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Executive Summary 

This deliverable provides a survey of the literature on the optimization of memory management 

in the context of training on deep neural networks and the use of parallelism for DNN inference 

to maximize throughput and minimize latency. Our goal is to broaden the scope of applications 

related to the use of dynamic runtime schedulers to inference in DNNs, as well as to explore a 

context where a large number of independent tasks need to be processed, and where the use of 

heterogeneous resources allows to improve performance, both in terms of throughput and 

latency. 

 

In the context of training, due to the increase of the size of the models, relying on a single 

resource (either a multicore CPU, a GPU, or an FPGA) is not possible without implementing 

specific memory saving techniques. This is especially true for the newer transformer-based 

models. These memory-saving techniques either induce (i) more computations (re-

materialization or checkpointing), or (ii) more data exchanges between the (limited) memory 

of the accelerators and the memory attached to the CPU (offloading), or (iii) a distribution of 

the model over several resources which in turn induces extra communications. We distinguish 

between approaches that reduce the memory associated with the storage of intermediate data 

(activations) and those that reduce the memory associated with the storage of network weights 

(and optimizer states). For each approach, we detail the possible approaches and their current 

limitations in terms of the shape of the networks, and we analyze their overhead in terms of 

data transfer.  

 

In the context of inference, we consider the possible use of dynamic runtimes (StarPU and 

OmpSs), the possibility of relying on a task-based model to process a stream of inferences. A 

case of special interest is the one where the complete model is too large to be stored in the 

memory of a single resource, but small enough to be replicated on a TEXTAROSSA node. The 

parallelism can also be used to decrease latency (relying to internal parallelism inside models) 

and it can be combined with compression and mixed precision techniques. 
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1 Introduction 

WP4 focuses on the middle layer of the TEXTAROSSA project. It is tied to hardware and 

software, making the bridge between hardware features and software interfaces. Consequently, 

most WP4 activities are highly coupled with other WPs. The main activities of WP4 include 

the improvement of the streaming and task-based programming models to computing nodes 

with FPGAs. In this report we concentrate on the use of runtime systems in the context of the 

training of Deep Neural Networks (DNNs). The current document surveys the literature and 

summarizes state of the art memory saving techniques. It also explores the possible use of task-

based systems to dynamically handle the communications and the allocation of inference and 

training tasks in the context of a single heterogeneous node. 

 

Among the techniques covered in this paper to minimize memory consumption, we will 

consider re-materialization, offloading and model parallelism. 

  

Re-materialization and offloading are techniques used to limit the memory occupied by 

activations. The re-materialization consists in deleting during the forward phase some of the 

computed activations, and then recomputing them (during the backward phase). Offloading 

consists in transferring some activations from the accelerator's memory (generally limited in 

size) to the memory of the GPP and in prefetching them when they are needed during the 

backward phase. 

  

Model parallelism is a technique used to limit memory occupied by the model weights and by 

distributing them over several accelerators. In this case, each input data is processed on several 

computation resources and activations are transferred from one resource to another. 

  

In general, the techniques considered in this deliverable allow to save memory, at the cost of 

redundant computations (in the case of re-materialization) or data exchanges (offloading and 

model parallelism). 

 

2 Re-materialization based Strategies in Automatic 

Differentiation 

Adjoints computation is a numerical method for computing the gradient of a function, which 

may be complex. This method is at the core of many scientific applications, from climate and 

ocean modeling [2] to oil refinery [14]. In addition, the structure of the underlying dependence 

graph is also at the basis of the backpropagation step of machine learning [35], and thus the 

models considered in this report are based on it.  

Storage has been one of the key issues with the computation of adjoints: it is required to keep 

all the intermediate data to compute the final gradient, but it is possible to recompute them. 
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Therefore, the computation of adjoints has always been a trade-off between re-computations 

and memory requirements [23].  

When one type of limited memory is available, authors of [26] showed the optimality of a 

binomial approach that was later implemented under the name Revolve [24]. In the latter paper, 

closed form formulas providing the exact position of saved data have even been proposed for 

homogeneous chains (each operation has the same duration and memory cost). When 

computation times are heterogeneous, but data sizes are identical, an optimal checkpointing 

strategy can be obtained with Dynamic Programming [25]. The problem of adjoint 

computations has received an increasing attention in the recent years with the introduction of 

a second level of storage of infinite capacity but with access (write and read) costs [60, 5, 4, 

58, 52]. Indeed, with the increase in the problem size, the memory was not sufficient anymore 

to solve the problems in a reasonable time. Hence solutions have started considering the usage 

of disks to store some of the intermediary data. Several works have considered this problem. 

In [60], a first heuristic was presented that applies the schedule provided by Revolve, where 

the checkpoints that stay idle for the longest period are stored on disk (level 2 storage). Some 

implementations (for example [52]) are based on two-levels checkpointing strategy: the first 

pass (forward mode) of the adjoint graph checkpoints periodically to disk (level 2), then the 

second pass (reverse mode) reads those disk checkpoints one after the other and uses Revolve 

with only memory (level 1) checkpoints. The main parameter (period used for the forward 

checkpointing) can be chosen by the user. The algorithm designed in [5] can solve this problem 

optimally. In a subsequent work, authors of [4] showed that the optimal solution is weakly 

periodic, meaning that the number of forward computations performed between two 

consecutive checkpoints into the second level of storage is always the same except for a 

bounded number of them. More recently, they extended this result for a hierarchical memory 

architecture with an arbitrary number of storage levels [29].  

In [7], the classical results of [24] are extended to meet the requirements of more complex 

adjoint computations emerging in DNN graphs of Siamese Neural Networks [13, 18, 45] and 

Cross-Modal-Embeddings [44, 47]. They represent a class of graphs that has a shape of 

multiple chains joint together at the end by the last operation, which in case of Deep Learning 

is a loss function. This work shows that dynamic programming is still applicable for the new 

type of graph, but its complexity grows exponentially with several chains.  

3 Re-materialization for DNNs 

When a DNN represents a single chain of layers, the computation of the gradients in the training 

phase is similar to Automatic Differentiation (AD). The checkpointing strategies used in AD 

to reduce memory consumption are known in AI as Re-materialization or gradient 

checkpointing strategies. Re-materialization is the method that relies on re-computations to 

reduce the memory footprint of a given fixed model or architecture, while obtaining the exact 

same output of the training phase.  

For example, the authors of [51] show, for a popular neural network like DenseNet, that using 

shared memory storages and recomputing concatenation and batch normalization operations 

during backpropagation help to go from quadratic memory cost to linear memory cost for 

storing feature maps. Along the same idea, re-implementations of some commonly used layers 

like batch normalization have been proposed [57]. In the latter case, memory usage is reduced 
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by rewriting the gradient calculation for this layer so that it does not depend on certain 

activation values (so that it is no longer necessary to store them). A generic divide-and-conquer 

approach based on compiler techniques can perform automatic differentiation for arbitrary 

programs [59].  

The use of re-materialization strategies inspired by AD has recently been advocated for DNNs 

in several papers [27, 16, 35, 36, 21, 33]. A direct adaptation of the results on homogeneous 

chains was proposed for the case of Recurrent Neural Networks (RNNs) in [27] but cannot be 

extended to other DNNs. Apart from this, for practical usage, an implementation of re-

materialization exists in PyTorch [1], based on a simple periodic and single-pass re-

materialization strategy that exploits the ideas presented in [16]. In this strategy, the chain is 

divided in equal-length segments, and only the input of each segment is materialized during 

the forward phase. This strategy provides non-optimal solutions in terms of throughput and 

memory usage, because it does not benefit from the fact that more memory is available when 

computing the backward phase of the first segment (since values materialized for later 

segments have already been used). This implementation was nevertheless used to process 

significantly larger models [22]. 

Some research attempted to adapt re-materialization strategies to Arbitrary Computation 

Graphs (ACG). On the one hand, a polynomial algorithm is provided in [21] that finds the re-

materialization strategy for the forward propagation that minimizes memory used to execute 

ACG, under the assumption that activation deletion is not allowed during the backward phase 

(activations can be recomputed only once), which is a very strong and restrictive assumption 

in practice, especially in the case of deep networks. On the other hand, in the AD literature, the 

process is fully recursive, allowing the full memory usage throughout the entire training since 

the released memory can be used later. In what follows, we refer to such solutions as single-

pass re-materialization strategies.  

A similar problem is considered in [36], where activation deletion during backward 

propagation is possible, though similarly the framework is restrictive on several points that are 

crucial in terms of practical performance and applicability. First, the study is limited to unit 

costs for data. More importantly, the approach described in [36] is based on the computation 

of a tree-width decomposition of the graph and only derives the minimum computational cost 

associated with the minimum memory footprint. The minimum memory footprint then depends 

on the quality of the decomposition, which is an NP-complete problem for which (large) 

constant approximation algorithms exist. In practice, the problem to be solved is rather to 

minimize the computational cost while meeting a given memory constraint. Indeed, limiting 

the search to the smallest possible memory size obviously leads to a significant additional 

computational cost.  

Another closely related approach is Checkmate [33] in which an Integer Linear Program is 

proposed to solve the re-materialization problem. This program can handle arbitrary graphs by 

assuming a fixed ordering of the execution and can provide a solution of minimum runtime 

given a memory limit. However, solving this ILP is very computationally expensive and does 

not converge in a reasonable time as soon as the network exceeds a few dozen layers. Its 

rational approximation, however, can be easily found, but may push memory usage above 

memory limits. 

At last, other approaches finely control the tradeoff between memory and computation. In [37], 

the authors also consider a general ACG framework. Their work can be seen as a generalization 
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of [16] algorithm to ACGs. More specifically, their goal is to decompose the ACG into groups 

of nodes and during the forward phase, only the boundaries between groups are materialized. 

Then, during the backward phase, to perform the gradient computations of a group, it is 

required to recompute all the activations of the group using its input saved boundary, and then 

the backward phase is performed without additional recomputing operations. On the one hand, 

the advantage of this approach is that it is tractable for ACGs using dynamic programming. On 

the other hand, as in [16] and [21], the search is restricted to single-pass re-materialization 

strategies.  

In [34], the authors proposed Dynamic Tensor Re-materialization that dynamically choose 

which activations should be discarded and then recomputed at runtime. Still, it is based on a 

heuristic approach that encourages to discard tensors that have large memory and staleness 

costs and that can be easily recomputed while allowing cheap re-computations of other tensors 

as well. This heuristic showed good results, though optimal static re-materialization methods 

remain more reliable, considering that execution times and memory costs of layers normally 

do not change much over iterations.  

Rotor (https://gitlab.inria.fr/hiepacs/rotor) is the first attempt to precisely model heterogeneity 

and more importantly the ability, offered in DNN frameworks, to combine two types of 

activation savings, by either storing only the layer inputs (as done in AD literature), or by 

recording the complete history of operations that produced the outputs (as available in autograd 

tools). For this model, a static algorithm is proposed with an optimality proof, based on 

dynamic programming. This algorithm manages to find the best schedule in polynomial time.  

4 Offloading 

Offloading is a potentially complementary approach to re-materialization that consists in 

offloading some of the forward activations from the memory of the GPU to the memory of the 

CPU, which is expected to be much larger [55, 6]. In [55], the authors propose a simple and 

effective mechanism of Memory Virtualization, that nevertheless introduces unnecessary idle 

time by enforcing some synchronization between data transfers and computations of later 

forward activations. This approach has been later improved in [6] by the design of techniques 

to deal with memory fragmentation. Nevertheless, in both papers, the algorithmic strategies to 

decide which activations to offload into the main memory are relatively straightforward. 

Proposed strategies consist in trying to offload either all activations or only those that 

correspond to convolutional layers. Indeed, convolutional layers are known to induce a large 

computational time with respect to their input size, which make them good candidates to 

overlap offloading and processing.  

Several frameworks offer improvements over this first attempt. In order to reduce the overhead 

induced by communications, some authors [56] recommend adding compression to decrease 

the communication time, while others [38] design a memory-centric architecture to help with 

data transfers. Memory Virtualization was further considered in [46, 39, 30, 65]. In [46, 39, 

30], the authors implement memory virtualization by manipulating the computational graphs 

and inserting special operations called swap in and swap out that send the activations in and 

out of the device memory. Such an approach can be applied to any ACG that represent neural 

network training graphs. The authors of [39] improve the candidate selection and prefetching 

mechanisms by introducing thresholds to filter out different possibilities. Moreover, some 

https://gitlab.inria.fr/hiepacs/rotor
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works try to combine Offloading with other memory optimizing techniques. Memory 

Swapping and Memory Pooling are implemented together in [65], where candidates for 

swapping are found by assigning priority scores to all activations. 

As a complement to these practical approaches, in [8] a theoretical analysis of the underlying 

optimization problem is proposed: which data to offload and how to schedule transfers. An 

extension to perform weight offloading can be found in [12]. 

5 Combination of Re-materialization and Offloading 

The works, combining both approaches, are relatively recent, though the idea comes naturally 

from the fact that they serve the same purpose, while they make use of different resources. The 

speed-centric re-materialization from [16] enhanced with memory-centric re-materialization 

(discards activations of every segment all the time) was combined with the simple offloading 

approach from [55] in [62]. Then, the authors in [54] also use the re-materialization scheme of 

[16] with a possibility of further offloading saved checkpoints to the CPU if re-materialization 

only is not enough to perform training under memory constraint.  

Another approach that combines re-computations and data offloading from GPU memory to 

CPU memory was proposed in [53]. This approach is especially useful in the case where the 

size of the activations is small compared to the size of the model, which is the case in most 

recent NLP models. In this case, the network weights are offloaded to the CPU memory [12], 

that serves as a parameter-server host.  

In [9], the goal is to find simultaneously optimal Re-materialization and Offloading strategies 

that could for the makespan in the case of DNNs represented by heterogeneous complex chains. 

In this context, it is assumed that the model weights stay in GPU and the only activations can 

be moved to the CPU memory.  

6 Pipelined Model Parallelism 

When using Model Parallelism [17], the different layers of a network are spread over different 

resources, so that the storage of DNN weights and activations is shared between the resources. 

In Model Parallelism, only activations should be communicated, and transfers take place just 

between layers assigned to different processors, which adds up to a low total amount of data 

movements with respect to other types of parallelisms. Despite that, the scalability of the 

method is poor because of chain connections in DNN computational graph that force a 

sequential execution of all the tasks.  

The execution within Model Parallelism can be accelerated if several mini batches are 

pipelined, and thus several training iterations are active at the same time, helping to keep 

computing resources busy most part of the time. The practical use of Pipelined Model 

Parallelism is nevertheless a delicate issue, and the analysis of the induced memory needs is 

complex. In [31], it is proposed to split the training batch into several mini batches, which are 

then pipelined through the layers of the network (and the different computing resources). Once 

the forward and backward phases have been computed on all these mini batches, the weights 

are then updated. This approach is fairly simple to implement but has the disadvantage of 

leaving the computational resources largely idle (e.g., after the first resource has executed its 
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forward operations on the pipelined mini batches, it has to wait until the corresponding 

backward operations become available to complete the iteration). The Pipedream approach 

proposed in [48] improves this training process, by only enforcing that the forward and 

backward tasks use the same model weights for a given mini batch. Such a weakened constraint 

on the training process allows Pipedream to achieve a much better utilization of the processing 

resources, but the asynchronous updates affect badly the overall convergence of the training.  

Despite its advantages, Pipedream has several issues: (i) degraded convergence because of 

weight staleness that is non-uniform with respect to different stages, (ii) poor memory 

management because of redundant weight and activation copies produced by non-optimal 

schedule, (iii) inferior load balancing being restricted to contiguous allocations, (iv) not 

suitable for heterogeneous GPUs.  

The poor convergence of asynchronous methods has been addressed in several papers. It is 

caused by weight staleness when the delayed gradients are used to perform an update step. 

Some works [28, 15] propose to predict weights during forward and backward propagation 

using the momentum of the gradient. Performing the updates less regularly [28, 49] (in contrast 

in Pipedream they are done after each backward) helps limiting weight staleness as well. 

Alternatively, PipeMare [63] proposes to reschedule learning rate depending on the pipeline 

stage and adapt the model weights for backward so that they are defined by the most recent 

version of weights and the accumulated weighted difference between the model weights from 

successive iterations and the stage number. The last method achieves the same convergence 

rate as Gpipe, while having the same resource utilization as Pipedream without storing multiple 

copies of the weights.  

Another important issue related to Pipedream is the need to keep many copies of the model 

parameters, which can potentially cancel the benefit of using Model Parallelism. To address 

this issue, the same methods that help with weight staleness can be used: in [49] the updates 

are done so that it is possible to keep only two versions of the weights; in [15] two versions of 

the weights are needed too, but also one gradient and momentum should be stored. The 

inefficient memory utilization by Pipedream has been also observed in [32]. Unlike other 

works, they offer another version of pipelining different from Gpipe and Pipedream. Its 

principle of work can be described in the following way: once all forward steps on one mini-

batch are processed by all GPUs and the first backward of the last stage is done, the same GPU 

can proceed to the first stage of the next mini-batch by performing its forward and then the 

remaining forwards of the new mini-batch are executed on the other processors in the reverse 

order just after the backwards of the preceding mini-batch. This allows GPUs to use memory 

immediately after it is released during backward steps. In general, it uses memory more 

efficiently, though memory itself is not considered as a constraint.  

Contiguous allocations can be also a bottleneck that hinders a throughput. The authors of [19] 

offer a method suitable for fine-tuning large models. They obtain non-contiguous allocations, 

by coarsely building stages that have a high ratio of computation time with respect to 

communication time. These stages can be further allocated to any device, allowing more than 

one stage per processor. To find non-contiguous allocation for ACGs, the authors of [61] 

propose two Integer Linear Programs (ILPs) (one minimizes latency, the other one maximizes 

throughput for a steady state situation) and a dynamic program. The obtained solutions are 

optimal for inference and can be adapted for training, though those methods do not consider 

the pipelining nature of model parallelism and scheduling, which have a significant influence 

on the peak memory usage.  
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Some researchers have worked on extending the results of Pipedream to heterogeneous 

computing clusters and heterogeneous communication links [64, 50, 43]. Finding the optimal 

load balance and schedule for heterogeneous settings is a difficult task, thus all of them rely on 

some simplifications and heuristics. To solve issues in the case of high communication costs 

and heterogeneous networking, the authors of [64] proposed an updated dynamic programming 

strategy that assumes no overlap between computations and communications. The HetPipe 

proposal [50] considers a different way of combining Data and Model Parallelism, in which 

nodes may contain different GPUs. The idea of HetPipe is to heuristically split the GPUs into 

virtual workers that may contain heterogeneous GPUs and use Data Parallelism between virtual 

workers. Model Parallelism is used inside the virtual workers, based on a simplified ILP that 

assumes no overlap between computation and communication. Pipelined Model Parallelism in 

[43] is done with a help of Deep Reinforcement Learning.  

Other extensions of Pipedream explore different ways of combining Model Parallelism with 

other types of parallelism [50, 20, 40, 41]. In the DAPPLE framework [20], Model Parallelism 

is implemented alongside Data Parallelism. There, the focus is on the case of several nodes, 

each equipped with several GPUs. DAPPLE extends Pipedream by allowing more possibilities 

to map a stage of the DNN to GPUs located in several nodes. The assignment problem is solved 

without taking memory constraints into account. Furthermore, [40] does Hybrid Parallelism, 

using Tensor Slicing, Data and Model Parallelism, finding job allocation with dynamic 

programming. However, this method does not consider memory constraints.  

Transformers offer a new dimension for pipelined parallelism. In [41], the pipelining is not 

performed through micro-batching. Instead, they pipeline the tokens in the input sequence. 

Such approach manages to significantly accelerate the training of GPT-3. Their solution is 

based on dynamic programming without memory considerations.  

The work in [10] carefully investigates the limitations of Pipedream. It carefully estimates the 

effect of the chosen schedule on the peak memory usage of the pipeline. It also evaluates to 

which extent non-contiguous allocations can be advantageous with respect to contiguous ones. 

Therefore, in [10] an Integer Linear Program is described that finds simultaneously the optimal 

load balance based on non-contiguous allocations and the optimal schedule, considering all 

sources of memory consumption. The MadPipe heuristic, proposed in [11], is based on 

dynamic programming that also combines non-contiguous allocations with scheduling 

considerations to find the best load balancing. These methods can be combined with [28, 15, 

49, 63] to improve the training convergence. 

7 Use of Task-Based Systems for DNN Inference. 

In this Section, we explore the possibility of using StarPU [3] 

(https://starpu.gitlabpages.inria.fr) to increase the throughput obtained in inference tasks. 

Indeed, the new networks used for the most recent applications, such as GPT-like networks, 

induce increasingly high resource costs. These resource costs encompass both the 

computational workload and the storage requirements. Such networks have been scaled to such 

many parameters that storing them uses a significant amount of memory, and that even 

performing the inference operation requires a large number of computations. In this context, it 

is essential to perform the inference in a parallel way, to increase the throughput of the 

operation, defined as the number of inputs processed per second. 

https://starpu.gitlabpages.inria.fr/
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This task raises challenges both at the system level and at the algorithmic level. At the system 

level, it is necessary to design a software architecture that allows a network (typically trained 

within PyTorch) to be exported as a task graph composed of StarPU tasks. To accomplish this 

conversion, we rely on the ONNX library [42] to retrieve tasks and dependencies, and on the 

ONNX Runtime library https://onnx.ai to provide efficient implementations of all 

computational kernels. The ONNX format provides a unified interface for all possible task 

types in a Deep Neural Network, and the ONNX Runtime provides implementations for a large 

set of computing devices. This first part of the work was done as part of Jean-François David’s 

PhD thesis and is now mostly functional.  

The second part is more algorithmic in nature and consists in designing optimization algorithms 

to solve the placement problem. To define the placement problem, we assume that we are given 

(i) a set of tasks with their internal dependencies, their associated computational costs and the 

volumes of input and output data and (ii) a set of potentially heterogeneous computational 

resources, characterized by their memory sizes and their computational speeds for the different 

tasks. The set of tasks represents all the layers of the Deep Neural Network, and the goal is to 

be able to process as many inference operations per second as possible. This is done by 

assigning layers to the computational resources, which incurs a storage requirement for all the 

parameters of that layer. In addition, data dependencies may incur communication delays to 

transfer the data from one resource to another. There is thus a tradeoff, where assigning layers 

to more computational resources allow the system to perform more operations in parallel, but 

is limited by the available memory on the resources and by the communication capabilities. 

Additionally, the assignment needs to consider the fact that some computational resources are 

more efficient for some computational tasks than others. The second part of Jean-François 

David’s PhD thesis will be to design and analyze new and efficient assignment algorithms, 

which would lead to an optimized resource usage in a Textarossa node.  

8 Positioning with respect to TEXTAROSSA KPIs. 

Our objective in TEXTAROSSA is to develop data placement strategies and computational algo-

rithms that make the best use of the heterogeneity of the computational resources developed in 

the project. SOTA solutions for inference consist in performing each complete inference on a 

single GPU, which induces several limitations. First, as models become larger and larger (es-

pecially transformer-based models), being constrained to store all network weights on a single 

accelerator is a major limitation. Second, from an energy point of view, using the most energy-

efficient computation resource for each layer can lead to significant gains. In case of load im-

balance, the possibility of using mechanisms like DVFS to improve energy consumption by 

slowing down some computations without affecting latency and throughput is also an oppor-

tunity. Finally, the use of multiple resources to perform parallel inference can also help mini-

mize latency by exploiting the possibility of performing several network branches in parallel. 

We aim to contribute to the project objectives in terms of energy efficiency, sustained applica-

tion performance and the use of Integrated Development Platforms. 

 

This work is also part of several internal collaborations within TEXTAROSSA. First of all, in 

an HPC framework in a real environment, it is difficult to predict exactly the performance of 

the different resources and data transfers, and it appears essential to rely on a dynamic runtime 

system like StarPU or OmpSs to schedule and distribute tasks. As demonstrated in the case of 

linear algebra and also explored in WP6 (within MathLib Inria), it is nevertheless necessary to 

perform static data placement in addition to dynamic scheduling. This is especially true in the 
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multiple node case, but also as soon as there are strong memory constraints and constraints on 

the number of communications. If the system cannot reach the constraints in terms of through-

put/latency, then it is also interesting to rely on techniques to reduce the precision of the com-

putations. This implies using the possibility to generate kernels with different types of precision 

of the computations developed within the TEXTAROSSA project). More generally, the use of 

frameworks such as OmpSs@FPGA allows the generation of efficient kernels for FPGAs. Fi-

nally, the possibility of compressing data to reduce the cost of data exchanges and improve 

latency and throughput is also an interesting perspective. In the framework of TEXTAROSSA, 

we will first explore the use of dynamic runtimes and the trade-offs between dynamic and static 

placement on platforms consisting of CPUs and GPUs, in particular the IDV-A. 

9 Conclusion 

In the context of training, this survey shows that multiple strategies can be envisioned to save 

memory, at the cost of re-computations, data transfers at the node level, or the use of parallel 

resources. From the point of view of parallelism, multiple strategies can also be used (data 

parallelism, model parallelism, kernel parallelism), and they also have an influence on the 

memory requirements and on the induced communications. It is therefore necessary to know 

how to solve the allocation problem, for a given type of neural network and a given description 

of the computational node (computation speed of each resource on each task, speed of the 

different communication resources, memory sizes). This problem is naturally very complex 

and is likely to lead to very rigid scheduling solutions, difficult to implement in practice and 

very sensitive to the slightest modeling errors of the platform. However, we know that the 

interactions between communication threads, as well as thermal interactions, make accurate 

predictions extremely difficult. In TEXTAROSSA, our goal is to extract from the solution of 

this optimization problem a set of task and data placement directives, and then let task-based 

runtimes such as StarPU or OmpSs dynamically schedule computations and communications 

to take full advantage of the heterogeneous computational capabilities of TEXTAROSSA's 

resources and communications capabilities of the nodes. This will be covered during the second 

phase of Task 4.2 and Task 4.6. 
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