

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

WP2 New accelerator designs exploiting mixed precision

D2.8 IP for low-latency internode communication links,

part 1

Revised version

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No 956831

TEXTAROSSA

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

Grant Agreement No.: 956831

Deliverable: D2.8 IP for low-latency internode communication links, part 1

Project Start Date: 01/04/2021 Duration: 36 months

Coordinator: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO

SOSTENIBILE - ENEA, Italy

Deliverable No D2.8

WP No: WP2

WP Leader: CINI-UNIPI

Due date: M18 (September 30, 2022)

Delivery date: 20/05/2023 (revised)

Dissemination Level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

textarossa.eu D2.8 | 3

DOCUMENT SUMMARY INFORMATION

Project title:
Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw
Supercomputing Applications for exascale

Short project name: TEXTAROSSA

Project No: 956831

Call Identifier: H2020-JTI-EuroHPC-2019-1

Unit: EuroHPC

Type of Action: EuroHPC - Research and Innovation Action (RIA)

Start date of the project: 01/04/2021

Duration of the project: 36 months

Project website: textarossa.eu

WP 2 New accelerator designs exploiting mixed precision
Deliverable number: D2.8

Deliverable title: IP for low-latency inter-node communication links, part 1

Due date: M18 (30 Sept. 2022)

Actual submission

date:
20/05/2023 (revised)

Editor: Francesca Lo Cicero

Authors: F. Lo Cicero, A. Lonardo, C. Rossi, M. Martinelli, F. Simula

Work package: WP2

Dissemination Level: Public

No. pages: 38

Authorized (date): 15/05/2023 (revised)

Responsible person: Francesca Lo Cicero

Status: Plan Draft Working Final Submitted Approved

Revision history:

Version Date Author Comment

0.1 2022-10-04 F. Lo Cicero Draft structure

0.2 2022-10-07
A. Lonardo Added several contributions,

reviewed the document.

0.3 2022-10-08 M. Martinelli Added Bandwidth test section

0.4 2022-10-09 C. Rossi Added Latency test section

0.5 2022-10-10 F. Lo Cicero First Release

0.6 2022-10-12 C. Rossi, F. Lo Cicero Changes due to Kulczewski’s
comments

textarossa.eu D2.8 | 4

0.7 2022-10-18
F. Simula Added ToC, fixed references to

captions

1.1 2023-04-23 F. Lo Cicero, A. Lonardo, C. Rossi Updated to address reviewers'

observations (extended

Introduction, added Appendixes B

and C, general review).

Quality Control:

Checking process Who Date

Checked by internal reviewer Michal Kulczewski

Checked by Task Leader Francesca Lo Cicero 24/10/2022

Checked by WP Leader Sergio Saponara 26/04/2023

Checked by Project Coordinator Massimo Celino 15/05/2023

textarossa.eu D2.8 | 5

COPYRIGHT

Copyright by the TEXTAROSSA consortium, 2021-2024

This document contains material, which is the copyright of TEXTAROSSA consortium members and the

European Commission, and may not be reproduced or copied without permission, except as mandated by

the European Commission Grant Agreement No. 956831 for reviewing and dissemination purposes.

ACKNOWLEDGEMENTS

This project has received funding from the European High-Performance Computing Joint Undertaking (JU)

under grant agreement no 956831. The JU receives support from the European Union’s Horizon 2020

research and innovation programme and Italy, Germany, France, Spain, Poland.

Please see http://textarossa.eu for more information on the TEXTAROSSA project.

The partners in the project are AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO

SVILUPPO ECONOMICO SOSTENIBILE (ENEA), FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER

ANGEWANDTEN FORSCHUNG E.V. (FHG), CONSORZIO INTERUNIVERSITARIO NAZIONALE PER

L'INFORMATICA (CINI), INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),

BULL SAS (BULL), E4 COMPUTER ENGINEERING SPA (E4), BARCELONA SUPERCOMPUTING CENTER-CENTRO

NACIONAL DE SUPERCOMPUTACION (BSC), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ AKADEMII NAUK

(PSNC), ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN), CONSIGLIO NAZIONALE DELLE RICERCHE (CNR),

IN QUATTRO SRL (in4). Linked third parties of CINI are POLITECNICO DI MILANO (CINI-POLIMI), Università

di Torino (CINI-UNITO) and Università di Pisa (CINI-UNIPI); linked third party of INRIA is Université de

Bordeaux; in-kind third party of ENEA is Consorzio CINECA (CINECA); in-kind third party of BSC is Universitat

Politècnica de Catalunya (UPC).

The content of this document is the result of extensive discussions within the TEXTAROSSA © Consortium

as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not necessarily

represent the views expressed by the European Commission or its services.

The information contained in this document is provided by the copyright holders "as is" and any express or

implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for

a particular purpose are disclaimed. In no event shall the members of the TEXTAROSSA collaboration,

including the copyright holders, or the European Commission be liable for any direct, indirect, incidental,

special, exemplary, or consequential damages (including, but not limited to, procurement of substitute

goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory

of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way

out of the use of the information contained in this document, even if advised of the possibility of such

damage.

http://textarossa.eu/

textarossa.eu D2.8 | 6

Table of contents
Table of contents ..6

List of Figures ..6

List of Tables..7

List of Acronyms ..7

Executive Summary ...8

1 Introduction ..9

2 IP Design ...9

2.1 Communication IP simulation ..15

2.2 Communication IP RTL kernel ..16

3 APEIRON ...19

4 Resource usage ...20

5 Test and Performance ..21

5.1 Design validation tests ...21

5.2 Performance tests ..22

5.2.1 Bandwidth ..22

5.2.2 Latency ...24

6 State of the art ..26

7 Conclusions ...27

8 References ..28

Appendix A. Relevant source codes ...29

Appendix B. Integration of Communication IP in Vitis environment ...31

Appendix C. APEIRON Example Design ..34

List of Figures

Figure 2.1 Example of intra-node (in red) and inter-node (in blue/green) data transfers between tasks ...10
Figure 2.2 Architectural partition of Communication IP ..10
Figure 2.3 Packet header format ..11
Figure 2.4 The layered architecture of Communication IP ..12
Figure 2.5 Scheme of Communication IP testbench ..16
Figure 2.6 Intra-node TX FIFO – RX FIFO latency in Vivado Behavioural simulation GUI16
Figure 2.7 Communication IP with 2 IntraNode and 2 InterNode ports packaged in Vivado Design Suite ..17

textarossa.eu D2.8 | 7

Figure 3.1 Interface between Intranode Port 0 and the corresponding HLS Task (task_id 0), Messages IN

FIFOs are identified by the ch_id APIs parameter ..20
Figure 5.1 IntraNode 0 TX FIFO towards IntraNode 0 RX FIFO latency for one packet (length = 16 byte) sent

by internal packet_generator ...21
Figure 5.2 IntraNode 0 TX FIFO towards IntraNode 0 RX FIFO in cable loopback setup, for one packet (16

byte) sent by internal packet generator ...22
Figure 5.3 Illustration of the bandwidth test ...22
Figure 5.4 Measured bandwidth between HLS Kernels for an intra-node (loopback - red line) and inter-node

communication (loopback - blue line, oneway – green line), with send and receive buffers allocated on

BRAM memory. Note the blue line, representing the measurements taken emulating an inter-node

communication on a single FPGA using a loopback termination on one QSFP+ port, is practically overlapped

with the one measured between two nodes (oneway – green line) ...23
Figure 5.5 Comparison between measured bandwidth between HLS Kernels for an intra-node (loopback)

communication and inter-node (oneway) communication using BRAM and DDR to allocate send/receive

buffers ...24
Figure 5.6 Illustration of the latency test ...25
Figure 5.7 Testbench design illustration. The arrows describe different flows of data depending on the test

performed: “Localloop, port 0 to port 0” (red arrow), “Roundtrip, port 0 to port1” (blue arrows)25
Figure 5.8 Comparison of measured latency between HLS Kernels for an intra-node (loopback)

communication and inter-node (roundtrip) communication using BRAM and DDR to allocate send/receive

buffers ...26

List of Tables
Table 2.1 Configuration/status Registers list ...15
Table 4.1 Resource usage report of the performance test setup (see Figure 5.7) for Alveo U200 card20
Table 4.2 Resource usage report of the performance test setup (see Figure 5.7) for Alveo U280 card21

List of Acronyms
Acronym Definition

IP Intellectual Property
FPGA Field Programmable Gate Array

HLS High-Level Synthesis
VCT Virtual Cut-Through

DOR Dimension Order Routing

FSM Finite State Machine
API Application Programming Interface

BRAM Block Random Access Memory
DDR (SDRAM) Double Data Rate (Synchronous Dynamic Random Access Memory)

textarossa.eu D2.8 | 8

Executive Summary
This document reports on the activities done by TEXTAROSSA partner INFN with reference to the
design of the internode communication IP in WP2.

The INFN Communication IP, developed in VHDL, allows data transfers between processing tasks hosted in
the same node (intra-node communications) or in different nodes (inter-node communications),
implementing a direct network for FPGA accelerators and enabling the distributed implementation of
dataflow applications in the APEIRON framework.

The Communication IP was tested in the Vivado design Suite and its AXI-Lite interface (used to read/write
internal registers) and was verified using the Xilinx AXI Verification IP (VIP).

After behavioural simulation, it was implemented as an RTL kernel in Xilinx Vitis and integrated with kernels
written in HLS in the APEIRON framework.

The synthesis results, both for U200 and U280 Alveo card, showed a low resources occupancy of the IP,
allowing us to add new features in the future. For example, we will increase internal datapath and fifo
depth (thus increasing the intranode communication bandwidth and avoiding loss of performance due to
fifo filling), and the number of intraNode ports. For the InterNode communication, we foresee to improve
the bandwidth increasing the number of channels’ lanes and implementing new channel interface.

We also performed tests on two U200 cards connected by QSFP+ cable and on a U280 card (using a channel
termination) to measure the performance, in terms of latency and bandwidth, of the Communication IP.

The IP project database synthesizable both on the Alveo U200 and U280 platforms is publicly available on
the deliverable section of the TEXTAROSSA project website
(https://textarossa.eu/dissemination/deliverables/).

textarossa.eu D2.8 | 9

1 Introduction
The INFN Communication IP implements a direct network for FPGA accelerators, allowing low-latency data

transfer between processing tasks deployed on the same FPGA (intra-node communication) and on

different FPGAs (inter-node communication), and enabling the distributed implementation of dataflow

applications in the APEIRON framework.

This document describes the Communication IP in detail and shows preliminary data for its synthesis on

the two reference platforms (Xilinx U200 and U280), along with results of tests developed to validate the

design and assess its current performance.

Section 2 shows the design architecture complementing the information already available in Deliverable

2.1 – Consolidated specs of accelerators IPs.

Section 3 introduces the APEIRON framework, defined as the general architecture of an FPGA-based

distributed stream processing platform and the corresponding software stack. The Communication IP was

co-designed with the APEIRON software stack in order to achieve very low-latency and scalable bandwidth

(via IP design reconfiguration) between processing tasks defined as High-Level Synthesis Kernels.

Section 4 highlights the implementation results in terms of FPGA resource usage (for both Alveo U280 and

U200) of the Communication IP and of the HLS kernels of the testbench.

Section 5 reports design validation test results and performance measurement for the intermediate release

of the Communication IP.

Section 6 sketches some conclusions about the work and the results presented in this document, indicating

the foreseen activities regarding the development of the Communication IP for the remaining part of the

project.

Appendix A reports the pseudo-code for the performance tests used to collect results showed in Section 5.

Appendix B provides a simple instruction manual to assist users in integrating the Communication IP in

their designs using the Vitis environment.

Finally, Appendix C illustrates the usage of the APEIRON framework, using as example the design of the

testbench described in Section 5.2.2, that integrates the Communication IP and two instantiations of an

HLS kernels, in a single FPGA configuration.

This document, along with the Communication IP packaged as Xilinx object (XO) file for both the U200 and

U280 platform, and a demo video showing the performance tests described in section 5.2, is publicly

available for download on the deliverable section of the TEXTAROSSA web site

(https://textarossa.eu/dissemination/deliverables/).

2 IP Design
The Communication IP allows data transfers between processing tasks hosted in the same node (intra-node

communications) or in different nodes (inter-node communications), see Figure 2.1. In the context of the

APEIRON framework, processing tasks are implemented by HLS kernels with Xilinx Vitis. The details of the

interface between HLS kernels – the endpoints of the communication – and the Communication IP are

described in Section 3.

https://textarossa.eu/dissemination/deliverables/

textarossa.eu D2.8 | 10

Figure 2.1 Example of intra-node (in red) and inter-node (in blue/green) data transfers between tasks

Figure 2.2 shows its hardware block structure, which contains a Network_IP and a Routing_IP, both

developed in VHDL for TEXTAROSSA target platforms (Xilinx Alveo U200 and U280 cards).

Figure 2.2 Architectural partition of Communication IP

The Routing_IP defines the switching technique and routing algorithm; its main components are the
Switch_component Block, the Configuration/Status Registers and the InterNode and IntraNode IFs.

The Switch component dynamically interconnects all ports of the IP, implementing a channel between
source and destination ports.

Dynamic links are managed by routing logic together with arbitration logic: the Router configures the
proper path across the switch while the Arbiter is in charge of solving contentions between packets
requiring the same port.

textarossa.eu D2.8 | 11

For inter-node communications, the routing policy applied is the dimension-order one: it consists in
reducing the offset along one dimension to zero before considering the offset in the next dimension.
The employed switching technique — i.e., when and how messages are transferred — is Virtual Cut-
Through (VCT) [1]: the router starts forwarding the packet as soon as the algorithm has picked a direction
and the buffer used to store the packet has enough space. The deadlock-avoidance of DOR routing is
guaranteed by the implementation of two virtual channels for each physical channel (with no fault-
tolerance guaranteed) [2].

The transmission is packet-based, meaning that the Communication IP sends, receives and routes packets
with a header (Figure 2.3), a variable size payload and a footer.

Figure 2.3 Packet header format

In the Network IP, the physical layer blocks define the data encoding scheme for the serialization of the
messages over the cable and shape the network topology. They provide point-to-point bidirectional, full-
duplex communication channels of each node with its neighbors along the available directions.

For the serialization of the messages over the cable we used Xilinx Aurora 64B/66B cores.

The number of lanes making up a communication channel can be customized at design time (from 1 to 2)
to match the requirements of the integrated target execution platform.

textarossa.eu D2.8 | 12

Link_Ctrl blocks instead establish the logical link between nodes and guarantee reliable communication,
eventually performing error detection and correction.

The whole architecture is based on a layer model, as shown in Figure 2.4, including physical, data link,
network and transport layers of the OSI model.

Figure 2.4 The layered architecture of Communication IP

The Communication IP exposes two sets of interfaces, i.e., IntraNode and InterNode IF; the number of ports
within these interfaces (M and N) can be customized at design time.
The IntraNode IF manages data flow to (RX) and from (TX) local tasks; each port consists of two FIFOs for
each direction, so that header/footer and data use a dedicated FIFO.
The InterNode IF, with the Network_IP block, oversees managing data flow over the serial links between
FPGAs.
Both IntraNode and InterNode IFs are provided with a self-test mechanism to measure the latency and
bandwidth achieved. The self-test mechanism is composed by three simple IPs: (i) the Packet_Generator
generates packets and fills the transmitting FIFOs; (ii) the Consumer flushes the receiving FIFOs avoiding
their overflow and checks payload of received packets; (iii) the Performance Counter stores the clock cycles
needed to complete the data transfers.

The traffic generated by the Packet_Generator can be configured at runtime writing appropriate registers
which define the number of packets, size and destination along X coordinate.
In addition to these parameters, the Communication IP offers to the users the possibility to set at run time
few key features and to read status information by exposing a window of 32-bit registers
(Configuration/Status Registers Block).

The list of registers with the associated addresses are presented in Table 2.1.:

 N Offset Name Description Default value
Register

type

4 0x00000010 RESET_REG

Bit 0: write ‘1’ to reset;
Self-clear (‘0’ after 200 clock’s cycle) 0x0000000 RW

5 0x00000014 REVISION_REG
Bit 15 downto 0: Revision ID
Bit 31 downto 16: Version ID 0x0000000 RO

6 0x00000018 COORDME_REG
3D node’s coordinates
Bit 5 downto 0: X coordinate 0x0000000 RW

8 0x00000020 LATTICESIZE_REG
Lattice size
Bit 5 downto 0: X direction 0xfffffff RW

textarossa.eu D2.8 | 13

12 0x00000030 PERF_INTRANODE_CFG

Perf_Block configuration register:
Bit 7 downto 0: IntraNode Packet_Generator
enable
Bit 15 downto 8: IntraNode Consumer enable

0x0000000 RW

13 0x00000034 PERF_INTERNODE_CFG

Perf_Block configuration register:
Bit 7 downto 0: InterNode Packet_Generator
enable
Bit 15 downto 8: InterNode Consumer enable

0x00000000 RW

14 0x00000038 PKTGEN_CONFIG_0

Packet_generator configuration register:
Bit 15 downto 0: number of packets generated
Bit 29 downto 16: packet length (in byte)
Bit 31: header only packet generated

0x00000000 RW

16 0x00000040 PKTGEN_CONFIG_1
Destination of packet
Bit 5 downto 0: X direction 0x00000000 RW

20 0x00000050 PERF_INTRANODE_STS

Bit 3 downto 0: packet_generator status
(intraNode 0)
Bit 7 downto 4: Consumer status (intraNode
0)
Bit 11 downto 8: packet_generator status
(intraNode 1)
Bit 15 downto 12: Consumer status (intraNode
1)
Bit 19 downto 16: packet_generator status
(intraNode 2)
Bit 23 downto 20: Consumer status (intraNode
2)
Bit 27 downto 24: packet_generator status
(intraNode 3)
Bit 31 downto 28: Consumer status (intraNode
3)
 *Packet_generator
status:
"0000" SM_STATE = OFF
"0001" SM_STATE = IDLE
"0010" SM_STATE = TX_HEADER "0011" SM_STATE =
TX_PAYLOAD
"0100" SM_STATE = TX_FOOTER

**Consumer status
Bit 0 = Test ok! (All packets received with
correct payload)
Bit 3 downto 1: SM STATE
 "000" SM_STATE = OFF
 "001" SM_STATE = IDLE
 "010" SM_STATE = COUNT

 RO

21 0x00000054 PERF_INTERNODE_STS

Bit 3 downto 0: packet_generator status (see
register PERF_INTRANODE_STS)
Link 0
Bit 7 downto 4: Consumer status Link 0
Bit 11 downto 8: packet_generator status Link
1
Bit 15 downto 12: Consumer status Link 1

 RO

22 0x00000058 PERF_INTRANODE_CNT0
TxRx clock counter (first packet written,
last packet read) IntraNode 0 RO

23 0x0000005C PERF_INTRANODE_CNT1
TxRx clock counter (first packet written,
last packet read) IntraNode 1 RO

24 0x00000060 PERF_INTRANODE_CNT2
TxRx clock counter (first packet written,
last packet read) IntraNode 2 RO

25 0x00000064 PERF_INTRANODE_CNT3
TxRx clock counter (first packet written,
last packet read) IntraNode 3 RO

26 0x00000068

PERF_INTERNODE_CNT0

TxRx clock counter (first packet written,
last packet read) InterNode 0 RO

textarossa.eu D2.8 | 14

27 0x0000006C PERF_INTERNODE_CNT1
TxRx clock counter (first packet written,
last packet read) InterNode 1 RO

28 0x00000070

INTRANODE_FIFO_STS_
RX_0

Bit 31 downto 16: Fifo IntraNode 0 Data Rx
UsedWord Bit 15 downto 0: Fifo IntraNode 0
Header Rx UsedWord

 RO

29 0x00000074

INTRANODE_FIFO_STS_
TX_0

Bit 31 downto 16: Fifo IntraNode 0 Data Tx
UsedWord
Bit 15 downto 0: Fifo IntraNode 0 Header Tx
UsedWord

 RO

30 0x00000078 INTRANODE_FIFO_CNT_
HD_TX_RD_0

Fifo IntraNode 0 Header Tx read counter
 RO

31 0x0000007C INTRANODE_FIFO_CNT_
HD_TX_WR_0

Fifo IntraNode 0 Header Tx write counter
 RO

32 0x00000080 INTRANODE_FIFO_CNT_
HD_RX_RD_0

Fifo IntraNode 0 Header Rx read counter
 RO

33 0x00000084 INTRANODE_FIFO_CNT_
HD_RX_WR_0

Fifo IntraNode 0 Header Rx write counter
 RO

34 0x00000088 INTRANODE_FIFO_CNT_
DT_TX_RD_0

IntraNode 0 Data Tx read counter
 RO

35 0x0000008c INTRANODE_FIFO_CNT_
DT_TX_WR_0

IntraNode 0 Data Tx write counter
 RO

36 0x00000090 INTRANODE_FIFO_CNT_
DT_RX_RD_0

IntraNode 0 Data Rx read counter
 RO

37 0x00000094 INTRANODE_FIFO_CNT_
DT_RX_WR_0

IntraNode 0 Data Rx write counter
 RO

38
47
0x00000098-
0x000000BC INTRANODE_FIFO_*_1

Fifo counter register IntraNode 1
 RO

65 FIFO_INTRANODE_EXC

Bit 7 downto 0 = IntraNode TX HD write
exception
Bit 15 downto 8 = IntraNode TX DT write
exception
Bit 23 downto 16 = IntraNode RX HD write
exception
Bit 31 downto 24 = IntraNode RX DT write
exception

 RO

66 0x00000108 FIFO_REGISTER

Bit 31 downto 24: Fifo Header Rx exp
width Bit 23 downto 16:
Fifo Data Rx exp width
Bit 15 downto 8: Fifo Header Tx exp width
Bit 7 downto 0: Fifo Data Tx exp width

 RO

67 0x0000010C TRANSCEIVER_STATUS

Bit 0: InterNode 0 channel up
Bit 1: InterNode 1 channel up
Bit 16: InterNode 0 transceiver’s error
Bit 17: InterNode 1 transceiver’s error

 RO

68 0x00000110 LINK_0_CONFIG_0

Bit 31 downto 28: Edac enable InterNode 1
 "0000" NO EDAC
 "1111" EDAC
Bit 27 downto 24 = Edac enable InterNode 0
Bit 17 = Use new destination in InterNode 1
Bit 16 = Use new destination in InterNode 0
Bit 15 downto 0: New destination (15–11: Z;
10–6: Y; 5–0:X).

0x00000000 RW

69 0x00000114 LINK_0_CONFIG_1
Bit 25 downto 16: Red threshold for Data
Bit 7 downto 0: Red threshold for Header 0x00000000 RW

70 0x00000118 LINK_0_CONFIG_2
Bit 15 downto 8: Tx new credit cycle
Bit 7 downto 0: Tx waiting cycle 0x00000000 RW

71 0x0000011C LINK_0_CONFIG_3
Header error gen
 0x00000000 RO

textarossa.eu D2.8 | 15

80 0x00000140 LINK_0_STATUS_0

Bit 15 downto 12: Rx status;
Bit 11 downto 8: Tx footer status
Bit 7 downto 4: Tx payload status
Bit 3 downto 0: Tx header status

 RO

81 0x00000144 LINK_0_ERROR
Bit 31 downto 16: Rx header error counter
Bit 15 downto 0: Rx header fatal error
counter

 RO

82 0x00000148 LINK_0_TX_MAGIC Tx magic counter RO

83 0x0000014C LINK_0_TX_START Tx start counter RO

84 0x00000150 LINK_0_TX_HDR Tx header counter RO

85 0x00000154 LINK_0_TX_FTR Tx footer counter RO

86 0x00000158 LINK_0_RX_MAGIC Rx magic counter RO

87 0x0000015c LINK_0_RX_START Rx start counter RO

88 0x00000160 LINK_0_RX_HEADER Rx header counter RO

89 0x00000164 LINK_0_RX_FOOTER Rx footer counter RO

90
99
0x00000168-
0x00000185 LINK_1_REGISTERS

Table 2.1 Configuration/status Registers list

2.1 Communication IP simulation

The Communication IP was verified in the Vivado design Suite by using the Packet generator Block and the
Consumer Block (which respectively generate packets filling IntraNode_0 transmitting FIFO and flush the
receiving FIFOs checking payload of received packets).
To simulate registers been read or written we implemented a Xilinx IP AXI traffic generator, which provides
an AXI4-Lite Master interface and issues AXI4-Lite transactions reading two coefficient (COE) files provided
by the user:

• Address COE File – Provides the sequence of addresses to be issued
• Data COE File – Provides the sequence of data corresponding to the address specified in Address

COE File
We also checked protocol compliance of AXI interfaces using the AXI Verification IP (VIP).

textarossa.eu D2.8 | 16

Figure 2.5 Scheme of Communication IP testbench

The latency introduced by the Routing_IP — i.e., from the footer’s writing in intraNode TX FIFO to the
footer’s reading in the intraNode RX FIFO in a loopback communication — is shown in Figure 2.6.

Figure 2.6 Intra-node TX FIFO – RX FIFO latency in Vivado Behavioural simulation GUI

The number of clock cycles is equal to 28 (about 280ns at the current operating frequency of 100MHz) for
all the internal path (from one TX port to an RX port), reduced to 220ns if taking into account the latency
of the FIFO (60ns between FIFO writing and empty signal low).

2.2 Communication IP RTL kernel

The INFN Communication IP, developed in VHDL, is implemented as an RTL-kernel in Xilinx Vitis, a High-
Level Synthesis framework which allows to develop, debug and optimize accelerated applications using
standard programming languages for both software and hardware components.
In the Vitis application, an RTL IP from the Vivado Design Suite is packaged as Xilinx object form (XO) file
for implementation in the programmable logic (PL) region of the target platform.

In Figure 2.7 the packaged IP generated within the Vivado Design Suite is depicted.

textarossa.eu D2.8 | 17

Figure 2.7 Communication IP with 2 IntraNode and 2 InterNode ports packaged in Vivado Design Suite

The kernel interfaces are used to exchange data with the host application, other kernels or device I/Os:

• s_axi_control is the AXI4-Lite slave interface that allows a host application to interact with kernels
by reading or writing registers. The I/O ports of this interface is reported in Table 2.2

• Dtaxis* and Hdaxis* are streaming interfaces used to transfer data directly from/to other kernels.

Since an AXI4-Stream interface transfers data in a sequential streaming manner, it cannot be used
with arguments that are both read and written, two interfaces are requested for each IntraNode
port (Tx and Rx interfaces are shown in tables 2.3 and 2.4).

• Gt*_serial_ports are streaming interfaces connected to QSFP+ ports, used to communicate with

other devices (interNode ports).
Each InterNode port requires a low-jitter reference clock (gt*_refclock0_p/n @ 161.13 MHz) for

 generating and recovering high-speed serial clocks, while a single stable clock (clk_gt_freerun
@ 100 MHz) is used for mixed-mode clock manager (MMCM) synchronization.

• Ap_clk is the clock for the switch/ register logic.

Signal Name I/O Description

S_AXI_AWADDR (11 downto 0) I Write Address

S_AXI_AWVALID I Write Address Valid

S_AXI_AWREADY O Write Address Ready

S_AXI_WDATA (31 downto 0) I Write Data

S_AXI_WSTB (31 downto 0) I Write Strobes

S_AXI_WVALID I Write Valid

textarossa.eu D2.8 | 18

S_AXI_WREADY O Write Ready

S_AXI_BRESP (1 downto 0) O Write Response

S_AXI_BREADY I Write Response Ready

S_AXI_BVALID O Write Response Valid

S_AXI_ARADDR (11 downto 0) I Read Address

S_AXI_ARVALID I Read Address Valid

S_AXI_ARREADY O Read Address Ready

S_AXI_RDATA (31 downto 0) O Read Data

S_AXI_RRESP (1 downto 0) O Read Response

S_AXI_RREADY I Read Valid

S_AXI_RVALID O Read Ready

Table 2.2: AXI4-Lite Slave Interface signals

Signal Name I/O Description

TDATA I Write Data

TVALID I Write Data Valid

TREADY O Write Data Ready

TKEEP I Write Data byte qualifier

TLAST I Write last byte

Table 2.3: Tx streaming Interfaces signals

Signal Name I/O Description

TDATA O Read Data

TVALID O Read Data Valid

TREADY I Read Data Ready

TKEEP O Read Data byte qualifier

TLAST O Read last byte

Table 2.4: Rx streaming Interfaces signals

The Communication IP kernel is integrated with kernels written in HLS in a framework called APEIRON (see
Section 3).

textarossa.eu D2.8 | 19

3 APEIRON
The Communication IP is the main enabling component for the APEIRON framework, defined as the general
architecture of an FPGA-based distributed stream processing platform and the corresponding software
stack. The Communication IP was co-designed with the APEIRON software stack in order to achieve very
low-latency and scalable bandwidth (via IP design reconfiguration) between processing tasks defined as
High-Level Synthesis Kernels.
Implementing direct communication between tasks deployed on FPGAs without involving host CPU and
system bus resources, the Communication IP improves the energy efficiency of the execution platform
(Objective Energy efficiency) for what concerns communication between accelerators.

Starting from a YAML configuration file describing the attributes of each HLS kernel, namely its number of
input and output channels and the IntraNode port of the Communication IP to which it is connected, the
APEIRON framework links the Communication IP and the HLS kernels that are connected to it and generates
the bitstream for the overall design.
The only requisite that HLS kernels must satisfy is in the format of their prototype that must be in this form:

void example_apeiron_task(

[optional kernel-specific list of parameters]
 message_stream_t message_data_in[N_INPUT_CHANNELS],
 message_stream_t message_data_out[N_OUTPUT_CHANNELS]
)

In this way, the HLS kernel implements a generic stream interface for each communication channel, based
on the AXI4-Stream protocol. The communication between kernels is expressed through a lightweight C++
API (HAPECOM) based on non-blocking send() and blocking receive() operations. This simple API allows the
HLS developer to perform communications between kernels, either deployed on the same FPGA (intra-
node communication) or on different FPGAs (inter-node communication) without knowing the details of
the underlying packet communication protocol.

The Communication API can be represented with the following pseudo-code:

size_t send(msg, size, dest_node, task_id, ch_id);

size_t receive(ch_id);

where:

dest_node is the n-Dim coordinate of the destination node (FPGA) in an n-Dim torus network;

task_id is the local-to-node receiving task (kernel) identifier (0-3).

ch_id is the local-to-task receiving FIFO (channel) identifier (0-127).

The Communication Library leverages AXI4-Stream Side-Channels to encode all the information needed to
forge the packet header.
Adaptation toward/from IntraNode ports of the Routing IP is done by two APEIRON IPs: Aggregator and
Dispatcher, shown in Figure 3.1. The Dispatcher receives incoming packets from the Routing IP and
forwards them to the right input channel, according to the relevant fields of the header. The Aggregator
receives outgoing packets from the task and forges the packet header, filling then the header/data FIFOs
of the Routing IP.

textarossa.eu D2.8 | 20

Figure 3.1 Interface between Intranode Port 0 and the corresponding HLS Task (task_id 0), Messages IN FIFOs are

identified by the ch_id APIs parameter

4 Resource usage
In Tables 4.1 and 4.2 we report the resource utilization generated by the Vivado tool building the system

for the U200 and the U280 cards for the Latency test setup.

For both cards, the occupancy (in terms of LUT, REG, BRAM) is very low, allowing us to easily add new

features to the Communication IP while leaving a considerable fraction of the resources to the

implementation of the HLS kernels.

Table 4.1 Resource usage report of the performance test setup (see Figure 5.7) for Alveo U200 card

textarossa.eu D2.8 | 21

Table 4.2 Resource usage report of the performance test setup (see Figure 5.7) for Alveo U280 card

5 Test and Performance
Here we describe the design validation and performance tests and report results and performance

measurement for the intermediate release of the Communication IP.

As testbench, we used a system composed of 2 interconnected Xilinx Alveo U200 FPGAs managed by

different hosts.

5.1 Design validation tests

To validate and start debugging of the Communication IP, we initially used the internal Packet_Generator.
This block also allowed us to measure latency for one packet of length equal to 16 Bytes sent to the same
node, using either internal loopback or channel termination (Figure 5.1 and Figure 5.2).

In both tests, Test ok shows the register 20 content (31 means “00110001”, that is Packet generator FSM
in IDLE state, Consumer FSM in IDLE state and all packets were received with correct payload).

Figure 5.1 IntraNode 0 TX FIFO towards IntraNode 0 RX FIFO latency for one packet (length = 16 byte) sent by internal

packet_generator

textarossa.eu D2.8 | 22

Figure 5.2 IntraNode 0 TX FIFO towards IntraNode 0 RX FIFO in cable loopback setup, for one packet (16 byte) sent by

internal packet generator

5.2 Performance tests

Here we report the measured performance of the intermediate release of the Communication IP in terms

of bandwidth and latency of intra-node and inter-node communication operations between HLS kernels

endpoints.

5.2.1 Bandwidth
A bandwidth test is carried out by transferring multiple data packets with fixed payload size from a “sender”

HLS kernel which reads data from the source buffer in FPGA memory (either DDR or BRAM) and pushes

them through the Communication IP to another FPGA, where a “receiver” HLS kernel writes data into the

destination buffer in memory. After receiving the number of data packets whose integrated payload adds

up to the size of the receive buffer, the second FPGA pings back a single “ACK” packet with minimal payload

to confirm the reception, as shown in Figure 5.3. The total data sent during this test is summed and then

divided by the time (measured on the sender node) elapsed between the start of the multiple packets send

and the completion of the receive operation of the ACK packet.

Figure 5.3 Illustration of the bandwidth test

Results measured with send and receive buffers allocated on the FPGA BRAM are shown in Figure 5.4.

textarossa.eu D2.8 | 23

Figure 5.4 Measured bandwidth between HLS Kernels for an intra-node (loopback - red line) and inter-node

communication (loopback - blue line, oneway – green line), with send and receive buffers allocated on BRAM memory.

Note the blue line, representing the measurements taken emulating an inter-node communication on a single FPGA

using a loopback termination on one QSFP+ port, is practically overlapped with the one measured between two nodes

(oneway – green line)

The same set of measurements were repeated using the FPGA DDR to allocate send/receive buffers instead

of BRAM. Results are reported in the plot in Figure 5.5, showing the limiting effect of the DDR memory

controller on the overall reachable bandwidth. In addition, in Figure 5.5 it is possible to notice that,

referring to the BRAM cases, the bandwidth tends to saturate while increasing the size of the packets sent.

In particular, for packets of size 2 kB the bandwidth reaches a value of ~12.0 Gbps for the intra-node

loopback BRAM case (blue line), with a maximum theoretical value of raw bandwidth equal to 12.8 Gbps:

the difference is mainly due to the packet protocol overhead. For the slightly lower maximum value of 11.3

Gbps reached in the inter-node oneway BRAM case (fuchsia line), the overhead due to serialization and

64b/66b encoding over the external channel must be accounted.

textarossa.eu D2.8 | 24

Figure 5.5 Comparison between measured bandwidth between HLS Kernels for an intra-node (loopback) communication

and inter-node (oneway) communication using BRAM and DDR to allocate send/receive buffers

5.2.2 Latency
A latency test is performed using an HLS kernel (krnl_sr, as reported in tables 4.1 and 4.2), configurable by

the host in different operating modes. In detail, in "send_receive" mode the kernel reads a payload data

item from the FPGA memory (either BRAM or DDR) and sends and receives it through/from the

Communication IP to/from a second interconnected FPGA, where an HLS kernel in "pipe" mode has the

task of receiving a single packet and bouncing it back to the initiator FPGA (as shown in Figure 5.6), allowing

the measurement of inter-node latency.

textarossa.eu D2.8 | 25

Figure 5.6 Illustration of the latency test

Figure 5.7 Testbench design illustration. The arrows describe different flows of data depending on the test performed:

“Localloop, port 0 to port 0” (red arrow), “Roundtrip, port 0 to port1” (blue arrows)

Since the HLS kernel in "send_receive" mode on the initiator FPGA is started via host code while the HLS

kernel in "pipe" mode is free-running, the former is launched with a repetition parameter of 1 million

send/receive operations before termination in order to minimize the contribution of the host call overhead

on the overall time elapsed from the start of the first packet send to the completion of the last packet

receive (measured on the host). The latency is then obtained by dividing half the elapsed time measured

by the number of packets.

As can be seen in Figure 5.7, the tests performed are basically two:

• Roundtrip, where packets are transmitted between different intranode ports of two interconnect

FPGAs

textarossa.eu D2.8 | 26

• Locallop, where packets are transmitted back and forth on the same intranode port of a single

FPGA

The results obtained are reported in Figure 5.8, indicating the type of tests performed and what kind of

FPGA memory is used. In detail, the result obtained shows how the latency values get worse when working

with DDR memory, due to overhead issues and to the time required to load the sent buffer from CPU on

the FPGA and to read the received buffer from the FPGA to the CPU (we refer to these as “sync” operations,

which are not present in the BRAM test cases). In accordance with the specifications reported in deliverable

D2.1- Consolidated specs of accelerators IPs, latency reaches a value slightly below 1 us for 16 B payload

packets in the inter-node roundtrip BRAM case (yellow line), and a value of ~250ns in the intra-node

localloop BRAM case (blue line).

Figure 5.8 Comparison of measured latency between HLS Kernels for an intra-node (loopback) communication and inter-

node (roundtrip) communication using BRAM and DDR to allocate send/receive buffers

6 State of the art
Nowadays, FPGAs represent one of the main architectures for HPC applications, considering the impending

end of Moore’s Law and Dennard scaling. In addition to this, this type of accelerators is well suited to

develop customized algorithms, combining the scalable parallel processing capability of an Application

Specific Integrated Circuit (ASIC) with the reprogrammability typical of such type of devices.

In modern development, and in dedicated networks, multiple FPGAs clusters are emplaced to map large

HPC kernels by exploiting the low-latency communication capability of these accelerators. However,

despite FPGAs high-speed transceiver links, a certain network flexibility with very large clusters could be

required in order to map applications’ workloads and to strategically maximize resource utilization and

textarossa.eu D2.8 | 27

performance. In this direction, many solutions of scalable switched FPGA cluster have been developed,

where, for example, the transceiver links are physically connected to ports of high-speed Ethernet switches

[8], in an indirect network setup, as in the Virtual Circuit-Switching Network (VCSN) [5] or by implementing

FPGAs as Network Interface Cards (NICs), as, for example, in the EasyNet open source networking stack [6]

and in the Corundrum open-source network interface [7].

Corundrum and EasyNet are based on a direct network for FPGA inter-communication using a 100 Gbps

TCP/IP stack, even if they present a difference in what concern their implementation: in fact, Corundrum

is implemented in Verilog HDL, rather than being based on the HLS Xilinx Vitis platform as in the EasyNet

case. This difference makes EasyNet much like the APEIRON framework, considering the possibility for the

user to implement in the setup a custom kernel connected to the network in an optimized way via

communication primitives callable as functions in an HLS library (as it is with the send() and receive() APIs

in the HAPECOM library). However, unlike EasyNet with TCP/IP stack, the INFN Communication IP used in

the APEIRON framework is more similar to the custom protocols developed in some project at the state of

art for which no inter-FPGA backpressure is needed, such as the E40G setup presented in paper [5], or the

network infrastructure underlying the Reconfiguration over Network (REoN) protocol [9], which can

transport partial bit files via network resource management APIs to a FPGA empowered network node,

using standard 10 Gbps Ethernet.

7 Conclusions
In this deliverable we described the Communication IP in detail and showed preliminary synthesis and

results of tests developed to validate the design and assess its current performance.

In particular, we used some synthetic tests to measure the bandwidth and the latency in both inter- and

intra-node communication. The results are promising and in line with the expected specifications reported

in deliverable D2.1-Consolidated specs of accelerators IPs.

This document, along with the Communication IP with two intraNode ports packaged as Xilinx object (XO)

file for both the U200 and U280 platform, an APEIRON example design, and a demo video showing the

performance tests described in section 5.2, are publicly available for download as archive zip file on the

deliverable section of the TEXTAROSSA web site (https://textarossa.eu/dissemination/deliverables/).

In the near future, we foresee to increase the internal datapath of the IP to 256 bits and to use the Aurora

transceiver with 4 lanes to support applications requiring an increased communication bandwidth.

Furthermore, we plan to implement a new channel interface based on the Xilinx® 10G/25G High Speed

Ethernet Subsystem in order to enable interoperability with standard switched networks, either to support

(e.g. UDP over IP) input and output streams or to implement a switched network topology.

https://textarossa.eu/dissemination/deliverables/

textarossa.eu D2.8 | 28

8 References
[1] A New Computer Communication Switching Technique. P. Kermani and L. Kleinrock, Virtual Cut-Through:

Comput. Networks 3 (1979) 267.

[2] Deadlock-free message routing in multiprocessor interconnection. Seitz, W. J. Dally, and C. L. 1987. 5, :

Computers, IEEE Transactions on, 1987, Vol. C.36, p. 547–553.

[3] APEnet+ 34 Gbps Data Transmission System and Custom Transmission Logic. 2013.

[4] Andrea Biagioni, Paolo Cretaro, Ottorino Frezza, Francesca Lo Cicero, Alessandro Lonardo, Pier Stanislao
Paolucci, Luca Pontisso, Francesco Simula and Piero Vicini, “EuroEXA Custom Switch: an innovative FPGA-based
system for extreme scale computing in Europe”, EPJ Web of Conferences 245, 09004, 2020.

[5] Antoniette Mondigo, Tomohiro Ueno, Kentaro Sano and Takizawa Hiroyuki, “Comparison of Direct and

Indirect Networks for High-Performance FPGA Clusters”, International Symposium on Applied Reconfigurable

Computing (ARC), 2020.

[6] He, Z.; Korolija, D.; Alonso, G. EasyNet: 100 Gbps Network for HLS. In Proceedings of the International

Conference on Field-Programmable Logic and Applications (FPL 2021), Dresden, Germany, 30 August 30–3

September 2021.

[7] Forencich, A.; Snoeren, A.C.; Porter, G.; Papen, G. Corundum: An open-source 100-Gbps NIC. In Proceedings

of the 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines

(FCCM), Fayetteville, AR, USA, 3–5 May 2020; pp. 38–46.

[8] Tomohiro Ueno and Kentaro Sano. 2023. VCSN: Virtual Circuit-Switching Network for Flexible and Simple-

to-Operate Communication in HPC FPGA Cluster. ACM Trans. Reconfigurable Technol. Syst. 16, 2, Article 25

(June 2023), 32 pages. https://doi.org/10.1145/3579848

[9] V. Mishra, Q. Chen and G. Zervas, "REoN: A protocol for reliable software-defined FPGA partial

reconfiguration over network," 2016 International Conference on ReConFigurable Computing and FPGAs

(ReConFig), Cancun, Mexico, 2016, pp. 1-7, doi: 10.1109/ReConFig.2016.7857184.

https://doi.org/10.1145/3579848

textarossa.eu D2.8 | 29

Appendix A. Relevant source codes
Bandwidth test host pseudocode

device.load_xclbin(bitstream);

Allocate_recv_buffer(device, buf_size);

Allocate_send_buffer(device, packet_size);

Fill_send_buffer();

Send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE);

switch.write_register(auto-toggle reset);

kswitch.write_register(local_coord);

(only for localloop test): //kswitch.write_register(overwrite destination);

kswitch.write_register(threshold);

kswitch.write_register(credit);

If node_sender:

Run_kernel_receiver(recv_buffer, 1);

gettimeofday(&startTime,NULL); //start time measurement

run_kernel_sender (receiver_coord, npackets, packet_size, send_buffer);

ksender_run.wait();

kreceiver_run.wait();

gettimeofday(&endTime,NULL); //stoptime measurement

elapsedTime = elapsed(startTime,endTime);

BW = (npackets*packet_size)/elapsedTime);

 If node_receiver:

Run_kernel_receiver(recv_buffer, npackets);

kreceiver_run.wait();

recv_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE);

 Run_kernel_sender(sender_coord, 1, 16, send_buffer); //send back 1 packet of size 16B

ksender_run.wait();

Bandwith test “kernel sender” pseudocode (example for DDR test)

int nword = packet_size / sizeof(word_t);

Foreach (packet){

Header = Fill_header;

Hdr_fifo_out.write(Header);

 foreach (word) {

data_fifo_out.write(data_word);

}

 Footer = fill_footer()

Hdr_fifo_out.write(footer);

}

Bandwith test “kernel receiver” pseudocode (example for DDR test)

Foreach (packet){

hdr_fifo_in.read(hdr);

len = hdr.packet_size;

textarossa.eu D2.8 | 30

N_words = len/sizeof(word)

Foreach(word in N_words){

word[j] = data_fifo_in.read();

}

 header_fifo_in.read(footer)

}

Latency test host pseudocode

device.load_xclbin(bitstream);

If !bram_usage:

Allocate_recv_buffer(device, buf_size);

Allocate_send_buffer(device, packet_size);

Fill_send_buffer();

Send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE);

switch.write_register(auto-toggle reset);

kswitch.write_register(local_coord);

kswitch.write_register(threshold);

kswitch.write_register(credit);

If initiator FPGA:

gettimeofday(&startTime,NULL); //start time measurement

run_kernel_sender_receiver (destination_coord, npackets, packet_size, send_buffer, recv_buffer,

 bram_usage);

ksender_receiver_run.wait();

If !bram_usage:

recv_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE);

gettimeofday(&endTime,NULL); //stoptime measurement

elapsedTime = elapsed(startTime,endTime);

Latency = (elapsedTime/2)/npackets;

Latency test “kernel sender_receiver” (krnl_sr) pseudocode

Foreach (packet){

If bram_usage:

memory_in = local_BRAM_buffer_in;

memory_out = local_BRAM_buffer_out;

send(memory_in, packet_size, coord, task_id, ch_id, data_fifo_out); //Communication Library

receive(ch_id, memory_out, data_fifo_in);

}

Latency test “kernel pipe” (krnl_pipe) pseudocode

Foreach (packet){

receive(ch_id, local_memory, data_fifo_in); //Communication Library APIs

send(local_memory, packet_size, coord, task_id, ch_id, data_fifo_out);

}

textarossa.eu D2.8 | 31

Appendix B. Integration of Communication IP in Vitis

environment
Pre-requisites

- Xilinx Alveo U200/U280 card

- Xilinx Vitis 2021.1

(https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/2021-

1.html)

- Xilinx runtime (XRT), XDMA Deployment Target Platform, and XDMA Development Target Platform

(https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#gettingStarted)

Environment

> source /opt/Xilinx/Vitis/2021.1/settings64.sh

> source /opt/xilinx/xrt/setup.sh

(Dependent on your local installation paths).

Example kernel

The only requisite for an HLS kernel to connected to one of the Communication IP, is to be compliant with

the following defintion:

void krnl_example(

<optional parameters>,

header_stream_t message_hdr_in[N_INPUT_CHANNELS],

message_stream_t message_data_in[N_INPUT_CHANNELS],

 header_stream_t message_hdr_out[N_OUTPUT_CHANNELS],

message_stream_t message_data_out[N_OUTPUT_CHANNELS]

)

So that is has N_INPUT_CHANNELS and N_OUTPUT_CHANNELS to receive/send incoming/outgoing

messages through the Communication IP.

The header_stream_t and message_stream_t types are defined as:

typedef hls::stream<uint128_t> message_stream_t;

typedef hls::stream<apenet_header_t> header_stream_t;

And the apenet_header_t, representing an apenet protocol header shown in figure 2.3, is defined

as:

 typedef union {

 struct __attribute__((packed)) {

 unsigned long virt_chan : 5;

textarossa.eu D2.8 | 32

 unsigned long proc_id : 16;

 unsigned long dest_x : 6;

 unsigned long dest_y : 5;

 unsigned long dest_z : 5;

 unsigned long intra_dest : 4;

 unsigned long reserved : 1;

 unsigned long out_of_lattice : 1;

 unsigned long packet_type : 5;

 unsigned long packet_size : 14;

 unsigned long dest_addr : 48;

 unsigned long num_of_hops : 10;

 unsigned long edac : 8;

 } s;

 uint32_t l[4];

 uint64_t u[2];

} apenet_header_t;

Please refer to directory D2.8/APEIRON_example_design/include/ for further information.

Build steps

After the kernel code is written, you can build the application, generating the FPGA binary file (.xclbin).

First step is to write the vpp_linker.cfg Vitis project configuration file, that specifies the operational clock

frequency and the interconnections between the components' ports.

For example, the following vpp_linker.cfg specifies a clock frequency of 100 MHz and connects

krnl_example_0 and krnl_example_1 respectively to Intranode_port_0 and intranode_port_1 of the

Communication IP.

textarossa.eu D2.8 | 33

kernel_frequency=0:100|1:1

[connectivity]

stream_connect=TextaRossa_switch_1.dtaxisrx0:krnl_example_0.dt_in

stream_connect=TextaRossa_switch_1.hdaxisrx0:krnl_example_0.hd_in

stream_connect=krnl_example_0.dt_out:TextaRossa_switch_1.dtaxistx0

stream_connect=krnl_example_0.hd_out:TextaRossa_switch_1.hdaxistx0

stream_connect=TextaRossa_switch_1.dtaxisrx1:krnl_example_1.dt_in

stream_connect=TextaRossa_switch_1.hdaxisrx1:krnl_example_1.hd_in

stream_connect=krnl_example_1.dt_out:TextaRossa_switch_1.dtaxistx1

stream_connect=krnl_example_1.hd_out:TextaRossa_switch_1.hdaxistx1

After this, starting from the .xo files of the communication IP and of the user kernels, it is possible to launch

the build process (this takes a couple of hours at least) for U200 board:

> v++ -t hw --platform xilinx_u200_gen3x16_xdma_1_202110_1 -s --

temp_dir _tmp_build --log_dir _tmp_build/logs --report_dir

_tmp_build/reports -I include --link --config vpp_linker.cfg --xp

param:compiler.userPostDebugProfileOverlayTcl=scripts/post_sys_link.tcl

--messageDb _tmp_build/test.xclbin.mdb -o test.xclbin

TextaRossa_switch_2in_2ex_U200.xo krnl_example.xo

And for the U280 board:

> v++ -t hw --platform xilinx_u280_xdma_201920_3 -s --temp_dir

_tmp_build --log_dir _tmp_build/logs --report_dir _tmp_build/reports -I

include --link --config vpp_linker.cfg --xp

param:compiler.userPostDebugProfileOverlayTcl=scripts/post_sys_link.tcl

--messageDb _tmp_build/test.xclbin.mdb -o test.xclbin

TextaRossa_switch_2in_2ex_U280.xo krnl_example.xo

The generated binary (test.xclbin) can then be used to program the FPGA of the accelerator card.

textarossa.eu D2.8 | 34

Appendix C. APEIRON Example Design

Pre-requisites

- Xilinx Alveo U200/U280 card

- Xilinx Vitis 2021.1

(https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/2021-

1.html)

- Xilinx runtime (XRT), XDMA Deployment Target Platform, and XDMA Development Target Platform

(https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#gettingStarted)

Environment

> source /opt/Xilinx/Vitis/2021.1/settings64.sh

> source /opt/xilinx/xrt/setup.sh

(Dependent on your local installation paths).

EXAMPLE: Latency test Design

This example design demonstrates the main functionalities of the APEIRON framework, using a

Communication IP configured with 2 intranode ports and 2 internode ports. Each port is bidirectional, and

each direction sports a header/data FIFO couple according to the packet protocol described in Section 2.

The source code for this example design can be found in the D2.8 tree: D2.8/APEIRON_example_design.

Referring to the testbed in Figure 5.7, the two replicas of krnl_sr() communicating through the switch, and

defined as:

void krnl_sr(){

<optional parameters>,

message_stream_t message_data_in[N_INPUT_CHANNELS],

message_stream_t message_data_out[N_OUTPUT_CHANNELS]

)

have N_INPUT_CHANNELS and N_OUTPUT_CHANNELS to receive/send incoming/outgoing messages.

As described in Section 5.2.2, Ports 0 and 1 of the router are connected to the krnl_sr() HLS kernels, through

the autogenerated dispatcher_0/1() and aggregator_0/1().

So the dispatcher...() and aggregator...() kernels work as adaptors from and toward the single bidir channel

of the router port.

The host application orchestrates the execution of the test, initializing the send/receive buffers in the

device global memory and launching the HLS kernels.

textarossa.eu D2.8 | 35

In the latency_test, a packet is sent from the node_0:port_0 to node_0:port_<destination port> where it

is received and then sent back. In the example design included in the deliverable archive file, we used a

simplified configuration with a single node, where communication happens between the two interNode

ports of the same router connected to each other (Localloop configuration).

The developer has to write a YAML configuration file (config.yaml) describing the attributes of each HLS
kernel, namely the number of its input and output channels and the IntraNode port of the Communication
IP to which it is connected, along with the number of router internode ports of the Communication IP (links)
and the target operating frequency of the overall design in MHz (freq), taking in consideration that the
current validated operating frequency for the Communication IP is 100 MHz.

The APEIRON configuration file for this example design is:

kernels:

 - name: krnl_sr_1

 input_channels: 4

 output_channels: 4

 switch_port: 0

 - name: krnl_sr_2

 input_channels: 4

 output_channels: 4

 switch_port: 1

config:

 freq: 100

 links: 2

Having this file as input, the APEIRON framework links the Communication IP and the HLS kernels that are
connected to it and generates the bitstream for the overall design, according to the following steps.

Build steps

Make sure that the .xo file of the Communication IP matches the execution platform, checking the symbolic
link contained in the D2.8/APEIRON_example_design/ip_repo directory:

> ls –la

lrwxrwxrwx. 1 lonardo users 39 Apr 22 18:36 TextaRossa_switch_2in_2ex.xo ->

../../TextaRossa_switch_2in_2ex_U200.xo

In this case the configuration is set to generate a firmware for the U200 platform, in case one wishes to
generate firmware for the U280, the following commands must be issued:

> cd D2.8/APEIRON_example_design/ip_repo/

> ln -s ../../TextaRossa_switch_2in_2ex_U280.xo TextaRossa_switch_2in_2ex.xo

textarossa.eu D2.8 | 36

First step is to generate the vpp_linker.cfg Vitis project configuration file, the operational clock frequency

and the interconnections between the components, using the config.yaml as input:

> ./generate.py

Select the correct platform (U200 or U280) in the Makefile by setting the PLATFORM variable.

After this step, it is possible to launch the build process (this takes a couple of hours at least, refer to

make.log file to inspect a successfully build process).

> make

mkdir -p _tmp_build

v++ -t hw --platform xilinx_u200_gen3x16_xdma_1_202110_1 -s --temp_dir _tmp_build -

-log_dir _tmp_build/logs --report_dir _tmp_build/reports -I include --config

hw_hls/krnl_sr.cfg --messageDb _tmp_build/krnl_sr.xo.mdb -o hw_hls/krnl_sr.xo

hw_hls/krnl_sr.cpp

Option Map File Used: '/opt/Xilinx/Vitis/2021.1/data/vitis/vpp/optMap.xml'

****** v++ v2021.1.1 (64-bit)

 **** SW Build 3278995 on 2021-07-20-20:33:48

 ** Copyright 1986-2020 Xilinx, Inc. All Rights Reserved.

INFO: [v++ 60-1306] Additional information associated with this v++ compile can be

found at:

 Reports:

/apotto/home1/homedirs/lonardo/D2.8/APEIRON_example_design/_tmp_build/reports/krnl_

sr

 Log files:

/apotto/home1/homedirs/lonardo/D2.8/APEIRON_example_design/_tmp_build/logs/krnl_sr

Running Dispatch Server on port: 37243

INFO: [v++ 60-1548] Creating build summary session with primary output

/apotto/home1/homedirs/lonardo/D2.8/APEIRON_example_design/hw_hls/krnl_sr.xo.compil

e_summary, at Sat Apr 22 19:26:58 2023

INFO: [v++ 60-1316] Initiating connection to rulecheck server, at Sat Apr 22

19:26:58 2023

Running Rule Check Server on port:41135

INFO: [v++ 60-1315] Creating rulecheck session with output

'/apotto/home1/homedirs/lonardo/D2.8/APEIRON_example_design_TODELETE/_tmp_build/rep

orts/krnl_sr/krnl_sr_guidance.html', at Sat Apr 22 19:27:00 2023

INFO: [v++ 60-895] Target platform:

/opt/xilinx/platforms/xilinx_u200_gen3x16_xdma_1_202110_1/xilinx_u200_gen3x16_xdma_

1_202110_1.xpfm

...

textarossa.eu D2.8 | 37

Examine design reports

Use the vitis_analyzer tool to visualize and navigate the relevant reports for the design. Run the following

command:

> vitis_analyzer D2.8/APEIRON_example_design/test.xclbin.link_summary

Figure C. 1 Inspection of the design report through the GUI of the Vitis Analyzer

Execution

To program the FPGA and launch the communication latency test between kernels connected to port 0 and

to <destination port> of the switch in the same FPGA (for this design configuration), using <number of

packets> packets of size <packet size>:

>./latency_test -b test.xclbin -l <packet size> –n <number of packets>
-i <destination port>

textarossa.eu D2.8 | 38

For example, this is the output of the execution when performing the latency test between port 0 (sender)

and port 0 (receiver) using one million packets of size 16B, allocating send and receive buffers in BRAM

memory:

> ./latency_test --bram --quiet -b test.xclbin -l 16 -n 1000000 -i 0

Packet size: 16 B Latency: 0.20138 us

