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Executive Summary  
This document reports on the activities done by TEXTAROSSA partner INFN with reference to the 
design of the internode communication IP in WP2. 

The INFN Communication IP, developed in VHDL, allows data transfers between processing tasks hosted in 
the same node (intra-node communications) or in different nodes (inter-node communications), 
implementing a direct network for FPGA accelerators and enabling the distributed implementation of 
dataflow applications in the APEIRON framework. 

The Communication IP was tested in the Vivado design Suite and its AXI-Lite interface (used to read/write 
internal registers) and was verified using the Xilinx AXI Verification IP (VIP). 

After behavioural simulation, it was implemented as an RTL kernel in Xilinx Vitis and integrated with kernels 
written in HLS in the APEIRON framework. 

The synthesis results, both for U200 and U280 Alveo card, showed a low resources occupancy of the IP, 
allowing us to add new features in the future. For example, we will increase internal datapath and fifo 
depth (thus increasing the intranode communication bandwidth and avoiding loss of performance due to 
fifo filling), and the number of intraNode ports. For the InterNode communication, we foresee to improve 
the bandwidth increasing the number of channels’ lanes and implementing new channel interface. 

We also performed tests on two U200 cards connected by QSFP+ cable and on a U280 card (using a channel 
termination) to measure the performance, in terms of latency and bandwidth, of the Communication IP. 

The IP project database synthesizable both on the Alveo U200 and U280 platforms is publicly available on 
the deliverable section of the TEXTAROSSA project website 
(https://textarossa.eu/dissemination/deliverables/).
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1 Introduction 
The INFN Communication IP implements a direct network for FPGA accelerators, allowing low-latency data 

transfer between processing tasks deployed on the same FPGA (intra-node communication) and on 

different FPGAs (inter-node communication), and enabling the distributed implementation of dataflow 

applications in the APEIRON framework. 

 

This document describes the Communication IP in detail and shows preliminary data for its synthesis on 

the two reference platforms (Xilinx U200 and U280), along with results of tests developed to validate the 

design and assess its current performance. 

Section 2 shows the design architecture complementing the information already available in Deliverable 

2.1 – Consolidated specs of accelerators IPs. 

Section 3 introduces the APEIRON framework, defined as the general architecture of an FPGA-based 

distributed stream processing platform and the corresponding software stack. The Communication IP was 

co-designed with the APEIRON software stack in order to achieve very low-latency and scalable bandwidth 

(via IP design reconfiguration) between processing tasks defined as High-Level Synthesis Kernels. 

Section 4 highlights the implementation results in terms of FPGA resource usage (for both Alveo U280 and 

U200) of the Communication IP and of the HLS kernels of the testbench. 

Section 5 reports design validation test results and performance measurement for the intermediate release 

of the Communication IP. 

Section 6 sketches some conclusions about the work and the results presented in this document, indicating 

the foreseen activities regarding the development of the Communication IP for the remaining part of the 

project.  

Appendix A reports the pseudo-code for the performance tests used to collect results showed in Section 5. 

Appendix B provides a simple instruction manual to assist users in integrating the Communication IP in 

their designs using the Vitis environment. 

Finally, Appendix C illustrates the usage of the APEIRON framework, using as example the design of the 

testbench described in Section 5.2.2, that integrates the Communication IP and two instantiations of an 

HLS kernels, in a single FPGA configuration. 

This document, along with the Communication IP packaged as Xilinx object (XO) file for both the U200 and 

U280 platform, and a demo video showing the performance tests described in section 5.2, is publicly 

available for download on the deliverable section of the TEXTAROSSA web site 

(https://textarossa.eu/dissemination/deliverables/). 

2 IP Design 
The Communication IP allows data transfers between processing tasks hosted in the same node (intra-node 

communications) or in different nodes (inter-node communications), see Figure 2.1. In the context of the 

APEIRON framework, processing tasks are implemented by HLS kernels with Xilinx Vitis. The details of the 

interface between HLS kernels – the endpoints of the communication – and the Communication IP are 

described in Section 3. 

https://textarossa.eu/dissemination/deliverables/
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Figure 2.1 Example of intra-node (in red) and inter-node (in blue/green) data transfers between tasks 

Figure 2.2 shows its hardware block structure, which contains a Network_IP and a Routing_IP, both 

developed in VHDL for TEXTAROSSA target platforms (Xilinx Alveo U200 and U280 cards). 

 

Figure 2.2 Architectural partition of Communication IP 

The Routing_IP defines the switching technique and routing algorithm; its main components are the 
Switch_component Block, the Configuration/Status Registers and the InterNode and IntraNode IFs. 
 
The Switch component dynamically interconnects all ports of the IP, implementing a channel between 
source and destination ports. 
 
Dynamic links are managed by routing logic together with arbitration logic: the Router configures the 
proper path across the switch while the Arbiter is in charge of solving contentions between packets 
requiring the same port. 
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For inter-node communications, the routing policy applied is the dimension-order one: it consists in 
reducing the offset along one dimension to zero before considering the offset in the next dimension. 
The employed switching technique — i.e., when and how messages are transferred — is Virtual Cut-
Through (VCT) [1]: the router starts forwarding the packet as soon as the algorithm has picked a direction 
and the buffer used to store the packet has enough space. The deadlock-avoidance of DOR routing is 
guaranteed by the implementation of two virtual channels for each physical channel (with no fault-
tolerance guaranteed) [2]. 
 
The transmission is packet-based, meaning that the Communication IP sends, receives and routes packets 
with a header (Figure 2.3), a variable size payload and a footer. 
 

 

Figure 2.3 Packet header format 

In the Network IP, the physical layer blocks define the data encoding scheme for the serialization of the 
messages over the cable and shape the network topology. They provide point-to-point bidirectional, full-
duplex communication channels of each node with its neighbors along the available directions. 
 
For the serialization of the messages over the cable we used Xilinx Aurora 64B/66B cores. 
 
The number of lanes making up a communication channel can be customized at design time (from 1 to 2) 
to match the requirements of the integrated target execution platform. 
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Link_Ctrl blocks instead establish the logical link between nodes and guarantee reliable communication, 
eventually performing error detection and correction. 
 
The whole architecture is based on a layer model, as shown in Figure 2.4, including physical, data link, 
network and transport layers of the OSI model. 

 

Figure 2.4 The layered architecture of Communication IP 

The Communication IP exposes two sets of interfaces, i.e., IntraNode and InterNode IF; the number of ports 
within these interfaces (M and N) can be customized at design time. 
The IntraNode IF manages data flow to (RX) and from (TX) local tasks; each port consists of two FIFOs for 
each direction, so that header/footer and data use a dedicated FIFO. 
The InterNode IF, with the Network_IP block, oversees managing data flow over the serial links between 
FPGAs. 
Both IntraNode and InterNode IFs are provided with a self-test mechanism to measure the latency and 
bandwidth achieved. The self-test mechanism is composed by three simple IPs: (i) the Packet_Generator 
generates packets and fills the transmitting FIFOs; (ii) the Consumer flushes the receiving FIFOs avoiding 
their overflow and checks payload of received packets; (iii) the Performance Counter stores the clock cycles 
needed to complete the data transfers. 
 
The traffic generated by the Packet_Generator can be configured at runtime writing appropriate registers 
which define the number of packets, size and destination along X coordinate. 
In addition to these parameters, the Communication IP offers to the users the possibility to set at run time 
few key features and to read status information by exposing a window of 32-bit registers 
(Configuration/Status Registers Block). 
 
The list of registers with the associated addresses are presented in Table 2.1.: 
 

 N Offset  Name  Description  Default value  
Register 

type  

  
4  0x00000010  RESET_REG  

Bit 0: write ‘1’ to reset;   
Self-clear (‘0’ after 200 clock’s cycle)  0x0000000  RW  

5  0x00000014  REVISION_REG  
Bit 15 downto 0:  Revision ID  
Bit 31 downto 16: Version ID  0x0000000  RO  

6  0x00000018  COORDME_REG  
3D node’s coordinates   
Bit 5 downto 0: X coordinate  0x0000000  RW  

8  0x00000020  LATTICESIZE_REG  
Lattice size  
Bit 5 downto 0: X direction  0xfffffff  RW  
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12  0x00000030  PERF_INTRANODE_CFG  

Perf_Block configuration register:  
Bit 7 downto 0: IntraNode Packet_Generator 
enable  
Bit 15 downto 8: IntraNode Consumer enable  

0x0000000  RW  

13  0x00000034  PERF_INTERNODE_CFG  

Perf_Block configuration register:  
Bit 7 downto 0: InterNode Packet_Generator 
enable  
Bit 15 downto 8: InterNode Consumer enable  

0x00000000  RW  

14  0x00000038  PKTGEN_CONFIG_0  

Packet_generator configuration register:  
Bit 15 downto 0: number of packets generated  
Bit 29 downto 16: packet length (in byte)  
Bit 31: header only packet generated  
  

0x00000000  RW  

16  0x00000040  PKTGEN_CONFIG_1  
Destination of packet  
Bit 5 downto 0: X direction  0x00000000  RW  

20  0x00000050  PERF_INTRANODE_STS 

Bit 3  downto 0: packet_generator status 
(intraNode 0)  
Bit 7  downto 4: Consumer status (intraNode 
0)  
Bit 11 downto 8: packet_generator status 
(intraNode 1)  
Bit 15 downto 12: Consumer status   (intraNode 
1)  
Bit 19 downto 16: packet_generator status 
(intraNode 2)  
Bit 23 downto 20: Consumer status   (intraNode 
2)  
Bit 27 downto 24: packet_generator status 
(intraNode 3)  
Bit 31 downto 28: Consumer status   (intraNode 
3)  
                             *Packet_generator 
status:  
"0000" SM_STATE = OFF  
"0001" SM_STATE = IDLE  
"0010" SM_STATE = TX_HEADER "0011" SM_STATE = 
TX_PAYLOAD  
"0100" SM_STATE = TX_FOOTER 
  
**Consumer status  
Bit 0 = Test ok! (All packets received with 
correct payload)  
Bit 3 downto 1: SM STATE   
   "000" SM_STATE = OFF   
   "001" SM_STATE = IDLE  
   "010" SM_STATE = COUNT  

  RO  

21  0x00000054  PERF_INTERNODE_STS  

Bit 3  downto 0: packet_generator status (see 
register PERF_INTRANODE_STS)  
Link 0  
Bit 7  downto 4: Consumer status Link 0  
Bit 11 downto 8: packet_generator status Link 
1  
Bit 15 downto 12: Consumer status Link 1  

  RO  

22  0x00000058  PERF_INTRANODE_CNT0  
TxRx clock counter (first packet   written, 
last packet read) IntraNode 0    RO  

23  0x0000005C  PERF_INTRANODE_CNT1  
TxRx clock counter (first packet   written, 
last packet read) IntraNode 1    RO  

24  0x00000060  PERF_INTRANODE_CNT2  
TxRx clock counter (first packet   written, 
last packet read) IntraNode 2    RO  

25  0x00000064  PERF_INTRANODE_CNT3  
TxRx clock counter (first packet   written, 
last packet read) IntraNode 3    RO  

26  0x00000068  
  

PERF_INTERNODE_CNT0  
  

TxRx clock counter (first packet   written, 
last packet read) InterNode 0    RO  
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27  0x0000006C  PERF_INTERNODE_CNT1  
TxRx clock counter (first packet   written, 
last packet read) InterNode 1    RO  

28  0x00000070  
  

INTRANODE_FIFO_STS_  
RX_0  

Bit 31 downto 16: Fifo IntraNode 0 Data Rx 
UsedWord  Bit 15 downto 0: Fifo IntraNode 0 
Header Rx UsedWord  
  

  RO  

29  0x00000074  
  

INTRANODE_FIFO_STS_  
TX_0  
  

Bit 31 downto 16: Fifo IntraNode 0 Data Tx 
UsedWord  
Bit 15 downto 0: Fifo IntraNode 0 Header Tx 
UsedWord  

  RO  

30  0x00000078  INTRANODE_FIFO_CNT_  
HD_TX_RD_0  

Fifo IntraNode 0 Header Tx read counter  
  RO  

31  0x0000007C  INTRANODE_FIFO_CNT_  
HD_TX_WR_0  

Fifo IntraNode 0 Header Tx write counter  
  RO  

32  0x00000080  INTRANODE_FIFO_CNT_  
HD_RX_RD_0  

Fifo IntraNode 0 Header Rx read counter  
  RO  

33  0x00000084  INTRANODE_FIFO_CNT_  
HD_RX_WR_0  

Fifo IntraNode 0 Header Rx write counter  
  RO  

34  0x00000088  INTRANODE_FIFO_CNT_  
DT_TX_RD_0  

IntraNode 0 Data Tx read counter  
  RO  

35  0x0000008c  INTRANODE_FIFO_CNT_  
DT_TX_WR_0  

IntraNode 0 Data Tx write counter  
  RO  

36  0x00000090  INTRANODE_FIFO_CNT_  
DT_RX_RD_0  

IntraNode 0 Data Rx read counter  
  RO  

37  0x00000094  INTRANODE_FIFO_CNT_  
DT_RX_WR_0  

IntraNode 0 Data Rx write counter  
  RO  

38  
47  
0x00000098-
0x000000BC  INTRANODE_FIFO_*_1  

Fifo counter register IntraNode 1  
  RO  

65    FIFO_INTRANODE_EXC  

Bit 7  downto 0   = IntraNode TX HD write 
exception   
Bit 15 downto 8   = IntraNode TX DT write 
exception  
Bit 23 downto 16 = IntraNode RX HD write 
exception  
Bit 31 downto 24 = IntraNode RX DT write 
exception     

  RO  

66  0x00000108  FIFO_REGISTER  

Bit 31 downto 24: Fifo Header Rx exp 
width                    Bit 23 downto 16: 
Fifo Data Rx exp width     
Bit 15 downto 8: Fifo Header Tx exp width  
Bit 7 downto 0: Fifo Data Tx exp width  

  RO  

67  0x0000010C  TRANSCEIVER_STATUS  

Bit 0: InterNode 0 channel up  
Bit 1: InterNode 1 channel up  
Bit 16: InterNode 0 transceiver’s error  
Bit 17: InterNode 1 transceiver’s error    

  RO  

68  0x00000110  LINK_0_CONFIG_0  

Bit 31 downto 28: Edac enable InterNode 1  
     "0000" NO EDAC  
     "1111" EDAC  
Bit 27 downto 24 = Edac enable InterNode 0  
Bit 17 = Use new destination in InterNode 1  
Bit 16 = Use new destination in InterNode 0  
Bit 15 downto 0: New destination (15–11: Z; 
10–6: Y; 5–0:X).  
  

0x00000000  RW  

69  0x00000114  LINK_0_CONFIG_1  
Bit 25 downto 16: Red threshold for Data  
Bit 7 downto 0: Red threshold for Header  0x00000000  RW  

70  0x00000118  LINK_0_CONFIG_2  
Bit 15 downto 8: Tx new credit cycle  
Bit 7 downto 0: Tx waiting cycle  0x00000000  RW  

71  0x0000011C  LINK_0_CONFIG_3  
Header error gen  
  0x00000000  RO  
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80  0x00000140  LINK_0_STATUS_0    

Bit 15 downto 12: Rx status;  
Bit 11 downto 8: Tx footer status  
Bit 7 downto 4: Tx payload status  
Bit 3 downto 0: Tx header status  

  RO  

81  0x00000144  LINK_0_ERROR  
Bit 31 downto 16: Rx header error counter  
Bit 15 downto 0: Rx header fatal error 
counter  

  RO  

82  0x00000148  LINK_0_TX_MAGIC  Tx magic counter    RO  

83  0x0000014C  LINK_0_TX_START  Tx start counter    RO  

84  0x00000150  LINK_0_TX_HDR  Tx header counter    RO  

85  0x00000154  LINK_0_TX_FTR  Tx footer counter    RO  

86  0x00000158  LINK_0_RX_MAGIC  Rx magic counter    RO  

87  0x0000015c  LINK_0_RX_START  Rx start counter    RO  

88  0x00000160  LINK_0_RX_HEADER  Rx header counter    RO  

89  0x00000164  LINK_0_RX_FOOTER  Rx footer counter    RO  

90  
99  
0x00000168-
0x00000185  LINK_1_REGISTERS  

  
    

Table 2.1 Configuration/status Registers list 

2.1 Communication IP simulation 

The Communication IP was verified in the Vivado design Suite by using the Packet generator Block and the 
Consumer Block (which respectively generate packets filling IntraNode_0 transmitting FIFO and flush the 
receiving FIFOs checking payload of received packets). 
To simulate registers been read or written we implemented a Xilinx IP AXI traffic generator, which provides 
an AXI4-Lite Master interface and issues AXI4-Lite transactions reading two coefficient (COE) files provided 
by the user: 

• Address COE File – Provides the sequence of addresses to be issued 
• Data COE File – Provides the sequence of data corresponding to the address specified in Address 

COE File 
We also checked protocol compliance of AXI interfaces using the AXI Verification IP (VIP). 
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Figure 2.5 Scheme of Communication IP testbench 

The latency introduced by the Routing_IP — i.e., from the footer’s writing in intraNode TX FIFO to the 
footer’s reading in the intraNode RX FIFO in a loopback communication — is shown in Figure 2.6. 
 

 

Figure 2.6 Intra-node TX FIFO – RX FIFO latency in Vivado Behavioural simulation GUI 

 

The number of clock cycles is equal to 28 (about 280ns at the current operating frequency of 100MHz) for 
all the internal path (from one TX port to an RX port), reduced to 220ns if taking into account the latency 
of the FIFO (60ns between FIFO writing and empty signal low). 

2.2 Communication IP RTL kernel 

The INFN Communication IP, developed in VHDL, is implemented as an RTL-kernel in Xilinx Vitis, a High-
Level Synthesis framework which allows to develop, debug and optimize accelerated applications using 
standard programming languages for both software and hardware components. 
In the Vitis application, an RTL IP from the Vivado Design Suite is packaged as Xilinx object form (XO) file 
for implementation in the programmable logic (PL) region of the target platform. 
 
In Figure 2.7 the packaged IP generated within the Vivado Design Suite is depicted. 
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Figure 2.7 Communication IP with 2 IntraNode and 2 InterNode ports packaged in Vivado Design Suite 

The kernel interfaces are used to exchange data with the host application, other kernels or device I/Os: 
 
 

• s_axi_control is the AXI4-Lite slave interface that allows a host application to interact with kernels 
by reading or writing registers. The I/O ports of this interface is reported in Table 2.2 

 
• Dtaxis* and Hdaxis* are streaming interfaces used to transfer data directly from/to other kernels. 

Since an AXI4-Stream interface transfers data in a sequential streaming manner, it cannot be used 
with arguments that are both read and written, two interfaces are requested for each IntraNode 
port (Tx and Rx interfaces are shown in tables 2.3 and 2.4). 

 
• Gt*_serial_ports are streaming interfaces connected to QSFP+ ports, used to communicate with 

other devices (interNode ports). 
Each InterNode port requires a low-jitter reference clock ( gt*_refclock0_p/n @ 161.13 MHz) for 

 generating and  recovering high-speed serial clocks, while a single stable clock ( clk_gt_freerun 
@ 100 MHz) is used for mixed-mode clock manager (MMCM) synchronization. 

 
• Ap_clk is the clock for the switch/ register logic. 

 
 

 

Signal Name I/O Description 

S_AXI_AWADDR (11 downto 0) I Write Address 

S_AXI_AWVALID I Write Address Valid 

S_AXI_AWREADY O Write Address Ready 

S_AXI_WDATA (31 downto 0) I Write Data 

S_AXI_WSTB (31 downto 0) I Write Strobes 

S_AXI_WVALID               I Write Valid 
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S_AXI_WREADY O Write Ready 

S_AXI_BRESP (1 downto 0) O Write Response 

S_AXI_BREADY               I Write Response Ready 

S_AXI_BVALID               O Write Response Valid 

S_AXI_ARADDR (11 downto 0) I Read Address 

S_AXI_ARVALID               I Read Address Valid 

S_AXI_ARREADY O Read Address Ready 

S_AXI_RDATA (31 downto 0) O Read Data 

S_AXI_RRESP (1 downto 0) O Read Response 

S_AXI_RREADY               I Read Valid 

S_AXI_RVALID O Read Ready 

Table 2.2: AXI4-Lite Slave Interface signals 

 
 

Signal Name I/O Description 

TDATA I Write Data 

TVALID I Write Data Valid 

TREADY O Write Data Ready 

TKEEP I Write Data byte qualifier 

TLAST I Write last byte 

Table 2.3: Tx streaming Interfaces signals 

  

Signal Name I/O Description 

TDATA O Read Data 

TVALID O Read Data Valid 

TREADY I Read Data Ready 

TKEEP O Read Data byte qualifier  

TLAST O Read last byte 

Table 2.4: Rx streaming Interfaces signals 

 
The Communication IP kernel is integrated with kernels written in HLS in a framework called APEIRON (see 
Section 3). 
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3 APEIRON 
The Communication IP is the main enabling component for the APEIRON framework, defined as the general 
architecture of an FPGA-based distributed stream processing platform and the corresponding software 
stack. The Communication IP was co-designed with the APEIRON software stack in order to achieve very 
low-latency and scalable bandwidth (via IP design reconfiguration) between processing tasks defined as 
High-Level Synthesis Kernels. 
Implementing direct communication between tasks deployed on FPGAs without involving host CPU and 
system bus resources, the Communication IP improves the energy efficiency of the execution platform 
(Objective Energy efficiency) for what concerns communication between accelerators. 
 
Starting from a YAML configuration file describing the attributes of each HLS kernel, namely its number of 
input and output channels and the IntraNode port of the Communication IP to which it is connected, the 
APEIRON framework links the Communication IP and the HLS kernels that are connected to it and generates 
the bitstream for the overall design. 
The only requisite that HLS kernels must satisfy is in the format of their prototype that must be in this form: 
 
void example_apeiron_task(   

[optional kernel-specific list of parameters] 
      message_stream_t  message_data_in[N_INPUT_CHANNELS],  
      message_stream_t  message_data_out[N_OUTPUT_CHANNELS]   
  )  

 
In this way, the HLS kernel implements a generic stream interface for each communication channel, based 
on the AXI4-Stream protocol. The communication between kernels is expressed through a lightweight C++ 
API (HAPECOM) based on non-blocking send() and blocking receive() operations. This simple API allows the 
HLS developer to perform communications between kernels, either deployed on the same FPGA (intra-
node communication) or on different FPGAs (inter-node communication) without knowing the details of 
the underlying packet communication protocol. 
 
The Communication API can be represented with the following pseudo-code: 

size_t send(msg, size, dest_node, task_id, ch_id);  

size_t receive(ch_id); 

where: 

dest_node is the n-Dim coordinate of the destination node (FPGA) in an n-Dim torus network; 

task_id   is the local-to-node receiving task (kernel) identifier (0-3). 

ch_id   is the local-to-task receiving FIFO (channel) identifier (0-127). 

 

 
The Communication Library leverages AXI4-Stream Side-Channels to encode all the information needed to 
forge the packet header. 
Adaptation toward/from IntraNode ports of the Routing IP is done by two APEIRON IPs: Aggregator and 
Dispatcher, shown in Figure 3.1. The Dispatcher receives incoming packets from the Routing IP and 
forwards them to the right input channel, according to the relevant fields of the header. The Aggregator 
receives outgoing packets from the task and forges the packet header, filling then the header/data FIFOs 
of the Routing IP. 
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Figure 3.1 Interface between Intranode Port 0 and the corresponding HLS Task (task_id 0), Messages IN FIFOs are 

identified by the ch_id APIs parameter 

4 Resource usage 
In Tables 4.1 and 4.2 we report the resource utilization generated by the Vivado tool building the system 

for the U200 and the U280 cards for the Latency test setup. 

For both cards, the occupancy (in terms of LUT, REG, BRAM) is very low, allowing us to easily add new 

features to the Communication IP while leaving a considerable fraction of the resources to the 

implementation of the HLS kernels. 

 

 

Table 4.1 Resource usage report of the performance test setup (see Figure 5.7) for Alveo U200 card 
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Table 4.2 Resource usage report of the performance test setup (see Figure 5.7) for Alveo U280 card 

5 Test and Performance 
Here we describe the design validation and performance tests and report results and performance 

measurement for the intermediate release of the Communication IP. 

As testbench, we used a system composed of 2 interconnected Xilinx Alveo U200 FPGAs managed by 

different hosts. 

5.1 Design validation tests 

To validate and start debugging of the Communication IP, we initially used the internal Packet_Generator. 
This block also allowed us to measure latency for one packet of length equal to 16 Bytes sent to the same 
node, using either internal loopback or channel termination (Figure 5.1 and Figure 5.2). 
 
In both tests, Test ok shows the register 20 content (31 means “00110001”, that is Packet generator FSM 
in IDLE state, Consumer FSM in IDLE state and all packets were received with correct payload). 
 

 

Figure 5.1 IntraNode 0 TX FIFO towards IntraNode 0 RX FIFO latency for one packet (length = 16 byte) sent by internal 

packet_generator 
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Figure 5.2 IntraNode 0 TX FIFO towards IntraNode 0 RX FIFO in cable loopback setup, for one packet (16 byte) sent by 

internal packet generator 

5.2 Performance tests 

Here we report the measured performance of the intermediate release of the Communication IP in terms 

of bandwidth and latency of intra-node and inter-node communication operations between HLS kernels 

endpoints. 

5.2.1 Bandwidth 
A bandwidth test is carried out by transferring multiple data packets with fixed payload size from a “sender” 

HLS kernel which reads data from the source buffer in FPGA memory (either DDR or BRAM) and pushes 

them through the Communication IP to another FPGA, where a “receiver” HLS kernel writes data into the 

destination buffer in memory. After receiving the number of data packets whose integrated payload adds 

up to the size of the receive buffer, the second FPGA pings back a single “ACK” packet with minimal payload 

to confirm the reception, as shown in Figure 5.3. The total data sent during this test is summed and then 

divided by the time (measured on the sender node) elapsed between the start of the multiple packets send 

and the completion of the receive operation of the ACK packet. 

 

Figure 5.3 Illustration of the bandwidth test 

Results measured with send and receive buffers allocated on the FPGA BRAM are shown in Figure 5.4. 
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Figure 5.4 Measured bandwidth between HLS Kernels for an intra-node (loopback - red line) and inter-node 

communication (loopback - blue line, oneway – green line), with send and receive buffers allocated on BRAM memory. 

Note the blue line, representing the measurements taken emulating an inter-node communication on a single FPGA 

using a loopback termination on one QSFP+ port, is practically overlapped with the one measured between two nodes 

(oneway – green line) 

The same set of measurements were repeated using the FPGA DDR to allocate send/receive buffers instead 

of BRAM. Results are reported in the plot in Figure 5.5, showing the limiting effect of the DDR memory 

controller on the overall reachable bandwidth. In addition, in Figure 5.5 it is possible to notice that, 

referring to the BRAM cases, the bandwidth tends to saturate while increasing the size of the packets sent. 

In particular, for packets of size 2 kB the bandwidth reaches a value of ~12.0 Gbps for the intra-node 

loopback BRAM case (blue line), with a maximum theoretical value of raw bandwidth equal to 12.8 Gbps: 

the difference is mainly due to the packet protocol overhead.  For the slightly lower maximum value of 11.3 

Gbps reached in the inter-node oneway BRAM case (fuchsia line), the overhead due to serialization and 

64b/66b encoding over the external channel must be accounted.  
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Figure 5.5 Comparison between measured bandwidth between HLS Kernels for an intra-node (loopback) communication 

and inter-node (oneway) communication using BRAM and DDR to allocate send/receive buffers 

 

5.2.2 Latency 
A latency test is performed using an HLS kernel (krnl_sr, as reported in tables 4.1 and 4.2), configurable by 

the host in different operating modes. In detail, in "send_receive" mode the kernel reads a payload data 

item from the FPGA memory (either BRAM or DDR) and sends and receives it through/from the 

Communication IP to/from a second interconnected FPGA, where an HLS kernel in "pipe" mode has the 

task of receiving a single packet and bouncing it back to the initiator FPGA (as shown in Figure 5.6), allowing 

the measurement of inter-node latency.  
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Figure 5.6 Illustration of the latency test 

 

Figure 5.7 Testbench design illustration. The arrows describe different flows of data depending on the test performed: 

“Localloop, port 0 to port 0” (red arrow), “Roundtrip, port 0 to port1” (blue arrows) 

Since the HLS kernel in "send_receive" mode on the initiator FPGA is started via host code while the HLS 

kernel in "pipe" mode is free-running, the former is launched with a repetition parameter of 1 million 

send/receive operations before termination in order to minimize the contribution of the host call overhead 

on the overall time elapsed from the start of the first packet send to the completion of the last packet 

receive (measured on the host). The latency is then obtained by dividing half the elapsed time measured 

by the number of packets. 

As can be seen in Figure 5.7, the tests performed are basically two: 

• Roundtrip, where packets are transmitted between different intranode ports of two interconnect 

FPGAs 
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• Locallop, where packets are transmitted back and forth on the same intranode port of a single 

FPGA 

The results obtained are reported in Figure 5.8, indicating the type of tests performed and what kind of 

FPGA memory is used. In detail, the result obtained shows how the latency values get worse when working 

with DDR memory, due to overhead issues and to the time required to load the sent buffer from CPU on 

the FPGA and to read the received buffer from the FPGA to the CPU (we refer to these as “sync” operations, 

which are not present in the BRAM test cases). In accordance with the specifications reported in deliverable 

D2.1- Consolidated specs of accelerators IPs, latency reaches a value slightly below 1 us for 16 B payload 

packets in the inter-node roundtrip BRAM case (yellow line), and a value of ~250ns in the intra-node 

localloop BRAM case (blue line). 

  

Figure 5.8 Comparison of measured latency between HLS Kernels for an intra-node (loopback) communication and inter-

node (roundtrip) communication using BRAM and DDR to allocate send/receive buffers 

6 State of the art 
Nowadays, FPGAs represent one of the main architectures for HPC applications, considering the impending 

end of Moore’s Law and Dennard scaling. In addition to this, this type of accelerators is well suited to 

develop customized algorithms, combining the scalable parallel processing capability of an Application 

Specific Integrated Circuit (ASIC) with the reprogrammability typical of such type of devices. 

In modern development, and in dedicated networks, multiple FPGAs clusters are emplaced to map large 

HPC kernels by exploiting the low-latency communication capability of these accelerators. However, 

despite FPGAs high-speed transceiver links, a certain network flexibility with very large clusters could be 

required in order to map applications’ workloads and to strategically maximize resource utilization and 
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performance. In this direction, many solutions of scalable switched FPGA cluster have been developed, 

where, for example, the transceiver links are physically connected to ports of high-speed Ethernet switches 

[8], in an indirect network setup, as in the Virtual Circuit-Switching Network (VCSN) [5] or by implementing 

FPGAs as Network Interface Cards (NICs), as, for example, in the EasyNet open source networking stack [6] 

and in the Corundrum open-source network interface [7].  

Corundrum and EasyNet are based on a direct network for FPGA inter-communication using a 100 Gbps 

TCP/IP stack, even if they present a difference in what concern their implementation: in fact, Corundrum 

is implemented in Verilog HDL, rather than being based on the HLS Xilinx Vitis platform as in the EasyNet 

case. This difference makes EasyNet much like the APEIRON framework, considering the possibility for the 

user to implement in the setup a custom kernel connected to the network in an optimized way via 

communication primitives callable as functions in an HLS library (as it is with the send() and receive() APIs 

in the HAPECOM library). However, unlike EasyNet with TCP/IP stack, the INFN Communication IP used in 

the APEIRON framework is more similar to the custom protocols developed in some project at the state of 

art for which no inter-FPGA backpressure is needed, such as the E40G setup presented in paper [5], or the 

network infrastructure underlying the Reconfiguration over Network (REoN) protocol [9], which can 

transport partial bit files via network resource management APIs to a FPGA empowered network node, 

using standard 10 Gbps Ethernet. 

 

7 Conclusions 
In this deliverable we described the Communication IP in detail and showed preliminary synthesis and 

results of tests developed to validate the design and assess its current performance. 

In particular, we used some synthetic tests to measure the bandwidth and the latency in both inter- and 

intra-node communication. The results are promising and in line with the expected specifications reported 

in deliverable D2.1-Consolidated specs of accelerators IPs.  

 

This document, along with the Communication IP with two intraNode ports packaged as Xilinx object (XO) 

file for both the U200 and U280 platform, an APEIRON example design, and a demo video showing the 

performance tests described in section 5.2, are publicly available for download as archive zip file on the 

deliverable section of the TEXTAROSSA web site (https://textarossa.eu/dissemination/deliverables/).  

 

In the near future, we foresee to increase the internal datapath of the IP to 256 bits and to use the Aurora 

transceiver with 4 lanes to support applications requiring an increased communication bandwidth. 

Furthermore, we plan to implement a new channel interface based on the Xilinx® 10G/25G High Speed 

Ethernet Subsystem in order to enable interoperability with standard switched networks, either to support 

(e.g. UDP over IP) input and output streams or to implement a switched network topology. 

  

https://textarossa.eu/dissemination/deliverables/
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Appendix A. Relevant source codes 
Bandwidth test host pseudocode 

device.load_xclbin(bitstream); 

Allocate_recv_buffer(device, buf_size);  

Allocate_send_buffer(device, packet_size); 

Fill_send_buffer(); 

Send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE); 

switch.write_register(auto-toggle reset);  

kswitch.write_register(local_coord);  

(only for localloop test): //kswitch.write_register(overwrite destination);  

kswitch.write_register(threshold);  

kswitch.write_register(credit);  

If node_sender: 

Run_kernel_receiver(recv_buffer, 1);  

gettimeofday(&startTime,NULL);  //start time measurement 

run_kernel_sender (receiver_coord, npackets, packet_size, send_buffer); 

ksender_run.wait(); 

kreceiver_run.wait();  

gettimeofday(&endTime,NULL); //stoptime measurement 

elapsedTime = elapsed(startTime,endTime); 

BW = (npackets*packet_size)/elapsedTime); 

 If node_receiver: 

Run_kernel_receiver(recv_buffer, npackets); 

kreceiver_run.wait(); 

recv_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE); 

  Run_kernel_sender(sender_coord, 1, 16, send_buffer); //send back 1 packet of size 16B 

ksender_run.wait(); 

  

Bandwith test “kernel sender” pseudocode (example for DDR test) 

int nword = packet_size / sizeof(word_t); 

Foreach (packet){ 

Header = Fill_header; 

Hdr_fifo_out.write(Header); 

  foreach (word) { 

data_fifo_out.write(data_word); 

} 

  Footer = fill_footer() 

Hdr_fifo_out.write(footer); 

} 

 

Bandwith test “kernel receiver” pseudocode (example for DDR test) 

Foreach (packet){ 

hdr_fifo_in.read(hdr); 

len = hdr.packet_size; 
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N_words = len/sizeof(word) 

Foreach(word in N_words){ 

word[j] = data_fifo_in.read(); 

} 

  header_fifo_in.read(footer) 

} 

 

Latency test host pseudocode 

device.load_xclbin(bitstream); 

If !bram_usage: 

Allocate_recv_buffer(device, buf_size);  

Allocate_send_buffer(device, packet_size); 

Fill_send_buffer(); 

Send_buffer.sync(XCL_BO_SYNC_BO_TO_DEVICE); 

switch.write_register(auto-toggle reset);  

kswitch.write_register(local_coord);  

kswitch.write_register(threshold);  

kswitch.write_register(credit);  

If initiator FPGA:  

gettimeofday(&startTime,NULL);  //start time measurement 

run_kernel_sender_receiver (destination_coord, npackets, packet_size, send_buffer, recv_buffer, 

           bram_usage); 

ksender_receiver_run.wait();  

If !bram_usage: 

recv_buffer.sync(XCL_BO_SYNC_BO_FROM_DEVICE); 

 

gettimeofday(&endTime,NULL); //stoptime measurement 

elapsedTime = elapsed(startTime,endTime); 

Latency = (elapsedTime/2)/npackets; 

 

 

Latency test “kernel sender_receiver” (krnl_sr) pseudocode  

Foreach (packet){ 

If bram_usage: 

memory_in = local_BRAM_buffer_in; 

memory_out = local_BRAM_buffer_out; 

send(memory_in, packet_size, coord, task_id, ch_id, data_fifo_out);  //Communication Library 

receive(ch_id, memory_out, data_fifo_in); 

} 

 

Latency test “kernel pipe” (krnl_pipe) pseudocode  

Foreach (packet){ 

receive(ch_id, local_memory, data_fifo_in); //Communication Library APIs 

send(local_memory, packet_size, coord, task_id, ch_id, data_fifo_out); 

} 
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Appendix B. Integration of Communication IP in Vitis 

environment 
Pre-requisites 

- Xilinx Alveo U200/U280 card 

- Xilinx Vitis 2021.1  

(https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/2021-

1.html) 

- Xilinx runtime (XRT), XDMA Deployment Target Platform, and XDMA Development Target Platform 

(https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#gettingStarted) 

Environment 

> source /opt/Xilinx/Vitis/2021.1/settings64.sh 

> source /opt/xilinx/xrt/setup.sh 

(Dependent on your local installation paths). 

 

Example kernel  

The only requisite for an HLS kernel to connected to one of the Communication IP, is to be compliant with 

the following defintion: 

void krnl_example( 

<optional parameters>, 

header_stream_t message_hdr_in[N_INPUT_CHANNELS], 

message_stream_t message_data_in[N_INPUT_CHANNELS], 

  header_stream_t message_hdr_out[N_OUTPUT_CHANNELS], 

message_stream_t message_data_out[N_OUTPUT_CHANNELS] 

) 

  

So that is has N_INPUT_CHANNELS and N_OUTPUT_CHANNELS to receive/send incoming/outgoing 

messages through the Communication IP. 

The header_stream_t and message_stream_t types are defined as: 

 

typedef hls::stream<uint128_t> message_stream_t; 

typedef hls::stream<apenet_header_t> header_stream_t; 

And the apenet_header_t, representing an apenet protocol header shown in figure 2.3, is defined 

as: 

 typedef union { 

        struct __attribute__((packed)) { 

                unsigned long virt_chan      :  5; 
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                unsigned long proc_id        : 16; 

                unsigned long dest_x         :  6; 

                unsigned long dest_y         :  5; 

                unsigned long dest_z         :  5; 

                unsigned long intra_dest     :  4; 

                unsigned long reserved       :  1; 

                unsigned long out_of_lattice :  1; 

                unsigned long packet_type    :  5; 

                unsigned long packet_size    : 14; 

                unsigned long dest_addr      : 48; 

                unsigned long num_of_hops    : 10; 

                unsigned long edac           :  8; 

        } s; 

        uint32_t l[4]; 

        uint64_t u[2]; 

} apenet_header_t; 

 

Please refer to directory D2.8/APEIRON_example_design/include/ for further information. 

Build steps 

After the kernel code is written, you can build the application, generating the FPGA binary file (.xclbin). 

First step is to write the vpp_linker.cfg Vitis project configuration file, that specifies the operational clock 

frequency and the interconnections between the components' ports. 

For example, the following vpp_linker.cfg specifies a clock frequency of 100 MHz and connects 

krnl_example_0 and krnl_example_1 respectively to Intranode_port_0 and intranode_port_1 of the 

Communication IP.  
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kernel_frequency=0:100|1:1  

  

[connectivity] 

stream_connect=TextaRossa_switch_1.dtaxisrx0:krnl_example_0.dt_in 

stream_connect=TextaRossa_switch_1.hdaxisrx0:krnl_example_0.hd_in 

stream_connect=krnl_example_0.dt_out:TextaRossa_switch_1.dtaxistx0 

stream_connect=krnl_example_0.hd_out:TextaRossa_switch_1.hdaxistx0 

stream_connect=TextaRossa_switch_1.dtaxisrx1:krnl_example_1.dt_in 

stream_connect=TextaRossa_switch_1.hdaxisrx1:krnl_example_1.hd_in 

stream_connect=krnl_example_1.dt_out:TextaRossa_switch_1.dtaxistx1 

stream_connect=krnl_example_1.hd_out:TextaRossa_switch_1.hdaxistx1 

  

After this, starting from the .xo files of the communication IP and of the user kernels, it is possible to launch 

the build process (this takes a couple of hours at least) for U200 board: 

 

>  v++ -t hw --platform xilinx_u200_gen3x16_xdma_1_202110_1 -s --

temp_dir _tmp_build --log_dir _tmp_build/logs --report_dir 

_tmp_build/reports -I include --link --config vpp_linker.cfg --xp 

param:compiler.userPostDebugProfileOverlayTcl=scripts/post_sys_link.tcl 

--messageDb _tmp_build/test.xclbin.mdb -o test.xclbin  

TextaRossa_switch_2in_2ex_U200.xo krnl_example.xo  

 

And for the U280 board: 

>  v++ -t hw --platform xilinx_u280_xdma_201920_3 -s --temp_dir 

_tmp_build --log_dir _tmp_build/logs --report_dir _tmp_build/reports -I 

include --link --config vpp_linker.cfg --xp 

param:compiler.userPostDebugProfileOverlayTcl=scripts/post_sys_link.tcl 

--messageDb _tmp_build/test.xclbin.mdb -o test.xclbin  

TextaRossa_switch_2in_2ex_U280.xo krnl_example.xo 

 

The generated binary (test.xclbin) can then be used to program the FPGA of the accelerator card. 
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Appendix C. APEIRON Example Design 

 
Pre-requisites 

- Xilinx Alveo U200/U280 card 

- Xilinx Vitis 2021.1  

(https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis/2021-

1.html) 

- Xilinx runtime (XRT), XDMA Deployment Target Platform, and XDMA Development Target Platform 

(https://www.xilinx.com/products/boards-and-kits/alveo/u200.html#gettingStarted) 

Environment 

> source /opt/Xilinx/Vitis/2021.1/settings64.sh 

> source /opt/xilinx/xrt/setup.sh 

(Dependent on your local installation paths). 

 

EXAMPLE: Latency test Design 

This example design demonstrates the main functionalities of the APEIRON framework, using a 

Communication IP configured with 2 intranode ports and 2 internode ports. Each port is bidirectional, and 

each direction sports a header/data FIFO couple according to the packet protocol described in Section 2. 

The source code for this example design can be found in the D2.8 tree: D2.8/APEIRON_example_design. 

Referring to the testbed in Figure 5.7, the two replicas of krnl_sr() communicating through the switch, and 

defined as: 

void krnl_sr(){ 

<optional parameters>, 

message_stream_t message_data_in[N_INPUT_CHANNELS], 

message_stream_t message_data_out[N_OUTPUT_CHANNELS] 

) 

  

have N_INPUT_CHANNELS and N_OUTPUT_CHANNELS to receive/send incoming/outgoing messages. 

As described in Section 5.2.2, Ports 0 and 1 of the router are connected to the krnl_sr() HLS kernels, through 

the autogenerated dispatcher_0/1() and aggregator_0/1(). 

So the dispatcher...() and aggregator...() kernels work as adaptors from and toward the single bidir channel 

of the router port. 

The host application orchestrates the execution of the test, initializing the send/receive buffers in the 

device global memory and launching the HLS kernels. 
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In the latency_test, a packet is sent from the node_0:port_0 to node_0:port_<destination port> where it 

is received and then sent back. In the example design included in the deliverable archive file, we used a 

simplified configuration with a single node, where communication happens between the two interNode 

ports of the same router connected to each other (Localloop configuration). 

The developer has to write a YAML configuration file (config.yaml) describing the attributes of each HLS 
kernel, namely the number of its input and output channels and the IntraNode port of the Communication 
IP to which it is connected, along with the number of router internode ports of the Communication IP (links) 
and the target operating frequency of the overall design in MHz (freq), taking in consideration that the 
current validated operating frequency for the Communication IP is  100 MHz. 
 
The APEIRON configuration file for this example design is: 

kernels: 

   - name: krnl_sr_1 

        input_channels: 4 

        output_channels: 4 

        switch_port: 0 

  

 - name: krnl_sr_2 

        input_channels: 4 

        output_channels: 4 

        switch_port: 1 

 

config: 

  freq: 100 

  links: 2 

 

Having this file as input, the APEIRON framework links the Communication IP and the HLS kernels that are 
connected to it and generates the bitstream for the overall design, according to the following steps. 
 
Build steps 

Make sure that the .xo file of the Communication IP matches the execution platform, checking the symbolic 
link contained in the D2.8/APEIRON_example_design/ip_repo  directory: 
 
> ls –la 

lrwxrwxrwx. 1 lonardo users      39 Apr 22 18:36 TextaRossa_switch_2in_2ex.xo -> 

../../TextaRossa_switch_2in_2ex_U200.xo 

 
In this case the configuration is set to generate a firmware for the U200 platform, in case one wishes to 
generate firmware for the U280, the following commands must be issued: 
 
> cd D2.8/APEIRON_example_design/ip_repo/ 

> ln -s ../../TextaRossa_switch_2in_2ex_U280.xo TextaRossa_switch_2in_2ex.xo 
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First step is to generate the vpp_linker.cfg Vitis project configuration file, the operational clock frequency 

and the interconnections between the components, using the config.yaml as input:  

> ./generate.py  

 

Select the correct platform (U200 or U280) in the Makefile by setting the PLATFORM variable.  

After this step, it is possible to launch the build process (this takes a couple of hours at least, refer to 

make.log file to inspect a successfully build process). 

> make 

mkdir -p _tmp_build 

v++ -t hw --platform xilinx_u200_gen3x16_xdma_1_202110_1 -s --temp_dir _tmp_build -

-log_dir _tmp_build/logs --report_dir _tmp_build/reports  -I include --config 

hw_hls/krnl_sr.cfg --messageDb _tmp_build/krnl_sr.xo.mdb -o hw_hls/krnl_sr.xo 

hw_hls/krnl_sr.cpp 

Option Map File Used: '/opt/Xilinx/Vitis/2021.1/data/vitis/vpp/optMap.xml' 

  

****** v++ v2021.1.1 (64-bit) 

  **** SW Build 3278995 on 2021-07-20-20:33:48 

    ** Copyright 1986-2020 Xilinx, Inc. All Rights Reserved. 

  

INFO: [v++ 60-1306] Additional information associated with this v++ compile can be 

found at: 

        Reports: 

/apotto/home1/homedirs/lonardo/D2.8/APEIRON_example_design/_tmp_build/reports/krnl_

sr 

        Log files: 

/apotto/home1/homedirs/lonardo/D2.8/APEIRON_example_design/_tmp_build/logs/krnl_sr 

Running Dispatch Server on port: 37243 

INFO: [v++ 60-1548] Creating build summary session with primary output 

/apotto/home1/homedirs/lonardo/D2.8/APEIRON_example_design/hw_hls/krnl_sr.xo.compil

e_summary, at Sat Apr 22 19:26:58 2023 

INFO: [v++ 60-1316] Initiating connection to rulecheck server, at Sat Apr 22 

19:26:58 2023 

Running Rule Check Server on port:41135 

INFO: [v++ 60-1315] Creating rulecheck session with output 

'/apotto/home1/homedirs/lonardo/D2.8/APEIRON_example_design_TODELETE/_tmp_build/rep

orts/krnl_sr/krnl_sr_guidance.html', at Sat Apr 22 19:27:00 2023 

INFO: [v++ 60-895]   Target platform: 

/opt/xilinx/platforms/xilinx_u200_gen3x16_xdma_1_202110_1/xilinx_u200_gen3x16_xdma_

1_202110_1.xpfm 

... 
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Examine design reports 

Use the vitis_analyzer tool to visualize and navigate the relevant reports for the design. Run the following 

command:  

> vitis_analyzer D2.8/APEIRON_example_design/test.xclbin.link_summary 

 

 

 

Figure C. 1 Inspection of the design report through the GUI of the Vitis Analyzer 

  

Execution  

To program the FPGA and launch the communication latency test between kernels connected to port 0 and 

to <destination port> of the switch in the same FPGA (for this design configuration), using <number of 

packets> packets of size <packet size>: 

>./latency_test -b test.xclbin -l <packet size> –n <number of packets>  
-i <destination port> 
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For example, this is the output of the execution when performing the latency test between port 0 (sender) 

and port 0 (receiver) using one million packets of size 16B, allocating send and receive buffers in BRAM 

memory: 

> ./latency_test --bram --quiet -b test.xclbin -l 16  -n 1000000 -i 0  

Packet size: 16 B         Latency: 0.20138 us 


