
This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No

956831

Towards EXtreme scaleTechnologies and Accelerators for euROhpc hw/Sw

Supercomputing Applications for exascale

WP4 Tool chain for heterogeneous multi-node HPC

platform

D4.2 Efficient Memory Management strategies for

DNNs at node level

Revised version

http://textarossa.eu

This project has received funding from the European Union’s Horizon 2020

research and innovation programme, EuroHPC JU, grant agreement No

956831

TEXTAROSSA

Towards EXtreme scale Technologies and Accelerators for euROhpc

hw/Sw Supercomputing Applications for exascale

Grant Agreement No.: 956831

Deliverable: D4.2 Efficient Memory Management strategies for DNNs at node level

Project Start Date: 01/04/2021 Duration: 36 months

Coordinator: AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO

SVILUPPO ECONOMICO SOSTENIBILE - ENEA, Italy.

Deliverable No D4.2 (revised)

WP No: WP4

WP Leader: INRIA

Due date: M18 (October 31, 2022)

Revision date: M27 (revised)

Dissemination

Level:

PU Public X

PP
Restricted to other programme participants (including the Commission

Services)

RE
Restricted to a group specified by the consortium (including the

Commission Services)

CO
Confidential, only for members of the consortium (including the

Commission Services)

3

DOCUMENT SUMMARY INFORMATION

Project title:
Towards EXtreme scale Technologies and Accelerators for

euROhpc hw/Sw Supercomputing Applications for exascale

Short project name: TEXTAROSSA

Project No: 956831

Call Identifier: H2020-JTI-EuroHPC-2019-1

Unit: EuroHPC

Type of Action: EuroHPC - Research and Innovation Action (RIA)

Start date of the
project:

01/04/2021

Duration of the
project:

36 months

Project website: textarossa.eu

WP4 Tool chain for heterogeneous multi-node HPC platform

Deliverable number: D4.2

Due date: M18

Actual submission date: M27 (revised)

Editor: Bérenger Bramas

Authors: Olivier Beaumont, Lionel Eyraud-Dubois, Samuel Thibault

Work package: 4

Dissemination Level: Public

No. pages: 20

Authorized (date): 20/05/2023

Responsible person: Bérenger Bramas

Status: Plan Draft Working Final [Submitted] Approved

Revision history:

Version Date Author Comment

0.1 2022-10-18 Olivier Beaumont Draft structure + V0

0.2 2022-19-19 Lionel Eyraud-Dubois Details Section 7

0.3 2022-20-10 Samuel Thibault Proofreading

0.3 2022-20-10 Olivier Beaumont Proofreading

1.1 2023-12-04 Olivier Beaumont Revised version

Quality Control:

Checking process Who Date

Checked by internal reviewer

Checked by Task Leader - -

Checked by WP Leader Bérenger Bramas 2023-04-28

Checked by Project Coordinator Massimo Celino 2023-05-20

4

COPYRIGHT

Copyright by the TEXTAROSSA consortium, 2021-2024

This document contains material, which is the copyright of TEXTAROSSA consortium

members and the European Commission, and may not be reproduced or copied without

permission, except as mandated by the European Commission Grant Agreement No. 956831

for reviewing and dissemination purposes.

ACKNOWLEDGEMENTS

This project has received funding from the European High-Performance Computing Joint

Undertaking (JU) under grant agreement no 956831. The JU receives support from the

European Union’s Horizon 2020 research and innovation programme and Italy, Germany,

France, Spain, Poland.

Please see http://textarossa.eu for more information on the TEXTAROSSA project.

The partners in the project are AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE,

L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE (ENEA), FRAUNHOFER

GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

(FHG), CONSORZIO INTERUNIVERSITARIO NAZIONALE PER L'INFORMATICA

(CINI), INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET

AUTOMATIQUE (INRIA), BULL SAS (BULL), E4 COMPUTER ENGINEERING SPA

(E4), BARCELONA SUPERCOMPUTING CENTER-CENTRO NACIONAL DE

SUPERCOMPUTACION (BSC), INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK (PSNC), ISTITUTO NAZIONALE DI FISICA NUCLEARE (INFN),

CONSIGLIO NAZIONALE DELLE RICERCHE (CNR), IN QUATTRO SRL (in4). Linked

third parties of CINI are POLITECNICO DI MILANO (CINI-POLIMI), Università di Torino

(CINI-UNITO) and Università di Pisa (CINI-UNIPI); linked third party of INRIA is Université

de Bordeaux; in-kind third party of ENEA is Consorzio CINECA (CINECA); in-kind third

party of BSC is Universitat Politècnica de Catalunya (UPC).

The content of this document is the result of extensive discussions within the TEXTAROSSA

© Consortium as a whole.

DISCLAIMER

The content of the publication herein is the sole responsibility of the publishers and it does not

necessarily represent the views expressed by the European Commission or its services.

The information contained in this document is provided by the copyright holders "as is" and

any express or implied warranties, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose are disclaimed. In no event shall the

members of the TEXTAROSSA collaboration, including the copyright holders, or the

European Commission be liable for any direct, indirect, incidental, special, exemplary, or

consequential damages (including, but not limited to, procurement of substitute goods or

services; loss of use, data, or profits; or business interruption) however caused and on any

theory of liability, whether in contract, strict liability, or tort (including negligence or

otherwise) arising in any way out of the use of the information contained in this document,

even if advised of the possibility of such damage.

http://textarossa.eu/

5

Table of contents

Executive Summary ... 6

1 Introduction .. 7

2 Re-materialization based Strategies in Automatic Differentiation 7

3 Re-materialization for DNNs .. 8

4 Offloading ... 10

5 Combination of Re-materialization and Offloading ... 11

6 Pipelined Model Parallelism ... 11

7 Use of Task-Based Systems for DNN Inference. ... 13

9 Conclusion .. 15

10 References ... 15

6

Executive Summary

This deliverable provides a survey of the literature on the optimization of memory management

in the context of training on deep neural networks and the use of parallelism for DNN inference

to maximize throughput and minimize latency. Our goal is to broaden the scope of applications

related to the use of dynamic runtime schedulers to inference in DNNs, as well as to explore a

context where a large number of independent tasks need to be processed, and where the use of

heterogeneous resources allows to improve performance, both in terms of throughput and

latency.

In the context of training, due to the increase of the size of the models, relying on a single

resource (either a multicore CPU, a GPU, or an FPGA) is not possible without implementing

specific memory saving techniques. This is especially true for the newer transformer-based

models. These memory-saving techniques either induce (i) more computations (re-

materialization or checkpointing), or (ii) more data exchanges between the (limited) memory

of the accelerators and the memory attached to the CPU (offloading), or (iii) a distribution of

the model over several resources which in turn induces extra communications. We distinguish

between approaches that reduce the memory associated with the storage of intermediate data

(activations) and those that reduce the memory associated with the storage of network weights

(and optimizer states). For each approach, we detail the possible approaches and their current

limitations in terms of the shape of the networks, and we analyze their overhead in terms of

data transfer.

In the context of inference, we consider the possible use of dynamic runtimes (StarPU and

OmpSs), the possibility of relying on a task-based model to process a stream of inferences. A

case of special interest is the one where the complete model is too large to be stored in the

memory of a single resource, but small enough to be replicated on a TEXTAROSSA node. The

parallelism can also be used to decrease latency (relying to internal parallelism inside models)

and it can be combined with compression and mixed precision techniques.

7

1 Introduction

WP4 focuses on the middle layer of the TEXTAROSSA project. It is tied to hardware and

software, making the bridge between hardware features and software interfaces. Consequently,

most WP4 activities are highly coupled with other WPs. The main activities of WP4 include

the improvement of the streaming and task-based programming models to computing nodes

with FPGAs. In this report we concentrate on the use of runtime systems in the context of the

training of Deep Neural Networks (DNNs). The current document surveys the literature and

summarizes state of the art memory saving techniques. It also explores the possible use of task-

based systems to dynamically handle the communications and the allocation of inference and

training tasks in the context of a single heterogeneous node.

Among the techniques covered in this paper to minimize memory consumption, we will

consider re-materialization, offloading and model parallelism.

Re-materialization and offloading are techniques used to limit the memory occupied by

activations. The re-materialization consists in deleting during the forward phase some of the

computed activations, and then recomputing them (during the backward phase). Offloading

consists in transferring some activations from the accelerator's memory (generally limited in

size) to the memory of the GPP and in prefetching them when they are needed during the

backward phase.

Model parallelism is a technique used to limit memory occupied by the model weights and by

distributing them over several accelerators. In this case, each input data is processed on several

computation resources and activations are transferred from one resource to another.

In general, the techniques considered in this deliverable allow to save memory, at the cost of

redundant computations (in the case of re-materialization) or data exchanges (offloading and

model parallelism).

2 Re-materialization based Strategies in Automatic

Differentiation

Adjoints computation is a numerical method for computing the gradient of a function, which

may be complex. This method is at the core of many scientific applications, from climate and

ocean modeling [2] to oil refinery [14]. In addition, the structure of the underlying dependence

graph is also at the basis of the backpropagation step of machine learning [35], and thus the

models considered in this report are based on it.

Storage has been one of the key issues with the computation of adjoints: it is required to keep

all the intermediate data to compute the final gradient, but it is possible to recompute them.

8

Therefore, the computation of adjoints has always been a trade-off between re-computations

and memory requirements [23].

When one type of limited memory is available, authors of [26] showed the optimality of a

binomial approach that was later implemented under the name Revolve [24]. In the latter paper,

closed form formulas providing the exact position of saved data have even been proposed for

homogeneous chains (each operation has the same duration and memory cost). When

computation times are heterogeneous, but data sizes are identical, an optimal checkpointing

strategy can be obtained with Dynamic Programming [25]. The problem of adjoint

computations has received an increasing attention in the recent years with the introduction of

a second level of storage of infinite capacity but with access (write and read) costs [60, 5, 4,

58, 52]. Indeed, with the increase in the problem size, the memory was not sufficient anymore

to solve the problems in a reasonable time. Hence solutions have started considering the usage

of disks to store some of the intermediary data. Several works have considered this problem.

In [60], a first heuristic was presented that applies the schedule provided by Revolve, where

the checkpoints that stay idle for the longest period are stored on disk (level 2 storage). Some

implementations (for example [52]) are based on two-levels checkpointing strategy: the first

pass (forward mode) of the adjoint graph checkpoints periodically to disk (level 2), then the

second pass (reverse mode) reads those disk checkpoints one after the other and uses Revolve

with only memory (level 1) checkpoints. The main parameter (period used for the forward

checkpointing) can be chosen by the user. The algorithm designed in [5] can solve this problem

optimally. In a subsequent work, authors of [4] showed that the optimal solution is weakly

periodic, meaning that the number of forward computations performed between two

consecutive checkpoints into the second level of storage is always the same except for a

bounded number of them. More recently, they extended this result for a hierarchical memory

architecture with an arbitrary number of storage levels [29].

In [7], the classical results of [24] are extended to meet the requirements of more complex

adjoint computations emerging in DNN graphs of Siamese Neural Networks [13, 18, 45] and

Cross-Modal-Embeddings [44, 47]. They represent a class of graphs that has a shape of

multiple chains joint together at the end by the last operation, which in case of Deep Learning

is a loss function. This work shows that dynamic programming is still applicable for the new

type of graph, but its complexity grows exponentially with several chains.

3 Re-materialization for DNNs

When a DNN represents a single chain of layers, the computation of the gradients in the training

phase is similar to Automatic Differentiation (AD). The checkpointing strategies used in AD

to reduce memory consumption are known in AI as Re-materialization or gradient

checkpointing strategies. Re-materialization is the method that relies on re-computations to

reduce the memory footprint of a given fixed model or architecture, while obtaining the exact

same output of the training phase.

For example, the authors of [51] show, for a popular neural network like DenseNet, that using

shared memory storages and recomputing concatenation and batch normalization operations

during backpropagation help to go from quadratic memory cost to linear memory cost for

storing feature maps. Along the same idea, re-implementations of some commonly used layers

like batch normalization have been proposed [57]. In the latter case, memory usage is reduced

9

by rewriting the gradient calculation for this layer so that it does not depend on certain

activation values (so that it is no longer necessary to store them). A generic divide-and-conquer

approach based on compiler techniques can perform automatic differentiation for arbitrary

programs [59].

The use of re-materialization strategies inspired by AD has recently been advocated for DNNs

in several papers [27, 16, 35, 36, 21, 33]. A direct adaptation of the results on homogeneous

chains was proposed for the case of Recurrent Neural Networks (RNNs) in [27] but cannot be

extended to other DNNs. Apart from this, for practical usage, an implementation of re-

materialization exists in PyTorch [1], based on a simple periodic and single-pass re-

materialization strategy that exploits the ideas presented in [16]. In this strategy, the chain is

divided in equal-length segments, and only the input of each segment is materialized during

the forward phase. This strategy provides non-optimal solutions in terms of throughput and

memory usage, because it does not benefit from the fact that more memory is available when

computing the backward phase of the first segment (since values materialized for later

segments have already been used). This implementation was nevertheless used to process

significantly larger models [22].

Some research attempted to adapt re-materialization strategies to Arbitrary Computation

Graphs (ACG). On the one hand, a polynomial algorithm is provided in [21] that finds the re-

materialization strategy for the forward propagation that minimizes memory used to execute

ACG, under the assumption that activation deletion is not allowed during the backward phase

(activations can be recomputed only once), which is a very strong and restrictive assumption

in practice, especially in the case of deep networks. On the other hand, in the AD literature, the

process is fully recursive, allowing the full memory usage throughout the entire training since

the released memory can be used later. In what follows, we refer to such solutions as single-

pass re-materialization strategies.

A similar problem is considered in [36], where activation deletion during backward

propagation is possible, though similarly the framework is restrictive on several points that are

crucial in terms of practical performance and applicability. First, the study is limited to unit

costs for data. More importantly, the approach described in [36] is based on the computation

of a tree-width decomposition of the graph and only derives the minimum computational cost

associated with the minimum memory footprint. The minimum memory footprint then depends

on the quality of the decomposition, which is an NP-complete problem for which (large)

constant approximation algorithms exist. In practice, the problem to be solved is rather to

minimize the computational cost while meeting a given memory constraint. Indeed, limiting

the search to the smallest possible memory size obviously leads to a significant additional

computational cost.

Another closely related approach is Checkmate [33] in which an Integer Linear Program is

proposed to solve the re-materialization problem. This program can handle arbitrary graphs by

assuming a fixed ordering of the execution and can provide a solution of minimum runtime

given a memory limit. However, solving this ILP is very computationally expensive and does

not converge in a reasonable time as soon as the network exceeds a few dozen layers. Its

rational approximation, however, can be easily found, but may push memory usage above

memory limits.

At last, other approaches finely control the tradeoff between memory and computation. In [37],

the authors also consider a general ACG framework. Their work can be seen as a generalization

10

of [16] algorithm to ACGs. More specifically, their goal is to decompose the ACG into groups

of nodes and during the forward phase, only the boundaries between groups are materialized.

Then, during the backward phase, to perform the gradient computations of a group, it is

required to recompute all the activations of the group using its input saved boundary, and then

the backward phase is performed without additional recomputing operations. On the one hand,

the advantage of this approach is that it is tractable for ACGs using dynamic programming. On

the other hand, as in [16] and [21], the search is restricted to single-pass re-materialization

strategies.

In [34], the authors proposed Dynamic Tensor Re-materialization that dynamically choose

which activations should be discarded and then recomputed at runtime. Still, it is based on a

heuristic approach that encourages to discard tensors that have large memory and staleness

costs and that can be easily recomputed while allowing cheap re-computations of other tensors

as well. This heuristic showed good results, though optimal static re-materialization methods

remain more reliable, considering that execution times and memory costs of layers normally

do not change much over iterations.

Rotor (https://gitlab.inria.fr/hiepacs/rotor) is the first attempt to precisely model heterogeneity

and more importantly the ability, offered in DNN frameworks, to combine two types of

activation savings, by either storing only the layer inputs (as done in AD literature), or by

recording the complete history of operations that produced the outputs (as available in autograd

tools). For this model, a static algorithm is proposed with an optimality proof, based on

dynamic programming. This algorithm manages to find the best schedule in polynomial time.

4 Offloading

Offloading is a potentially complementary approach to re-materialization that consists in

offloading some of the forward activations from the memory of the GPU to the memory of the

CPU, which is expected to be much larger [55, 6]. In [55], the authors propose a simple and

effective mechanism of Memory Virtualization, that nevertheless introduces unnecessary idle

time by enforcing some synchronization between data transfers and computations of later

forward activations. This approach has been later improved in [6] by the design of techniques

to deal with memory fragmentation. Nevertheless, in both papers, the algorithmic strategies to

decide which activations to offload into the main memory are relatively straightforward.

Proposed strategies consist in trying to offload either all activations or only those that

correspond to convolutional layers. Indeed, convolutional layers are known to induce a large

computational time with respect to their input size, which make them good candidates to

overlap offloading and processing.

Several frameworks offer improvements over this first attempt. In order to reduce the overhead

induced by communications, some authors [56] recommend adding compression to decrease

the communication time, while others [38] design a memory-centric architecture to help with

data transfers. Memory Virtualization was further considered in [46, 39, 30, 65]. In [46, 39,

30], the authors implement memory virtualization by manipulating the computational graphs

and inserting special operations called swap in and swap out that send the activations in and

out of the device memory. Such an approach can be applied to any ACG that represent neural

network training graphs. The authors of [39] improve the candidate selection and prefetching

mechanisms by introducing thresholds to filter out different possibilities. Moreover, some

https://gitlab.inria.fr/hiepacs/rotor

11

works try to combine Offloading with other memory optimizing techniques. Memory

Swapping and Memory Pooling are implemented together in [65], where candidates for

swapping are found by assigning priority scores to all activations.

As a complement to these practical approaches, in [8] a theoretical analysis of the underlying

optimization problem is proposed: which data to offload and how to schedule transfers. An

extension to perform weight offloading can be found in [12].

5 Combination of Re-materialization and Offloading

The works, combining both approaches, are relatively recent, though the idea comes naturally

from the fact that they serve the same purpose, while they make use of different resources. The

speed-centric re-materialization from [16] enhanced with memory-centric re-materialization

(discards activations of every segment all the time) was combined with the simple offloading

approach from [55] in [62]. Then, the authors in [54] also use the re-materialization scheme of

[16] with a possibility of further offloading saved checkpoints to the CPU if re-materialization

only is not enough to perform training under memory constraint.

Another approach that combines re-computations and data offloading from GPU memory to

CPU memory was proposed in [53]. This approach is especially useful in the case where the

size of the activations is small compared to the size of the model, which is the case in most

recent NLP models. In this case, the network weights are offloaded to the CPU memory [12],

that serves as a parameter-server host.

In [9], the goal is to find simultaneously optimal Re-materialization and Offloading strategies

that could for the makespan in the case of DNNs represented by heterogeneous complex chains.

In this context, it is assumed that the model weights stay in GPU and the only activations can

be moved to the CPU memory.

6 Pipelined Model Parallelism

When using Model Parallelism [17], the different layers of a network are spread over different

resources, so that the storage of DNN weights and activations is shared between the resources.

In Model Parallelism, only activations should be communicated, and transfers take place just

between layers assigned to different processors, which adds up to a low total amount of data

movements with respect to other types of parallelisms. Despite that, the scalability of the

method is poor because of chain connections in DNN computational graph that force a

sequential execution of all the tasks.

The execution within Model Parallelism can be accelerated if several mini batches are

pipelined, and thus several training iterations are active at the same time, helping to keep

computing resources busy most part of the time. The practical use of Pipelined Model

Parallelism is nevertheless a delicate issue, and the analysis of the induced memory needs is

complex. In [31], it is proposed to split the training batch into several mini batches, which are

then pipelined through the layers of the network (and the different computing resources). Once

the forward and backward phases have been computed on all these mini batches, the weights

are then updated. This approach is fairly simple to implement but has the disadvantage of

leaving the computational resources largely idle (e.g., after the first resource has executed its

12

forward operations on the pipelined mini batches, it has to wait until the corresponding

backward operations become available to complete the iteration). The Pipedream approach

proposed in [48] improves this training process, by only enforcing that the forward and

backward tasks use the same model weights for a given mini batch. Such a weakened constraint

on the training process allows Pipedream to achieve a much better utilization of the processing

resources, but the asynchronous updates affect badly the overall convergence of the training.

Despite its advantages, Pipedream has several issues: (i) degraded convergence because of

weight staleness that is non-uniform with respect to different stages, (ii) poor memory

management because of redundant weight and activation copies produced by non-optimal

schedule, (iii) inferior load balancing being restricted to contiguous allocations, (iv) not

suitable for heterogeneous GPUs.

The poor convergence of asynchronous methods has been addressed in several papers. It is

caused by weight staleness when the delayed gradients are used to perform an update step.

Some works [28, 15] propose to predict weights during forward and backward propagation

using the momentum of the gradient. Performing the updates less regularly [28, 49] (in contrast

in Pipedream they are done after each backward) helps limiting weight staleness as well.

Alternatively, PipeMare [63] proposes to reschedule learning rate depending on the pipeline

stage and adapt the model weights for backward so that they are defined by the most recent

version of weights and the accumulated weighted difference between the model weights from

successive iterations and the stage number. The last method achieves the same convergence

rate as Gpipe, while having the same resource utilization as Pipedream without storing multiple

copies of the weights.

Another important issue related to Pipedream is the need to keep many copies of the model

parameters, which can potentially cancel the benefit of using Model Parallelism. To address

this issue, the same methods that help with weight staleness can be used: in [49] the updates

are done so that it is possible to keep only two versions of the weights; in [15] two versions of

the weights are needed too, but also one gradient and momentum should be stored. The

inefficient memory utilization by Pipedream has been also observed in [32]. Unlike other

works, they offer another version of pipelining different from Gpipe and Pipedream. Its

principle of work can be described in the following way: once all forward steps on one mini-

batch are processed by all GPUs and the first backward of the last stage is done, the same GPU

can proceed to the first stage of the next mini-batch by performing its forward and then the

remaining forwards of the new mini-batch are executed on the other processors in the reverse

order just after the backwards of the preceding mini-batch. This allows GPUs to use memory

immediately after it is released during backward steps. In general, it uses memory more

efficiently, though memory itself is not considered as a constraint.

Contiguous allocations can be also a bottleneck that hinders a throughput. The authors of [19]

offer a method suitable for fine-tuning large models. They obtain non-contiguous allocations,

by coarsely building stages that have a high ratio of computation time with respect to

communication time. These stages can be further allocated to any device, allowing more than

one stage per processor. To find non-contiguous allocation for ACGs, the authors of [61]

propose two Integer Linear Programs (ILPs) (one minimizes latency, the other one maximizes

throughput for a steady state situation) and a dynamic program. The obtained solutions are

optimal for inference and can be adapted for training, though those methods do not consider

the pipelining nature of model parallelism and scheduling, which have a significant influence

on the peak memory usage.

13

Some researchers have worked on extending the results of Pipedream to heterogeneous

computing clusters and heterogeneous communication links [64, 50, 43]. Finding the optimal

load balance and schedule for heterogeneous settings is a difficult task, thus all of them rely on

some simplifications and heuristics. To solve issues in the case of high communication costs

and heterogeneous networking, the authors of [64] proposed an updated dynamic programming

strategy that assumes no overlap between computations and communications. The HetPipe

proposal [50] considers a different way of combining Data and Model Parallelism, in which

nodes may contain different GPUs. The idea of HetPipe is to heuristically split the GPUs into

virtual workers that may contain heterogeneous GPUs and use Data Parallelism between virtual

workers. Model Parallelism is used inside the virtual workers, based on a simplified ILP that

assumes no overlap between computation and communication. Pipelined Model Parallelism in

[43] is done with a help of Deep Reinforcement Learning.

Other extensions of Pipedream explore different ways of combining Model Parallelism with

other types of parallelism [50, 20, 40, 41]. In the DAPPLE framework [20], Model Parallelism

is implemented alongside Data Parallelism. There, the focus is on the case of several nodes,

each equipped with several GPUs. DAPPLE extends Pipedream by allowing more possibilities

to map a stage of the DNN to GPUs located in several nodes. The assignment problem is solved

without taking memory constraints into account. Furthermore, [40] does Hybrid Parallelism,

using Tensor Slicing, Data and Model Parallelism, finding job allocation with dynamic

programming. However, this method does not consider memory constraints.

Transformers offer a new dimension for pipelined parallelism. In [41], the pipelining is not

performed through micro-batching. Instead, they pipeline the tokens in the input sequence.

Such approach manages to significantly accelerate the training of GPT-3. Their solution is

based on dynamic programming without memory considerations.

The work in [10] carefully investigates the limitations of Pipedream. It carefully estimates the

effect of the chosen schedule on the peak memory usage of the pipeline. It also evaluates to

which extent non-contiguous allocations can be advantageous with respect to contiguous ones.

Therefore, in [10] an Integer Linear Program is described that finds simultaneously the optimal

load balance based on non-contiguous allocations and the optimal schedule, considering all

sources of memory consumption. The MadPipe heuristic, proposed in [11], is based on

dynamic programming that also combines non-contiguous allocations with scheduling

considerations to find the best load balancing. These methods can be combined with [28, 15,

49, 63] to improve the training convergence.

7 Use of Task-Based Systems for DNN Inference.

In this Section, we explore the possibility of using StarPU [3]

(https://starpu.gitlabpages.inria.fr) to increase the throughput obtained in inference tasks.

Indeed, the new networks used for the most recent applications, such as GPT-like networks,

induce increasingly high resource costs. These resource costs encompass both the

computational workload and the storage requirements. Such networks have been scaled to such

many parameters that storing them uses a significant amount of memory, and that even

performing the inference operation requires a large number of computations. In this context, it

is essential to perform the inference in a parallel way, to increase the throughput of the

operation, defined as the number of inputs processed per second.

https://starpu.gitlabpages.inria.fr/

14

This task raises challenges both at the system level and at the algorithmic level. At the system

level, it is necessary to design a software architecture that allows a network (typically trained

within PyTorch) to be exported as a task graph composed of StarPU tasks. To accomplish this

conversion, we rely on the ONNX library [42] to retrieve tasks and dependencies, and on the

ONNX Runtime library https://onnx.ai to provide efficient implementations of all

computational kernels. The ONNX format provides a unified interface for all possible task

types in a Deep Neural Network, and the ONNX Runtime provides implementations for a large

set of computing devices. This first part of the work was done as part of Jean-François David’s

PhD thesis and is now mostly functional.

The second part is more algorithmic in nature and consists in designing optimization algorithms

to solve the placement problem. To define the placement problem, we assume that we are given

(i) a set of tasks with their internal dependencies, their associated computational costs and the

volumes of input and output data and (ii) a set of potentially heterogeneous computational

resources, characterized by their memory sizes and their computational speeds for the different

tasks. The set of tasks represents all the layers of the Deep Neural Network, and the goal is to

be able to process as many inference operations per second as possible. This is done by

assigning layers to the computational resources, which incurs a storage requirement for all the

parameters of that layer. In addition, data dependencies may incur communication delays to

transfer the data from one resource to another. There is thus a tradeoff, where assigning layers

to more computational resources allow the system to perform more operations in parallel, but

is limited by the available memory on the resources and by the communication capabilities.

Additionally, the assignment needs to consider the fact that some computational resources are

more efficient for some computational tasks than others. The second part of Jean-François

David’s PhD thesis will be to design and analyze new and efficient assignment algorithms,

which would lead to an optimized resource usage in a Textarossa node.

8 Positioning with respect to TEXTAROSSA KPIs.

Our objective in TEXTAROSSA is to develop data placement strategies and computational algo-

rithms that make the best use of the heterogeneity of the computational resources developed in

the project. SOTA solutions for inference consist in performing each complete inference on a

single GPU, which induces several limitations. First, as models become larger and larger (es-

pecially transformer-based models), being constrained to store all network weights on a single

accelerator is a major limitation. Second, from an energy point of view, using the most energy-

efficient computation resource for each layer can lead to significant gains. In case of load im-

balance, the possibility of using mechanisms like DVFS to improve energy consumption by

slowing down some computations without affecting latency and throughput is also an oppor-

tunity. Finally, the use of multiple resources to perform parallel inference can also help mini-

mize latency by exploiting the possibility of performing several network branches in parallel.

We aim to contribute to the project objectives in terms of energy efficiency, sustained applica-

tion performance and the use of Integrated Development Platforms.

This work is also part of several internal collaborations within TEXTAROSSA. First of all, in

an HPC framework in a real environment, it is difficult to predict exactly the performance of

the different resources and data transfers, and it appears essential to rely on a dynamic runtime

system like StarPU or OmpSs to schedule and distribute tasks. As demonstrated in the case of

linear algebra and also explored in WP6 (within MathLib Inria), it is nevertheless necessary to

perform static data placement in addition to dynamic scheduling. This is especially true in the

15

multiple node case, but also as soon as there are strong memory constraints and constraints on

the number of communications. If the system cannot reach the constraints in terms of through-

put/latency, then it is also interesting to rely on techniques to reduce the precision of the com-

putations. This implies using the possibility to generate kernels with different types of precision

of the computations developed within the TEXTAROSSA project). More generally, the use of

frameworks such as OmpSs@FPGA allows the generation of efficient kernels for FPGAs. Fi-

nally, the possibility of compressing data to reduce the cost of data exchanges and improve

latency and throughput is also an interesting perspective. In the framework of TEXTAROSSA,

we will first explore the use of dynamic runtimes and the trade-offs between dynamic and static

placement on platforms consisting of CPUs and GPUs, in particular the IDV-A.

9 Conclusion

In the context of training, this survey shows that multiple strategies can be envisioned to save

memory, at the cost of re-computations, data transfers at the node level, or the use of parallel

resources. From the point of view of parallelism, multiple strategies can also be used (data

parallelism, model parallelism, kernel parallelism), and they also have an influence on the

memory requirements and on the induced communications. It is therefore necessary to know

how to solve the allocation problem, for a given type of neural network and a given description

of the computational node (computation speed of each resource on each task, speed of the

different communication resources, memory sizes). This problem is naturally very complex

and is likely to lead to very rigid scheduling solutions, difficult to implement in practice and

very sensitive to the slightest modeling errors of the platform. However, we know that the

interactions between communication threads, as well as thermal interactions, make accurate

predictions extremely difficult. In TEXTAROSSA, our goal is to extract from the solution of

this optimization problem a set of task and data placement directives, and then let task-based

runtimes such as StarPU or OmpSs dynamically schedule computations and communications

to take full advantage of the heterogeneous computational capabilities of TEXTAROSSA's

resources and communications capabilities of the nodes. This will be covered during the second

phase of Task 4.2 and Task 4.6.

10 References

[1] Periodic checkpointing in Pytorch, 2018. https://pytorch.org/docs/stable/checkpoint.html.

[2] A Adcroft, JM Campin, S Dutkiewicz, C Evangelinos, D Ferreira, G Forget, B Fox-Kemper, P

Heimbach, C Hill, E Hill, et al. Mitgcm user manual, 2008.

[3] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. Starpu: a

unified platform for task scheduling on heterogeneous multicore architec- tures. In European

Conference on Parallel Processing, pages 863–874. Springer, 2009.

[4] Guillaume Aupy and Julien Herrmann. Periodicity in optimal hierarchical checkpointing schemes

for adjoint computations. Optimization Methods and Software, 32(3):594– 624, 2017.

[5] Guillaume Aupy, Julien Herrmann, Paul Hovland, and Yves Robert. Optimal multistage algorithm

for adjoint computation. SIAM Journal on Scientific Computing, 38(3):232–255, 2016.

16

[6] Shriram S B, Anshuj Garg, and Purushottam Kulkarni. Dynamic memory management for GPU-

based training of deep neural networks. In IEEE International Parallel and Distributed Processing

Symposium (IPDPS). IEEE Press, 2019.

[7] Olivier Beaumont, Lionel Eyraud-Dubois, Julien Herrmann, Alexis Joly, and Alena Shilova.

Optimal checkpointing for heterogeneous chains: how to train deep neural networks with limited

memory. Research Report RR-9302, Inria Bordeaux Sud-Ouest, under Minor Revision at ACM

Transactions on Mathematical Software, ACM TOMS, 2022.

[8] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Optimal GPU-CPU offloading

strategies for deep neural network training. In European Conference on Parallel Processing, pages

151–166. Springer, 2020.

[9] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Efficient Combination of Re-

materialization and Offloading for Training DNNs. In NeurIPS 2021 - Thirty- fifth Conference on

Neural Information Processing Systems, Virtual-only Conference, France, December 2021.

[10] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Pipelined model parallelism:

Complexity results and memory considerations. In European Conference on Parallel Processing,

pages 183–198. Springer, 2021.

[11] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. MadPipe: Memory Aware

Dynamic Programming Algorithm for Pipelined Model Parallelism. In ScaDL 2022 - Scalable Deep

Learning over Parallel and Distributed Infrastructure - An IPDPS 2022 Workshop, Proceedings of

IPDPS W’22, Lyon / Virtual, France, June 2022.

[12] Olivier Beaumont, Lionel Eyraud-Dubois, Alena Shilova, and Xunyi Zhao. Weight Offloading

Strategies for Training Large DNN Models. working paper or preprint, February 2022.

[13] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard S äckinger, and Roopak Shah. Signature

verification using a” siamese” time delay neural network. In Advances in neural information

processing systems, pages 737–744, 1994.

[14] Phil Brubaker. Engineering Design Optimization using Calculus Level Methods. 2016.

[15] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. Efficient and robust parallel DNN

training through model parallelism on multi-GPU platform. arXiv preprint arXiv:1809.02839, 2018.

[16] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear

memory cost. arXiv preprint arXiv:1604.06174, 2016.

[17] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew

Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances

in neural information processing systems, pages 1223–1231, 2012.

[18] William Du, Michael Fang, and Margaret Shen. Siamese convolutional neural networks for

authorship verification. Proceedings, 2017.

[19] Saar Eliad, Ido Hakimi, Alon De Jagger, Mark Silberstein, and Assaf Schuster. Fine-tuning giant

neural networks on commodity hardware with automatic pipeline model parallelism. In 2021

USENIX Annual Technical Conference (USENIX ATC 21), pages 381–396. USENIX Association,

2021.

17

[20] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping

Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei Lin. Dapple: A pipelined data

parallel approach for training large models, 2020.

[21] Jianwei Feng and Dong Huang. Optimal gradient checkpoint search for arbitrary computation

graphs, 2018.

[22] Priya Goyal. Pytorch memory optimizations via gradient checkpointing, 2018.

[23] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse

automatic differentiation. Optimization Methods and software, 1(1):35–54, 1992.

[24] Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: an implementation of

checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on

Mathematical Software (TOMS), 26(1):19–45, 2000.

[25] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of

algorithmic differentiation, volume 105. Siam, 2008.

[26] José Grimm, Lo ı̈c Pottier, and Nicole Rostaing-Schmidt. Optimal time and minimum space-time

product for reversing a certain class of programs. In Martin Berz, Christian H. Bischof, George F.

Corliss, and Andreas Griewank, editors, Computational Differentiation: Techniques, Applications,

and Tools, pages 95–106. SIAM, Philadelphia, PA, 1996.

[27] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-

efficient backpropagation through time. In Advances in Neural Information Processing Systems,

pages 4125–4133, 2016.

[28] Lei Guan, Wotao Yin, Dongsheng Li, and Xicheng Lu. Xpipe: Efficient pipeline model

parallelism for multi-GPU DNN training. arXiv preprint arXiv:1911.04610, 2019.

[29] Julien Herrmann. H-revolve: a framework for adjoint computation on synchronous hierarchical

platforms. ACM Transactions on Mathematical Software (TOMS), 46(2):1– 25, 2020.

[30] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learning beyond the

GPU memory limit via smart swapping. In Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems, pages 1341–1355,

2020.

[31] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,

HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant

neural networks using pipeline parallelism. In Advances in Neural Information Processing Systems,

pages 103–112, 2019.

[32] Arpan Jain, Ammar Ahmad Awan, Asmaa M Aljuhani, Jahanzeb Maqbool Hashmi, Quentin G

Anthony, Hari Subramoni, Dhableswar K Panda, Raghu Machiraju, and Anil Parwani. Gems: GPU-

enabled memory-aware model-parallelism system for distributed DNN training. In SC20:

International Conference for High Performance Computing, Networking, Storage and Analysis, pages

1–15. IEEE, 2020.

[33] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion

Stoica, and Joseph E. Gonzalez. Checkmate: Breaking the memory wall with optimal tensor re-

materialization, 2019.

18

[34] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch,

Tianqi Chen, and Zachary Tatlock. Dynamic tensor re-materialization. arXiv preprint

arXiv:2006.09616, 2020.

[35] Navjot Kukreja, Jan Hu ̈ckelheim, and Gerard J Gorman. Backpropagation for long sequences:

beyond memory constraints with constant overheads. arXiv preprint arXiv:1806.01117, 2018.

[36] Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. Efficient re-

materialization for deep networks. In Advances in Neural Information Processing Systems, pages

15146–15155, 2019.

[37] Mitsuru Kusumoto, Takuya Inoue, Gentaro Watanabe, Takuya Akiba, and Masanori Koyama. A

graph theoretic framework of re-computation algorithms for memory-efficient backpropagation. arXiv

preprint arXiv:1905.11722, 2019.

[38] Youngeun Kwon and Minsoo Rhu. Beyond the memory wall: A case for memory-centric hpc

system for deep learning. In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 148–161. IEEE, 2018.

[39] Tung D Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. Tflms: Large model

support in tensorflow by graph rewriting. arXiv preprint arXiv:1807.02037, 2018.

[40] Jiange Li, Yuchen Wang, Jinghui Zhang, Jiahui Jin, Fang Dong, and Lei Qian. Pipepar: A

pipelined hybrid parallel approach for accelerating distributed DNN training. In 2021 IEEE 24th

International Conference on Computer Supported Cooperative Work in Design (CSCWD), pages

470–475. IEEE, 2021.

[41] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn Song, and Ion

Stoica. Terapipe: Token-level pipeline parallelism for training large-scale language models. arXiv

preprint arXiv:2102.07988, 2021.

[42] Wei-Fen Lin, Der-Yu Tsai, Luba Tang, Cheng-Tao Hsieh, Cheng-Yi Chou, Ping-Hao Chang, and

Luis Hsu. Onnc: A compilation framework connecting onnx to proprietary deep learning accelerators.

In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS),

pages 214–218. IEEE, 2019.

[43] Yingchi Mao, Zijian Tu, Fagang Xi, Qingyong Wang, and Shufang Xu. Tapp: DNN training for

task allocation through pipeline parallelism based on distributed deep reinforcement learning. Applied

Sciences, 11(11):4785, 2021.

[44] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar, Ingmar

Weber, and Antonio Torralba. Recipe1m: A dataset for learning cross-modal embeddings for cooking

recipes and food images. arXiv preprint arXiv:1810.06553, 2018.

[45] Jonathan Masci, Davide Migliore, Michael M Bronstein, and Ju r̈gen Schmidhuber. Descriptor

learning for omnidirectional image matching. In Registration and Recognition in Images and Videos,

pages 49–62. Springer, 2014.

[46] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. Training deeper models by

GPU memory optimization on tensorflow. In Proc. of ML Systems Workshop in NIPS, 2017.

19

[47] M. Mueller, A. Arzt, S. Balke, M. Dorfer, and G. Widmer. Cross-modal music re-trieval and

applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1):52–62, Jan

2019.

[48] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,

Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. PipeDream: generalized pipeline

parallelism for DNN training. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles, pages 1–15, 2019.

[49] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia. Memory-

efficient pipeline-parallel DNN training. In Marina Meila and Tong Zhang, editors, Proceedings of the

38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning

Research, pages 7937–7947. PMLR, 18–24 Jul 2021.

[50] Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T. Nguyen, Seungmin Lee, Jaesik Choi,

Sam H. Noh, and Young ri Choi. Hetpipe: Enabling large DNN training on (whimpy) heterogeneous

GPU clusters through integration of pipelined model parallelism and data parallelism, 2020.

[51] Geoff Pleiss, Danlu Chen, Gao Huang, Tongcheng Li, Laurens van der Maaten, and Kilian Q

Weinberger. Memory-efficient implementation of densenets. arXiv preprint arXiv:1707.06990, 2017.

[52] GC Pringle, DC Jones, S Goswami, SHK Narayanan, and D Goldberg. Providing the archer

community with adjoint modelling tools for high-performance oceanographic and cryospheric

computation. 2016.

[53] Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, and Sujeeth Bharadwaj. Training

large neural networks with constant memory using a new execution algorithm. arXiv preprint

arXiv:2002.05645, 2020.

[54] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory

optimizations toward training trillion parameter models. In SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[55] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W Keckler.

vDNN: Virtualized deep neural networks for scalable, memory-efficient neural network design. In

The 49th Annual IEEE/ACM International Symposium on Microarchitecture, page 18. IEEE Press,

2016.

[56] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon, and Stephen W

Keckler. Compressing dma engine: Leveraging activation sparsity for training deep neural networks.

In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), pages

78–91. IEEE, 2018.

[57] Samuel Rota Bul`o, Lorenzo Porzi, and Peter Kontschieder. In-place activated batch-norm for

memory-optimized training of DNNs. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5639–5647, 2018.

[58] Michel Schanen, Oana Marin, Hong Zhang, and Mihai Anitescu. Asynchronous two-level

checkpointing scheme for large-scale adjoints in the spectral-element solver nek5000. Procedia

Computer Science, 80:1147–1158, 2016.

[59] Jeffrey Mark Siskind and Barak A. Pearlmutter. Divide-and-conquer checkpointing for arbitrary

programs with no user annotation. Optimization Methods and Software, 33(4-6):1288–1330, 2018.

20

[60] Philipp Stumm and Andrea Walther. Multistage approaches for optimal offline check- pointing.

SIAM Journal on Scientific Computing, 31(3):1946–1967, 2009.

[61] Jakub Tarnawski, Amar Phanishayee, Nikhil R Devanur, Divya Mahajan, and Fanny Nina

Paravecino. Efficient algorithms for device placement of DNN graph operators. arXiv preprint

arXiv:2006.16423, 2020.

[62] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu,

and Tim Kraska. Superneurons: Dynamic GPU memory management for training deep neural

networks. SIGPLAN Not., 53(1):41–53, February 2018.

[63] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and Christopher De

Sa. Pipemare: Asynchronous pipeline parallel DNN training. Proceedings of Machine Learning and

Systems, 3, 2021.

[64] Jun Zhan and Jinghui Zhang. Pipe-torch: Pipeline-based distributed deep learning in a GPU

cluster with heterogeneous networking. In 2019 Seventh International Conference on Advanced

Cloud and Big Data (CBD), pages 55–60. IEEE, 2019.

[65] Junzhe Zhang, Sai Ho Yeung, Yao Shu, Bingsheng He, and Wei Wang. Efficient memory

management for GPU-based deep learning systems. arXiv preprint arXiv:1903.06631, 2019.

