the Xilinx Genesys 2 FPGA 

platform. Furthermore, we tested the IP design against a golden-model software library for posit 

arithmetic. 

The data compression IP has been implemented in different Xilinx FPGA devices and it has been 

designed according to the specifications defined in D2.1, aiming to demonstrate its platform 

independence.  

Future activities will expand the implementation to other platforms (e.g. the ALVEO U280 platform 

also selected by other partners of the project such as INFN). 

Finally, we integrated the data compression IP within the ARIANE 64-bits 6-stage RISC-V core. 

 

The IP can be accessed: https://bitbucket.org/federicorossifr/ppu_public/src/master/ 

 

The proposed work has been also submitted to the review of the scientific community and has been 

accepted on  

Marco Cococcioni; Federico Rossi; Emanuele Ruffaldi; Sergio Saponara, “A Lightweight Posit 

Processing Unit for RISC-V Processors in Deep Neural Network Applications”, IEEE Transactions on 

Emerging Topics in Computing, 2022, vol. 10, n. 4 

 

https://bitbucket.org/federicorossifr/ppu_public/src/master/
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