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Executive Summary 
This deliverable provides initial results of task T6.4 to orchestrate the evaluation of Textarossa solutions. 
The document presents an evaluation plan using a top-down approach. First, it gives a rough overview of  
Textarossa applications and their  connection with other tasks using different approaches. Heterogenous 
resources will be used by eight applications; mixed-precision will be applied to three use cases; dynamic 
runtime systems will be evaluated by one library. Important to say, these use cases are coming from many 
different scientific domains, representing examples of AI, HDPA and HPC codes. As a result, this  brings a 
broad vision of the needs to the project. As of M24, all applications reached MS2, which means that the 
codes are well tested and ready to apply Textarossa solutions. Going bottom, a comprehensive list of 
Textarossa features (hardware, software and programming models) is presented to i) demonstrate which 
application is going to use these features and to ii)  give an overview on how developed technology will be 
evaluated. Going into more details, there is a summary of Key Peformance Indicators (KPIs) for each 
application, followed by their explanation and an overall evaluation plan for the aforementioned three 
different application approaches. At the bottom, a detailed evaluation plan for each application is 
presented, and contribution to the project objectives is discussed.  

The work carried out in WP6 corresponds directly to the following overall project objectives: 

- Energy efficiency, by the application developments; 

- Sustained application performance, by the application developments; 

- Seamless integration of reconfigurable accelerators, by using the APEIRON framework; 

- Development of new IPs, by using INFN intra/inter-FPGA communication IP behind the APEIRON 
framework; 

- Integrated Development Platform, by using existing IDV-A and IDV-E; 

- Opening of new usage domain, by the application developments. 
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1 Introduction 
 
Work performed in WP6 is essential to demonstrate the Textarossa outcomes in both, hardware and 
software perspectives. Moreover it is important to provide conclusions if and how they provided solutions 
can improve energy efficiency and sustainable performance of application representing different domains.  
 
In  Textarossa, we focus on applications related to AI (Artificial Intelligence), HDPA (High Performance Data 
Analytics) and HPC (High Performance Computing). Provided software represents quite a comprehensive 
set of different hardware used (CPU, GPU, FPGA), programming models (MPI for distributed 
computing/data exchange, CUDA, Intel One API, etc.) and problems to be solved (sparse and dense linear 
algebra, iterative and direct solvers, etc.). Because of that, there is a different set of computational and 
energy efficiency metrics defined (KPI – Key Performance Indicator) for each of the applications, though 
some naturally overlaps. To provide a high-quality evaluation plan for these many different applications, 
we applied a top-down approach to describe it. First, we start with a general overview of  applications. 
Then, we discuss in details technologies developed in the Textarossa project – how they will be evaluated, 
which applications are using them. Next, we discuss applications in detail. Starting from explaining the 
reasons to improve and how the project objectives are targeted, we draw KPIs and an overall evaluation 
plan to finalise with details of evaluation of each of the use cases. 
 
The work carried out in WP6 corresponds directly to the following overall project objectives: 

- Energy efficiency, by the application developments; 

- Sustained application performance, by the application developments; 

- Seamless integration of reconfigurable accelerators, by using the APEIRON framework; 

- Development of new IPs, by using INFN intra/inter-FPGA communication IP behind the APEIRON 
framework; 

- Integrated Development Platform, by using existing IDV-A and IDV-E; 

- Opening of new usage domain, by the application developments. 

 
This document is organised as follows. Section 2 provides overview of the applications. Section 3 discusses 
technologies developed in Textarossa to be exploited by the applications. Section 4 details overall 
evaluation plan for applications. Section 5 describes individual evaluation plan. In Section 6 we discuss how 
KPIs can be extended to take the outcomes of the WP1 and how we will update the plan during the scope 
of the project if necessary. 
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2 Applications 
In WP6 there are 10 main applications representing AI, HDPA and HPC classes. The mathematical libraries 
developed by CNR and INRIA can be divided into separate modules, however they are referred as a single 
mathlib to keep things simpler. A high-level overview is given in Table 1. Nine out of ten applications will 
benefit from heterogeneous hardware resources, three of them plan to introduce mixed-precision, and 
one of them will benefit from dynamic runtime systems. However, some heterogeneous applications will 
consider applying mixed-precision and/or dynamic runtime systems, thus the number of use cases using 
different approaches may change during the scope of the project. All applications accomplished MS2 – 
prototype applications are ready, albeit not yet integrated. The most important feature is that there is at 
least one application for each functionality (task) already available.  
 
 

App name Partner 
Heterogeneous 
(T6.1) 

Mixed-precision 
(T6.2) 

Dynamic 
runtime (T6.3) MS2 

Smart cities CINI CPU+GPU 

Mixed-precision 
formats 

supported by 
GPU 

No Yes 

Mathlib-CNR CNR CPU+GPU  
Planned,  
work not 
started  

No Yes 

RTM 
(benchmark 
kernel only) 

Fraunhofer No Yes (Posit) No Yes 

HEP INFN 
GPU, possibly 

FPGA 
No No No 

NestGPU INFN GPU No No Yes 

RAIDER INFN FPGA  No   Yes (OmpSs)  Yes 

TNM INFN GPU No Yes Yes 

DNN Inference INRIA GPU No Yes (StarPU) Yes 

Mathlib-INRIA INRIA GPU, FPGA No Yes (StarPU) Yes 

UrbanAir PSNC GPU 
Planned, 

worked not 
started 

No Yes 

 

Table 1 Overview of WP6 applications 

 
In order to evaluate all technologies developed in the project, additionally two mini applications have been 
introduced: Deflate (heterogeneous resources) and HPC-Benchmark (heterogeneous resources, dynamic 
runtime systems).  
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3 Technologies and evaluation 
Table 2 presents an overview of technologies developed in the project, including short description, 
responsible partners, targeted hardware, applications or technologies used to evaluate KPIs. In the next 
subsections each technology is discussed in detail. 
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Technology Partner Description IDVs Processor App or technologies used as 
benchmark 

KPI to test the technology (more related 
functionalities) 

StarPU INRIA Task-based process 
management 

IDV-A CPU/GPU MathLib (INRIA) Power efficient scheduler 

StarPU INRIA Task-based process 
management 

IDV-E ARM MathLib (INRIA) Seamless addressing of FPGA, efficient model 
management  

FastFlow UNIPI Streaming process 
management 

IDV-E/IDV-A ARM MiniApp ImageProce + deflate 
compression 

Execute some fastflow node on FPGA accelerators 

APEIRON INFN Streaming process 
management 

IDV-E FPGA RAIDER (INFN) Enable deployment of communicating Vitis HLS 
kernels on multi-FPGA systems for dataflow 
applications. It addresses project objectives: 1) 
Seamless integration of reconfigurable accelerators, 
2) Energy efficiency, and 3) Sustained Performance. 
Events/s and Events/s (RAIDER application). It 
leverages INFN Communication IP 

OmpSs BSC Task-based process 
management 

IDV-A ARM RAIDER (INFN), BSC-HPC Gflops and GigaPAIRS per second (BSC-HPC).  
Events/s, Events/J (RAIDER) 

Mixed-
precision 

UNIPI Yolo-based people 
detection + deepSort 
people tracking for AI-
based video 
surveillance 

IDV-A (IDV-E) 
ARM or X86 
GPP plus 
Nvidia GPU 

ARM or x86 Yolo-based people detection + 
deepSort people tracking for AI-
based video surveillance in 
different platforms (ARM 
Neoverse or ARM Cortex or x86 
plus T4 or A100) using FP16 or 
FP32. Smart Cities 

Execution time and power consumption  
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Posit UNIPI Accelerator with Posit 
computing arithmetic 
and data compression 
for AI efficient 
processing  

IDV-E (ARM-
based GPP as 
in EPI2 Rhea 
plus 
accelerator 
emulated in 
FPGA) 

ARM Mini-app (CNN with test benches 
like GTRSB, MNIST, CIFAR), in 
collaboration with Fraunhofer to 
test posits in  Reverse Time 
Migration (wave equation). 
Common contributions  UNIPI-
Fraunhofer at ISC2023 e UNIPI-
POLIMI at PARMA-DITAM 2023 

Accuracy for AI-based classification e data width di 
Posit vs Float ; power consumption evaluated with 
POLIMI (see POLIMI activity Automatic 
instrumentation of RTL to create power monitors of 
HW accelerators) 

Secure HPC 
service 

UNIPI Secure over the air 
firmware update  
using in a HW-SW 
implementation Shake 
as hashing function 
for digital signature 
plus PQC Crystals 
Dilithium (Use case 
developed by UNIPI in 
EPI2) 

IDV-E (ARM-
based GPP as 
in EPI2 Rhea 
plus 
accelerator 
emulated in 
FPGA) 

ARM Use case developed by UNIPI in 
EPI2 

Use case developed by UNIPI in EPI2 

INFN 
Communicati
on IP 

INFN  IP for low-latency 
intra-node e inter-
node communication 

IDV-E FPGA RAIDER (INFN), miniapp (video 
processing) 

1) One way Communication latency  2) 
Communication Bandwidth 

HW fast 
scheduler IP 

BSC HW fast scheduler IP IDV-E FPGA BSC-HPC, RAIDER Num. of tasks scheduled per second 

Memory 
hierarchy 
optimization 
and runtime 
systems  

BSC Memory interleave IDV-E FPGA BSC-HPC, RAIDER Memory bandwidth 



 

textarossa.eu   D6.1 | 14 

TAFFO 
extended to 
support 
GPU/FPGA 

POLIMI Compiler Technology 
for Mixed-Precision 
Support  

IDV-E/IDV-A GPU/FPGA UrbanAir kernels for IDV-A 
(PSNC), Mathlib (INRIA), Mathlib 
kernels for IDVA-A (CNR) under 
investigation 

Speedup with given error bound 

Automatic 
instrumentati
on of RTL to 
create power 
monitors of 
hardware 
accelerators  

POLIMI Automatic 
instrumentation of 
RTL to create power 
monitors of hardware 
accelerators  

IDV-E FPGA PPU (UNIPI) Availability, accuracy vs area overhead 

Multi-level 
thermal 
management  

POLIMI Thermal and power 
control of  2-phase 
cooling and actuators 

IDV-A (IDV-E)   IDV-E only if DVFS control is 
available. Any application 
running on the platform 

Temperature under the set point with a given 
accuracy 

Two-phase 
cooling  

Inquattr
o 

Board/Node cooling IDV-E Board/Node     
 The KPI is for assessing the cooling performance of 
a High-Performance Computing (HPC) single server. 
  
Electrical power consumption of the two-phase 
cooling per cooled thermal power (KW) at 40°C, 
45°C and 50°C. 
These are the temperatures of the external heat 
rejection (with free cooling) into atmosphere, 
during summer season 

Inquattr
o 

Board/Node cooling IDV-A Board/Node Nvidia stress-test   

 

Table 2 Technologies and KPIs
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3.1 StarPU  
 
StarPU is a task-based runtime system that enables the programmer to insert tasks and define their 
dependencies, thereby allowing StarPU to manage their execution: the movement of data across 
processing units, the parallel execution of tasks while ensuring coherency, and the selection of processing 
units for task computation. 
In the Textarossa project, our objective is to enhance StarPU's functionalities by introducing a new 
scheduler that optimizes task distribution and having StarPU to support FPGAs. The primary goal of the 
new scheduler is to minimize makespan and/or reduce energy consumption during execution. 
As part of WP6, we intend to evaluate the new features of StarPU on two applications, namely Chameleon 
and ScalFMM. The KPIs we will study include makespan, assessed by analyzing the execution time as a 
whole or against a workload coefficient (GFlop or the number of particle interactions), and energy 
consumption, analyzed by measuring Watt instead of time. 

3.2 FastFlow  
FastFlow is a structured parallel programming environment based on the key concept of parallel design 
patterns provided to application programmers to seamlessly model parallelism exploitation. FastFlow 
targets standalone multicore shared memory nodes as well as clusters of shared memory multicore nodes. 
In the Textarossa project, FastFlow is being extended in such a way that its patterns can now be used to 
properly orchestrate offloading of computations to FPGAs. We assume that FPGA kernels exist, compiled 
through the Vitis toolchain, that can be used to offload computations to the available Xilinx ALVEO FPGA 
boards. We extend FastFlow run time such that the offloading of computations to  FPGA kernels may be 
orchestrated in parallel by using specialized versions of the parallel patterns provided by the original 
FastFlow. Specialization consists in the possibility to use the FPGA kernels as “business logic code” of the 
FastFlow parallel pattern components in the very same way standard C/C++ code may be used to 
implement the business logic code of classic, host side FastFlow patterns.  

As part of WP6, we will use mini applications to demonstrate the efficiency of the approach. We are 
considering currently video stream processing and compression mini applications where significant parts 
of video frame processing and compression algorithms are executed through FastFlow parallel patterns 
offloading computations to FPGA kernels. We will evaluate the results achieved through two kinds of KPIs, 
namely i) the number of different FastFlow patterns supporting FPGA offloading and ii) the performance 
achieved in the parallel mini apps with respect to more classical parallel application codes written with the 
explicit usage of OpenCL host side code orchestrating the parallel offloading. We expect that at the end of 
the project FPGA i) offloading will be supported in pipeline and farm patterns (the most used patterns in 
stream parallel applications) and ii) we achieve performances similar to the ones achieved using OpenCL 
specific host side code to orchestrate the same computations with the same kind of parallelism. 

3.3 APEIRON 
APEIRON is a framework encompassing the general architecture of a distributed heterogeneous stream 
processing platform and the corresponding software stack, from the low-level device drivers up to the high-
level programming model. The framework is designed to be efficiently used for studying, prototyping and 
deploying high performance distributed dataflow applications, such as the RAIDER real-time AI-based data 
analytics application that represents the main use case for APEIRON. 
Using APEIRON developers can define scalable applications using a dataflow programming model (inspired 
by Kahn Process Networks) that can be efficiently deployed on a multi-FPGAs system: the INFN 
Communication IPs allows low-latency communication between processing tasks deployed on FPGAs, even 
if hosted on different computing nodes.   
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Thanks to the use of High-Level Synthesis tools in the workflow, namely Xilinx Vitis, tasks are described in 
a high-level language (C++) while communication between tasks is expressed through a lightweight C++ 
API based on non-blocking send() and blocking receive() operations.  
The mapping between the computational dataflow graph and the underlying network of FPGAs is defined 
by the designer with a configuration tool, by which the framework will produce all project files required for 
the FPGAs bitstream generation. 
The interconnection logic is therefore automatically built according to the application needs (in terms of 
input/output data channels), allowing the designer to focus on the processing tasks expressed in the C++ 
programming language. 
 
The development of the framework addresses the project objectives:  
 

• Objective 1 - Energy efficiency.  APEIRON addresses this objective enabling the complete offload 
of the dataflow processing to FPGA devices.  Furthermore, avoiding the involvement of the CPUs 
and system bus resources in data transfers and the usage of bounce buffers, it improves the energy 
efficiency of the multi-FPGA execution platform. The achievement of this objective will be assessed 
by measuring the processed Events/J by the RAIDER application, and comparing it with what will 
be obtained running the same processing pipeline both on  CPU only and  CPU+GPU systems.  
 

• Objective 2 - Sustained application performance. The sustained application performance of 
distributed dataflow applications, such as the RAIDER use case, is  strongly affected by the 
performance of the network system. Implementing a direct FPGA to FPGA interconnect and 
bypassing the host network stack allows to keep the communication latency in the sub-
microsecond range and  increase the bandwidth for small messages.  The achievement of this 
objective will be assessed measuring the processed Events/s obtained by the RAIDER application, 
and comparing it with what will be obtained running the same processing  pipeline both on  CPU 
only and  CPU+GPU systems. 
 

• Objective 4 - Seamless integration of reconfigurable accelerators. The APEIRON framework 
leverages the Vitis HLS workflow, extending it to a multi-FPGA execution platform through a 
lightweight communication library (HAPECOM) at programming level, and through a simple 
configuration system for the deployment of the distributed application to the multi-FPGA 
execution platform.   
 

• Objective 5 - Development of new IPs. The INFN Communication IP is the key enabling technology 
behind the APEIRON framework, allowing direct low-latency intra/inter FPGA communications 
between HLS kernels.  
 

• Objective 6 - Integrated Development Platform. The ARMv8 based IDV-E represents the target 
execution platform for the APEIRON runtime. Porting its software stack to this architecture, 
besides the X86_64 that will be used for the framework development, will demonstrate the host-
agnosticism feature of the framework. 

3.4 OmpSs 
OmpSs is a task-based programming model. OmpSs has been designed to be non-invasive so that minimal 
changes have to be made in order to port and parallelize an application. In particular, pragma directives 
annotations are used in order to allow productive parallel programming, even for heterogeneous 
architectures, such as GPUs and FPGA. In Textarossa, the OmpSs@FPGA framework  is going to be used in 
order to facilitate the programming of the IDV-E platform. In addition, we expect to extend the 
OmpSs@FPGA platform to use the Fast Task Scheduling IP (also developed in Textarossa) and other new 
researched features to improve the performance of both the framework and the platform. 
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Task based programming models such as OmpSs provide a good opportunity to abstract the underlying 
hardware complexity, so implementation effort is kept low while maintaining good levels of performance. 
The objectives of the OmpSs programming model in the Textarossa project can be summarized as follows:  

• Provide support to the execution of task-based parallelized programs (with the OmpSs 
programming model) on the Textarossa IDV-E platform.  

• Improve performance of such task-based parallelized programs so it can be competitive with 
alternative current state-of-the-art programming models.  

• Explore how task-based and stream programming models could be mixed to obtain systems that 
get the best of both worlds in terms of programmability, performance and energy efficiency. 

• Support the Fast Task Scheduling Hardware developed in Task 2.5 and leverage it to accomplish  
previous objectives.  

 
The last objective is accomplished by fulfilling the three previous objectives. These objectives are related 
to the project objectives:  

• Objective 1 - Energy efficiency. FPGAs  demonstrated to be competitive with other computing 
platforms in terms of energy efficiency. Besides providing the support to executing applications on 
the IDV-E platform, the OmpSs task-based model is going to be integrated with power 
measurement tools in order to acquire  further control and improve the energy spent when 
executing on the platform.  

• Objective 2 - Sustained application performance. As explained in the next sections, we aim to 
improve the performance obtained when executing applications over the IDV-E platform both by 
improving the framework and also by improving the task scheduling through the use of the Fast 
Task Scheduler developed in Task 2.5.  

• Objective 3 - Fine-tuned thermal policies integrated with an innovative cooling technology. As 
explained in Objective 1, the power measurement tools to be integrated in the OmpSs framework 
for IDV-E are expected to provide the basis for integrating fine-tuned thermal policies in Task 4.5.  

• Objective 4 - Seamless integration of reconfigurable accelerators. OmpSs@FPGA runtime allows 
for seamless integration of reconfigurable accelerators.  

• Objective 5 - Development of new IPs. The Fast Task Scheduler IP is a key part of the OmpSs@FPGA 
framework. OmpSs@FPGA contributes to the IP development as a primary tool to test the IP 
functionality. It also provides design requisites that must be incorporated in the IP for the whole 
framework to work as expected.  

• Objective 6 - Integrated Development Platform. The OmpSs@FPGA runtime will be used in 
applications executing on the IDV-E platform. It is important to highlight that IDV-E features a host 
CPU (ARM based) that has never before been used to drive computation in a PCIe attached FPGA. 
Developing the system in a way that is compatible with new different CPUs helps ensuring new 
host CPUs (like EPI CPUs) will be able to drive this kind of computations in the future. 

3.5 Posit Arithmetic 
 
The main objective of designing and developing a hardware IP that handles Posit computations is to deliver 
a mean to compress standard IEEE 32-bit floating point (FP32)  arithmetic by a factor from 2 to 4, while 
maintaining similar accuracy in different applications and tasks such as machine learning. The compression 
factor of bit width for similar accuracy, i.e. use of Posit8 or Posit 16 as replacement of FP32, depends also 
on the considered algorithm and application scenario. 
  
The aim is focused on two paths: 

1. Designing and developing an hardware IP for numerical compression, exploiting the compression 
factor of posits from 32-bit floating point numbers; this IP macrocell is called Light PPU (Posit 
Processing Unit) 

2. Designing and developing a complete Posit unit capable of performing all real arithmetic 
operations between posit numbers; this IP macrocell is called Full PPU (Posit Processing Unit). 
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The above 2 IP macrocells, light PPU and Full PPU, have been designed in SystemVerilog at RTL level and 
implemented in FPGA in WP2, while in WP6 the Posit IPs have been tested via both: 

• mini-apps (classification CNN applied to benchmark applications like MNIST, CIFAR10, GTRSB-
German Traffic Road Side Benchmark) 

• collaboration with Fraunhofer to test Posit in the Oild&Gas RTM application  by using a Posit Test 
Array 

  
In both cases the two hardware IPs are expected to be integrated in larger hardware platforms, such as 
complete RISC-V processors (Ariane CVA6, Pulpino+Ibex) or in other accelerator complexes such as a Posit 
Test Array that is also carried out in EPI2 SGA2 together with Fraunhofer. The hardware IP integrations in 
existing systems are the following: 

1. HW IP for posit compression as an execution unit inside the Ariane CVA6 RISC-V platform. 
2. HW IP for posit arithmetic as a full real number execution unit for the Ibex 32-bit core, inserted 

in the larger Pulpino SoC ecosystem. 
3. HW IP for posit arithmetic as an accelerator co-processor in the Posit Test Array, paired to an 

ARM main host processor for posit computation offloading. 
4. HLS blackbox for the Apeiron framework to provide a high-level C++ interface for high-level 

synthesis, exploiting RTL co-simulation. 
 
To be noted a pure software library called CppPosit is available from University of Pisa.  The results of its 
implementation on multiple platforms have demonstrated thatthe use of Posit via a pure software library 
can be useful to verify the functionalities of Posits (for  example the accuracy of Posit8 and Posit 16 when 
used to implement Convolutional Neural Networks in training and inference instead of using FP32), but if 
the computing platform does not support in hardware a Posit Processing Unit then the computation speed 
using Posit is lower than using FP32 (since the computation of Posit will be reversed to a computation using 
the FPU).  
This is why for the Smart Cities benchmark developed on heterogeneous platforms made of a general 
purpose multi-core CPU (ARM Neoverse,  ARM Cortex-A or x86) plus a NVIDIA GPU (T4 or A100), the mixed-
precision processing has been implemented not using Posit (NVIDIA GPUs have no Posit hardware support) 
but mixing the formats (e.g. FP16, FP32) supported by the NVIDIA GPU used.   

3.6 Secure HPC service 
 
As in the description of work in the grant agreement the project Textarossa foresees the development in 
WP2 of secure hardware IP macrocells to be implemented in FPGA technology that aim at extending the 
secure capabilities of the IP developed in EPI SGA1. 
From a security point of view, in EPI SGA1  a set of cryptographic accelerators called crypto tile was 
developed by UNIPI (and released to SiPearl in order to be integrated within Rhea1). They support in 
hardware the implementation1 of:  

• symmetric cryptography: AES 128bits/256bits with 9 cipher modes: ECB, CBC, CFB, OFB, CTR, 
CMAC, CCM, GCM, XTS 

• hashing: SHA2, SHA3 for computation of digests on 224, 256, 384 and 512 bits and supporting SW 
aided high-level hash schemes (HMAC) 

• asymmetric cryptography (public-private keys) based on Elliptic Curve Cryptographic schemes 
such as Elliptic Curve Digital Signature Algorithm (ECDSA), Elliptic Curve Diffie Hellman (ECDH), 
ECIES (Elliptic Curve Integrated Encryption Scheme) 

• TRNG/CSPRNG (True Random Number Generator/Cryptographycally  Secure Pseudo Random 
Number Generator) 

 
1 https://www.european-processor-initiative.eu/wp-content/uploads/2020/07/EPI-Technology-FS-
CryptoTile.pdf 

https://www.european-processor-initiative.eu/wp-content/uploads/2020/07/EPI-Technology-FS-CryptoTile.pdf
https://www.european-processor-initiative.eu/wp-content/uploads/2020/07/EPI-Technology-FS-CryptoTile.pdf
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The aim of the secure IP development in WP2 of Textarossa, implemented in FPGA technology, is to extend 
the security capability in EPI SGA1 and provide inputs for the further security work in EPI SGA2. 
 
Particularly, the activities in WP2 of Textarossa for security aim at supporting new schemes for hashing 
functions such as SHAKE, an evolution of SHA3 that is adopted in digital signature generation and 
verification with the new post quantum crypto algorithms, recently approved by NIST such as Crystals- 
Dilithium. Differently from SHA2 and SHA3, SHAKE128 and SHAKE256 allow an arbitrary output length, 
which is useful in applications such as optimal asymmetric encryption padding. 
 
Moreover, WP2 of Textarossa aims also at implementing an IP to support in hardware some operations for 
lattice RLWE (Ring Learning with Errors) algorithms. RLWE algorithms are both at the base of post quantum 
crypto, recently approved by NIST, such as Crystals (Cryp-tographic Suite for Algebraic Lattices) -Kyber and 
Dilithium, and of SW libraries recently developed for homomorphic encryption, such as Microsoft SEAL 
embedded library. 
As of today, algorithms for advanced security services such as post quantum crypto or homomorphic 
encryption are still not frozen, not yet standardized. 
Therefore, in WP2 of Textarossa the IP for security, written in SystemVerilog at RTL level is verified vs. code 
written in C and released by developers of Crystals algorithms and of the SEAL embedded Microsoft library. 
  
Unfortunately, within the time frame of Textarossa, ending in H1 2024, it will not be possible to develop 
system level applications using security algorithms that are still not frozen. This is why in the description of 
the work to be performed detailed in the grant agreement of Textarossa  the development of a system 
level application using the security IP developed in WP2 has been not foreseen.  
The output of Textarossa activities related to IP security development in WP2 will  be used as starting point 
for security development in EPI2, where system level applications will be developed.  This contribution is 
possible thanks to the fact that some key partners of Textarossa such as UNIPI are also key partners in EPI2 
SGA2. 
 
Particularly,  EPI SGA2 foresees the development of an application for secure over the air update of SW 
from a cloud server to distributed ECUs, using an algorithm for signature generation and signature 
verification based on SHAKE. For this application, in EPI SGA2, a SHAKE accelerator derived from the IP in 
Textarossa will be used. 
In Textarossa, the security IP has a generic AXI4 interface and  a FPGA implementation target while in EPI 
SGA2 the SHAKE crypto accelerator will be optimized to be integrated within the multi-core RHEA 
processor. 
EPI SGA2 foresees also the development of a server-edge secure connectivity exploiting Microsoft SEAL 
library, using a secure hardware accelerator for lattice algorithms developed starting from the output of 
Textarossa WP2.  
Also for this IP, in Textarossa, the security IP for lattice algorithms has a generic AXI4 interface and  a 
FPGA implementation target, while in EPI SGA2 the crypto accelerator will be optimized to be integrated 
within the multi-core RHEA processor. 
 
The aim of the IP cell for security in development in WP2 of Textarossa is trying to add hardware security 
features missing in EPI SGA1, and that can be an input for the hardware security activity in the project EPI 
SGA2 for both ARM-based GPP like that developed by SiPearl in EPI1/EPI2 and RISC-V-based accelerator 
like EPAC. Indeed, the interface of what is proposed in WP2 Textarossa for security is standard, AXI4 as 
mentioned above, and hence can be integrated with both ARM and RISC-V based computing systems. 

3.7   Communication IP 
The INFN Communication IP implements a n-D Torus direct network for FPGA accelerators, allowing low-
latency data transfer between processing tasks deployed on the same FPGA (intra-node communication) 
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and on different FPGAs (inter-node communication). Being the key enabling technology behind the 
distributed implementation of dataflow applications in the APEIRON framework, the set of project 
objectives covered by its development, and the way to assess their achievement, are largely overlapped 
with those already described in section 3.3 - APEIRON:   

• Objective 1 – Energy Efficiency. See section 3.3. Furthermore, depending on the availability of the 
power modelling tools developed in Task 4.5, a more detailed assessment of the energy cost for 
data movements through the communication IP will be performed. 

• Objective 2 – Objective Sustained application performance.  The performance of a distributed 
dataflow application depends heavily on those of the underlying network infrastructure. For this 
reason we identify one-way latency and communication bandwidth as KPI for the Communication 
IP for this objective. See also section 3.3.  

• Objective 4 - Seamless integration of reconfigurable accelerators. The IP enables the deployment 
of distributed dataflow applications over a multi-FPGA execution platform. 

• Objective 5 - Development of new IPs. See section 3.3. 

3.8 HW fast scheduler IP 
The main objective of developing a hardware IP for fast task scheduling is to provide an effective and 

efficient way to send tasks to FPGA accelerators . The scheduler IP allows to offload the process of 

scheduling tasks into individual accelerators and keep track of accelerator status and finished tasks. This 

reduces the communications and synchronizations between host and FPGA accelerators, increasing overall 

performance.  

We envision two main fields of application for the IP developed in this deliverable. The first one is as part 

of the OmpSs@FPGA framework as explained in section 3.4. The fast task scheduling IP will be an integral 

piece of the hardware runtime (in fact it will be the hardware runtime itself). In the OmpSs@FPGA 

framework application the Fast Task Scheduler is expected to communicate with the host CPU fast enough 

that it doesn’t represent a bottleneck to the scheduling of small tasks to FPGA accelerators as it happens 

with software schedulers. This will allow task-based designs to be competitive and even outperform 

streaming applications by improving the shared use of  FPGA resources. 

The second application scenario of the Fast Task Scheduling is the interconnection of different CPU cores 
and/or accelerators improving the performance of task-based programming models (like OpenMP or 
OmpSs). It has been demonstrated that the runtime overhead can be the main bottleneck in the 
performance of manycore systems as the number of tasks should increase with the number of cores to 
take advantage of large systems. For this kind of problems, we aim to integrate the Fast Task Scheduling IP 
with a RISC-V manycore system and demonstrate significant performance improvements. 
 
The HW fast task scheduler is related to the following project objectives and strategic goals as stated in the 
DoA:  

• Objective 1 - Energy efficiency. The IP reported in this deliverable is designed to be integrated in 
an FPGA or attached as a runtime accelerator to a manycore system. It provides two ways of 
increasing energy efficiency: a first-order effect by improving the energy efficiency of the task-
based runtime and, a second-order effect that is achieved by improving the efficiency of the 
application being executed using the runtime.   

• Objective 2 - Sustained application performance. As with Objective 1, the IP reported in this 
deliverable contributes to sustained application performance: by improving the performance of 
the task-based runtime and also, by improving the performance of the application being executed 
using the runtime. As a fast task scheduling effectively increases application available parallelism, 
this second effect improvement is expected to be significant.  

• Objective 3 - Fine-tuned thermal policies integrated with an innovative cooling technology. The 
Fast Task Scheduling IP is expected to be able to work with the software part of the runtime by 
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either, providing it with information about the power consumption of the tasks and/or enabling 
the thermal control system (in software) to actuate over the accelerators if necessary.  

• Objective 4 - Seamless integration of reconfigurable accelerators. OmpSs@FPGA runtime allows 
for seamless integration of reconfigurable accelerators (as detailed in Deliverable 4.1 and 
Deliverable 1.4). As an integral part of the framework the IP should allow for scheduling of tasks 
that are either specific to an accelerator or destined to be executed in a general-purpose unit.   

• Objective 5 - Development of new IPs. This deliverable reports the development of a new IP 
dedicate to scheduling tasks, so it directly tackles objective 5.  

• Objective 6 - Integrated Development Platform. As part of the OmpSs@FPGA runtime the IP 
reported in this deliverable will be used in applications executing on the IDV-E platform. It is 
important to highlight that IDV-E features a host CPU (ARM based) that has never before been 
used to drive computation in a PCIe attached FPGA. Developing the system in a way that is 
compatible with new different CPUs helps ensuring new host CPUs (like EPI CPUs) will be able to 
drive this kind of computations in the future. 

3.9 Memory hierarchy optimization and runtime systems  
Memory hierarchy optimization is a critical subject when extracting performance out of FPGA 
heterogenous systems like the IDV-E platform. Also, it usually is a time-consuming problem that requires 
significant development time to programmers. As part of our OmpSs@FPGA runtime development 
explained in section 3.4, we aim to integrate and evaluate different memory optimization features that we 
expect will help programmers to obtain more performance in a nearly transparent way. These features 
should be  integrated for compatibility inside the Fast Task Scheduler IP explained in section 3.9. This effort 
is expected to address the following objectives of the DoA: 

• Objective 1 - Energy efficiency. Better memory management is expected to help with a more 
efficient computation and consequently, with more energy efficiency in the IDV-E platform. 

• Objective 2 - Sustained application performance. As with Objective 1, a better memory 
management by the runtime will help with performance by improving the performance of the 
task-based runtime and also, by improving the performance of the application being executed 
using the runtime.  

• Objective 4 - Seamless integration of reconfigurable accelerators. The objective of the memory 
optimization by the runtime is that accelerators profit from it without programmers’ intervention 
contributing to the performance of the seamless integrated reconfigurable accelerators.  

• Objective 5 - Development of new IPs. The memory management in the IDV-E platform will be 
done by the hardware runtime that is partly integrated in the Fast Task Scheduler IP. Other parts 
of the memory management will not be integrated in the FTS IP but in the hardware part of the 
freely released OmpSs@FPGA framework so they will also be freely available to the IP 
development community. 

• Objective 6 - Integrated Development Platform. As part of the OmpSs@FPGA runtime the memory 
management will be used in applications executing on the IDV-E platform contributing to the 
performance and usefulness of the platform. 

3.10 TAFFO 
TAFFO is a precision tuning framework capable of automatically converting application codes to mixed 
precision, given appropriate contextual information provided by the programmer in the form of 
annotations of the source code. The annotations that must be provided only affect a small part of the code 
to be transformed, saving significant developer time and effort. Additionally, TAFFO guarantees the 
absence of overflow errors caused by the reduced precision, and minimizes the error bound as much as 
possible exploiting static analyses. TAFFO supports C and C++ applications, including those exploiting 
OpenMP, CUDA and OpenCL. This broad support for industry-standard parallel and heterogeneous 



 

textarossa.eu   D6.1 | 22 

computing programming interfaces allows TAFFO to be readily applied to concrete use-cases, included 
other components of the overall Textarossa framework. 
  
In particular, TAFFO has already been employed for optimizing General Matrix-Matrix products (GEMM) 
kernels such as those used by INRIA-MathLib. The utilization of TAFFO for implementing mixed precision 
on a GPGPU platform supporting CUDA (specifically an Nvidia GeForce RTX 3070 GPU) allowed to achieve 
a 40% speedup over the single-precision floating-point-based baseline with a relative error in the output 
below 0.1%. These positive results make it straightforward to propose the integration of TAFFO with 
MathLib. This integration task requires an extension of MathLib to provide TAFFO with the appropriate 
information for the compile-time mixed-precision data type allocation to ensure that application 
requirements for precision are fulfilled. 
  
Another application where TAFFO can be exploited for achieving a better precision-performance trade-off 
is the optimization of Sparse Matrix-Vector product (SpMV) kernels for GPGPUs. Previous works2 already 
demonstrated that great benefits can be achieved by performing loop-splitting optimizations on such 
kernels, in order to employ lower precision for only the least precision-sensitive parts of the computation. 
However, it would be of great benefit to the users of SpMV kernels if this kind of tasks could be performed 
automatically, as the development effort required for adopting this specific kind of mixed precision in an 
application with current state-of-the-art tools is significant. TAFFO is the ideal foundation on which to build 
optimizations requiring data-dependent precision selection, as it already provides the foundational 
analyses required for such task. The analysis of this potential use-case is currently in progress as a joint 
effort between CINI (PoliMI) and CNR. 

3.11 Automatic instrumentation of RTL to create power 
monitors of hardware accelerators 

In nowadays FPGAs for HPC applications, the reference solution consists of energy management policies 
based on dynamic voltage and frequency scaling (DVFS) and offload computation performed by GPU-based 
servers. However, the HPC evolution process highlighted the possibility to implement the most computing-
expensive parts of the application  on FPGAs.  
 FPGAs used in this field can expose up to 200W of thermal design power. This level of power requires 
dedicated run-time power optimization techniques, since such contribution needs to be considered 
carefully when designing such devices. The power monitor addresses this specific problem.  
The automatic RTL instrumentation avoids the intervention of the designer to inject  power monitors inside 
the design and implement the related glue logic. Moreover, the power monitoring infrastructure used to 
estimate the power monitors allows us to monitor the power consumption of any hardware accelerator, 
in a precise way, within large FPGAs for HPC. These power monitors can be reconfigured dynamically for 
any change in the set of hardware accelerators implemented into the FPGA.  
This methodology will be validated on a Full Posit Processing Unit (FPPU) developed by University of Pisa 
as first step. The FPPU is a computing module implementing a Posit format which, in contrast to standard 
IEEE 754 represents numbers with a much bigger and more accurate range. The final plan includes the 
possible validation of the methodology to generate the runtime power monitoring infrastructure for an IP 
Router Switch implemented on FPGA developed by INFN (University of Rome). 

3.12 Multi-level thermal management 
The purpose of the multi-level thermal management policy is to ensure adequate cooling of  computing 
devices. Compared to standard approaches to thermal management, it takes advantage of the evaporative 
cooling solution to limit reducing the operating frequency, thereby improving computational performance. 

 
2 https://ieeexplore.ieee.org/abstract/document/9980904 

https://ieeexplore.ieee.org/abstract/document/9980904
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At the same time, the policy adapts to the computational workload to avoid over-provisioning of the 
available cooling capacity. 
  
Temperature rise in integrated circuits is governed by two timescales. The first timescale is induced by the 
thermal capacitance of the silicon die, which due to its small physical size results in fast temperature 
transients, which  in modern HPC chips can vary from milliseconds to tens of milliseconds. The second 
timescale is due to the thermal capacitance of the heat dissipation solution, which is significantly bulkier 

than the silicon chip, resulting in considerably longer timescales varying from  seconds to minutes. 
  
As such, when an increase in power dissipation caused by computational load transients occurs, 
temperature must first be kept under control using fast actuators such as dynamic voltage and frequency 
scaling (DVFS). Simply increasing the coolant flow rate would not be fast enough. However, reducing 
operational frequencies reduces the dissipated power at the expense of a performance degradation. In the 
absence of a controllable evaporative cooling solution this performance degradation will persist as long as 
the required power consumption of the computational devices exceeds the cooling capacity. This is what 
happens in commercial thermal policies such as Intel Turbo Boost, where the boost frequency can only be 
kept for a limited period of time of high CPU activity, after which the frequency is reduced to the base 
value. 
To overcome this limitation, the proposed multi-level thermal management policy is of  hierarchical nature. 
It adds to the system a second control loop acting on the evaporative coolant flowrate, with the aim of 
taking advantage of the increasing dissipation heat flux caused by two-phase evaporative cooling to 
partially restore peak operating frequency and provide sustained high performance operation while 
keeping the operational temperature under the specified threshold. 
This multi-level thermal management policy will be implemented in at least one of the two IDVs (access 
to DVFS actuators and temperature sensors is required to implement the policy) and will be tested using  
Textarossa applications. 

3.13 Two-phase cooling 
The increasing demand for data processing in recent years along with advances in processor technology 
produced a rapid growth in power capacity of server electronics. In this context, thermal management of 
data centres in terms of cooling high thermal power densities of new processors and using the so called 
“free cooling” has become a significant challenge for thermal engineers. The traditional air-cooling 
technique has approached its heat dissipation limit, therefore it is crucial to provide new thermal control 
solutions for upcoming demanding datacentres. In the present project, InQuattro proposes an innovative 
cooling solution based on two-phase flow mechanically pumped loop. The innovative feature of this system 
is the use of latent heat transfer for cooling electronic devices. Compared to traditional cooling systems, 
significantly higher heat transfer coefficients can be achieved at significantly low flow rates and pumping 
power. 
 
The main objective of the project is to install the new two-phase cooling system in the two node platforms 
provided by ATOS (IDV-A) and E4 (IDV-E). Two cooling prototypes will be designed, manufactured and 
installed in the two nodes. These platforms will spread from FPGAs to high-power GPUs. These prototypes 
have the possibility to regulate the cooling temperature of the thermal sink, where the waste heat is 
rejected. This will be crucial to verify the capability of the cooling technology to work with the high ambient 
temperatures of the  summer season (up to 40°C - 45°C). This is an important objective towards high 
efficient data centres to avoid the use of energy-intensive chillers and cooling towers with the use of 
considerable amount of water per day. 
 
After the installation, the two platforms will be tested with specific stress tests to verify the reliability of 
the new cooling solution. All the parameters of the cooling loops will be measured and recorded. These 
data will be used to optimize the control system of the cooling loop. Tests will be performed at different 
simulated external temperatures in the range 20°C - 45°C. 
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4 General evaluation methodology for applications 
 
This section discusses a common strategy for benchmarking and evaluating heterogeneous, mixed-
precision. Dynamic runtime systems applications are also discussed. 
 

4.1 Heterogeneous applications 
 
The complexity of a heterogeneous computing platform such as the Textarossa project requires the use of 
a common methodology to perform power measurements, in order to manage a trade between 
computational power and energy consumption. For this purpose, a dedicated working group has been 
created within the project. The complete results of their activities are summarized on the technical 
document “Methodology for Power Measurement in the TEXTAROSSA Project”, which will be the part of 
deliverable D1.4. In the following we summarise the most relevant topics of the document. 

  

4.1.1 CPU 
 
Textarossa project will deal with two kinds of CPU architectures: x86_64 (AMD Milan/Rome, Intel Sapphire 
Rapids) and ARM V8.2 64 bit (AMPERE Altra Max).  
 

4.1.1.1 x86_64 Architectures  
 
Most modern processors, including Intel processors, provide Running Average Power Limit (RAPL) 

interfaces for reporting the accumulated energy consumption of various power domains of the CPU chip, 

attached DRAM and on-chip GPU. The update interval of the RAPL energy counters is approximately one 

millisecond. The RAPL energy reporting feature has been available for many generations on Intel SoC 

products, and energy reporting is standard practice for the industry. Intel processors utilise this energy 

information for internal SoC management purposes, such as control of SoC power limits in association with 

Intel® Turbo Boost Technology power limit settings within the SoC.  This RAPL energy data is exposed to 

the platform via the host-software-accessible model specific registers (MSRs) such as 

MSR_PKG_Energy_Status and MSR_PP0_Energy_Status. This allows software to use the RAPL energy data 

for observation, telemetry, and/or inputs to platform-level power or thermal control algorithms [1]. The 

RAPL features described above are also available for AMD processors from family 17h on. 

RAPL readings are highly correlated with plug power, promisingly accurate enough and have negligible 

performance overhead. Experimental results suggest that RAPL can be a very useful tool to measure and 

monitor the energy consumption of servers without deploying any complex power meters [2]. 

RAPL supports multiple power domains. The RAPL power domain is a physically meaningful domain (e.g., 

Processor Package, DRAM etc) for power management.  

 

Figure 1 illustrates the hierarchy of the power domains graphically.  
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Figure 1 Power domains supported by RAPL [3] 
 

Each power domain informs the energy consumption of the domain, allows to limit the power consumption 

of that domain over a specified time window, monitors the performance impact of the power limit and 

provides other useful information, that is, energy measurement units, minimum or maximum power 

supported by the domain [3].  

RAPL provides the following power domains for both measuring and limiting energy consumption: 

 • Package: Package (PKG) domain measures the energy consumption of the entire socket. It includes the 

consumption of all the cores, integrated graphics and also the uncore components (last level caches, 

memory controller).  

• Power Plane 0: Power Plane 0 (PP0) domain measures the energy consumption of all processor cores on 

the socket. RAPL does not support measuring the power consumption of individual CPU cores. 

• Power Plane 1: Power Plane 1 (PP1) domain measures the energy consumption of processor graphics 

(GPU) on the socket (desktop models only).  

• DRAM: DRAM domain measures the energy consumption of random-access memory (RAM) attached to 

the integrated memory controller. Deviations up to 20% from actual measurements have been reported 

for this particular domain, with a strong dependence on the specific processor architecture [4]. 

• PSys: Intel Skylake has introduced a new RAPL Domain named PSys. It monitors and controls the thermal 

and power specifications of the entire SoC and it is useful especially when the source of the power 

consumption is neither the CPU nor the GPU.  

As Figure 1 suggests, PSys includes the power consumption of the package domain, System Agent, PCH, 

eDRAM and a few more domains on a single socket SoC. For multi-socket server systems, each socket 
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reports its own RAPL values (for example a 2-socket computing system has two separate PKG readings for 

both the packages, two separate PP0 readings, etc). The support for different power domains varies 

according to the processor model, as energy unit used: the Sandy Bridge uses energy units of 15.3 

microjoules, whereas Haswell and Skylake uses units of 61 microjoules. 

RAPL measurements are accurate, the correlation coefficient between RAPL and plug AC power values has 

been measured using the Stream benchmark on a Haswell processor, resulting in a value of 0.99 [3]. 

Linux supports RAPL since from kernel 3.14, access to RAPL data is possible through several mechanisms, 

such as reading files under /sys/class/powercap/intel-rapl/intel-rapl:0, using the perf_event interface (e.g. 

sudo perf stat -a -e "power/energy-cores/” executable) or using raw-access to the underlying MSR registers 

provided by the msr kernel module.  

Several energy profiling tools using the RAPL infrastructure are currently available. We selected  

likwid-powermeter as reference power measuring tool for CPU tasks. likwid-powermeter is part of the 

Likwid toolsuite [5] of command line applications and a library for performance-oriented programmers. It 

works for Intel, AMD, ARMv8 and POWER9 processors on the Linux operating system. There is additional 

support for Nvidia GPUs. 

 

4.1.1.2 Ampere Altra Max  
 
According to the technical documentation provided by the manufacturer, this implementation of the ARM 
V8.2 64-bit architecture does not provide any RAPL-like facility for fine-grained power measurement.  
There are four high power domains for Altra / AltraMax processors: 

• PCP power domain for CPU cores and mesh interconnects 
• SoC power domain for SoC blocks, memory and PCIe controllers 
• RCA power domain for PCIe/CCIX controllers 
• DDR4 power domain for memory IOs and DIMMs 

 
The Altra Max Processor Complex (PCP) features include:  

• 128 Arm v8.2+ 64-bit CPU cores at up to 3.00 GHz maximum  
• 64 KB L1 I-cache, 64 KB L1 D-cache per core  
• 1 MB L2 cache per core  
• 16 MB System Level Cache (SLC 
• 2x full-width (128b) SIMD  
• Coherent Mesh Interconnect (CMI): 

 
Only PCP and SoC power domains are accessible using the Linux HWMON infrastructure, either reading the 
corresponding /sys/class/hwmon/hwmon0/* entries of the filesystem, or using the sensors command. 
An alternative method is to use the BMC infrastructure that provides the following power data: 

• PCP power domain for CPU cores and mesh interconnects 
• SoC power domain for SoC blocks, memory and PCIe controllers 
• DDR4 power domain for memory IOs and DIMMs 

 
 

4.1.2 GPU 
 
In the context of the project only NVIDIA GPUs will be taken into account.  
To perform power monitoring on NVIDIA GPUs, a useful tool is represented by the NVIDIA Management 
Library (NVML): a C-based programmatic interface for monitoring and managing various states within 
NVIDIA GPU devices. NVML is delivered in the NVIDIA vGPU software Management SDK, which enables 
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third party applications to monitor and control NVIDIA physical and virtual GPUS that are running on 
virtualisation hosts. Using  NVML APIs, we have experimented with a simple tool able to measure the power 
consumption of a CUDA kernel in specific points of the device code.  
However, the power value obtained through  NVML APIs is updated every ~20 ms. Thus, this sampling 
interval is not suited for a precise evaluation of the power consumption profile of a CUDA kernel with a 
short execution time. 
 

4.1.3 FPGA 
 
Textarossa adopts the XIlinx U280 as reference platform for the project. Referring to FPGAs power 
monitoring, POLIMI developed a methodology to deploy into generic hardware design online power 
monitors, capable of periodic power estimate. They evaluated 2 possibilities of implemented power 
monitoring: 

− Software power monitors: applications providing online power monitoring in cases where 
platform RTL description is not accessible, at the cost of a non-negligible performance overhead, 
low accuracy and limited temporal resolution for the power estimate. 

− Hardware power monitors: dedicated hardware delivering highly accurate power estimates at 
high temporal resolution and without performance overhead at the cost of changing the RTL 
description of the computing platform. 

More information about this methodology can be found in [6]. 
 
In addition to this, Xilinx® provides a suite of software tools that can assess power supply requirements of 
the device throughout each stage of the design cycle. For example, Vivado® power analysis feature 
performs power analysis through  stages of: post-synthesis, post-placement, and post-routing. Also, Xilinx 
Runtime library (XRT) Linux kernel driver xclmgmt binds to management physical function and handles the 
access to in-band sensors (temperature, voltage, current, power etc.). In this context, POLIMI, UNIPI and 
INFN have started working together in order to characterise the power consumption of  IPs developed in 
the Textarossa  project. 
 
 

4.2 Mixed-precision applications 
 
The increasing interest in complex AI and video applications involving large convolutional networks require 
a trade-off between the low complexity of integers and the high accuracy of floats. To this aim new 
arithmetic types, like Bfloat and Posits, will be considered. The KPIs will consider not only the accuracy in 
detection and classification for the target application (i.e. Accuracy = Number of correct predictions divided 
by Total number of predictions) but also computational complexity and power model.  
 
Target applications are: 
- by UNIPI-CINI, some AI and video classification applications will be used for smart cities surveillance 
services such as man-down (detection from camera acquired images of people laying down, useful for 
people rescuing in case of natural disasters, wars,…) and people detection and social distancing check and 
covered-face detection (useful for Covid-19). These applications are further described in Section 4.1. 
- by Fraunhofer supported by UNIPI-CINI, an optimised Reverse Time Migration (RTM) algorithm that is 
used for oil and gas exploration in seismic imaging. This microbenchmark is further described in Section 
5.3. 
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These applications3  will be tested on GPU (e.g. NVIDIA GPU like T4 and Jetson AGX) and FPGA. The 
complexity of a heterogeneous computing platforms requires the use of a common methodology to 
perform power measurements and manage a trade between accuracy, computational power and energy 
consumption. To this aim, similarly to what described in 3.1, the following tools will be considered. 
 
For GPUs: To perform power monitoring on NVIDIA GPUs, a useful tool is represented by the NVIDIA 
Management Library (NVML): a C-based programmatic interface for monitoring and managing various 
states within NVIDIA GPU devices. NVML is delivered in the NVIDIA vGPU software Management SDK, 
which enables third party applications to monitor and control NVIDIA physical and virtual GPUS that are 
running on virtualisation hosts.  
 
FPGAs: Referring to FPGAs’ power monitoring, CINI-POLIMI has developed a methodology to deploy into 
generic hardware design online power monitors, capable of periodic power estimate. This methodology 
will be applied to the Posit Processing Unit designed by UNIPI-CINI to be integrated in FPGA technology.  

 

4.3 Dynamic runtime system applications 
 

The performance of applications based on runtime systems is impacted by 1) the way the applications are 
parallelized, 2) the internal implementation of the runtime systems, and 3) the scheduling decisions taken 
at runtime to distribute the tasks over the processing units. Concerning 1) the performance is clearly 
application dependent and is left aside from the current description. For 2), the internal implementation 
of a runtime system can be evaluated by measuring its overhead and its capacity to potentially hide data 
movement with computation when possible. We do not expect that including a new hardware device will 
change the quality of an existing runtime system, therefore we recommend performing sanity check but 
do not consider it relevant to include these aspects in the benchmarking in Textarossa. This is why 3) is 
certainly the more important criterion. To evaluate the scheduling, we propose to study the makespan and 
the amount of memory data transfer. With this aim, we propose to benchmark runtime system-based 
applications with three metrics: makespan (duration of the execution) in seconds, amount of memory 
transferred in GB, and occupancy of the processing units in percentage. 

 
3 Because of limited budget RTM will be evaluated on Posits only. 
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5 Individual evaluation plans 
 
In Section 2, a high-level overview of applications is presented emphasizing which Textarossa hardware 
and software outcome will be demonstrated for each of the use cases. These applications represent a wide 
range of scientific domains and problems that are solved. This is the reason to introduce an individual 
evaluation plan. For each application it is explained briefly: i) the reason to improve, ii) how project 
objectives are targeted,  iii) the key performance indicators related to accuracy (if needed), computational 
and energy efficiency, and iv) the evaluation plan. The KPIs and used technologies and tools (discussed in 
Section 3) are then summarized for each application. 

5.1 Smart cities 
Why to improve 
CINI UNIPI is working on some AI and video classification applications that will be used for smart cities 
surveillance services such as: 

• man-down (detection and successive tracking, from camera acquired images, of people laying 
down, useful for people rescuing in case of natural disasters, wars,…)  

• people detection and social distancing check and covered-face detection (useful for Covid-19 
prevention).  

The trade-off among computational complexity, frame-rate of the application, accuracy of the detection 
and classification need to be improved.  
 

Project objectives and strategic goals addressed 

 
Energy efficiency - Implementing the smart cities surveillance algorithm on different platforms: e.g. 
heterogeneous CPU-GPU integrated at blade level and using for CPU both ARM (Neoverse N1 or Cortex-A) 
and x86 (I7 or Xeon) and for GPU T4 or A100, or integrated at SoC level like in Jetson-AGC and Jetson-Orin.  
By comparing time and energy performance of different platforms: 

• with CPU only or CPU+GPU assess the usefulness of an accelerators.  

• with ARM vs x86 based CPU to assess the usefulness of ARM cores for HPC 
 
Sustained application performance - This activity is devoted to exploit hybrid architectures. By comparing 
time and energy performance of the different platforms: 

• with CPU only or CPU+GPU assess the usefulness of an accelerators.  

• with ARM vs x86 based CPU to assess the usefulness of ARM cores for HPC 
 
Seamless integration of reconfigurable accelerators - The accelerator used will be based on NVIDIA GPU. 
Assessment of the easy integration of ARM based multicore CPU similar to that adopted in EPI (Rhea) 
with Nvidia GPUs will be made. 
 
EPI - For the tests will be used ARM-based platforms like Ampera Altra (with ARN Neoverse N1) and like 
Fujitsu A64FX (with ARM SVE) that are representative of the core used in Rhea (EPI1). Assessment of the 
usefulness of ARM cores similar to those used in EPI for HPC applications like smart cities surveillance will 
be made. 
 
Opening for new usage domains - Adoption of HPC for smart cities services. Adoption of HPC not only for 
scientific calculus but also for smart cities surveillance involving analysis of video streams. 

 

 

KPIs 
KPIs will be: 
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- the achieved frame-rate,  
- accuracy of the detection and classification (i.e. Accuracy = Number of correct predictions divided by Total 
number of predictions) 
- power consumption of the application implemented on the target platform 

 

Evaluation 
The evaluation will be carried out porting the algorithms in different platforms: e.g. heterogeneous CPU-
GPU integrated at blade level and using for CPU both ARM (Neoverse N1 or Cortex-A) and x86 (I7 or Xeon) 
and for GPU T4 or A100, or integrated at SoC level like in Jetson-Orin.  

 

5.2 MathLib  
 

Why to improve 
CNR is working on a mathematical software library for hybrid architectures, featuring NVIDIA GPUs at node 
level [7][8]. Mathematical software libraries provide a large resource for high-quality and reusable software 
components upon which applications can be rapidly constructed. They are building blocks for solving main 
mathematical problems, including radically new algorithms and methods at a low level that domain 
scientists can transparently reuse in form of basic components with very little need of specific 
mathematical and computer science expertise. CNR is developing computational kernels required in sparse 
matrix computations and iterative linear solvers which are widely applied in Scientific Computing and Data 
Analysis. Focus is on node-level efficiency, by exploiting at the best Nvidia GPU high throughput, and 
scalability when multiple nodes are needed for computations whose dimensions largely exceed the 
memory resources of a single computing node, such as those stemming from leading-edge HPC 
applications.  
The kernels include:  

• Sparse matrix – vector multiplication (SpMV);  

• Sparse matrix power kernel (SpMPK);  

• Sparse matrix – matrix multiplication (SpMM);  

• Maximum Weight Matching in undirected graphs (MWM);  

• Communication Avoiding Conjugate Gradient method (CACG);  

• Algebraic MultiGrid preconditioners (AMG). 

  

 Project objectives and strategic goals addressed 

 

 
Energy efficiency - As mentioned in the "4 Pillars Framework for Energy Efficient HPC Data Centers", one 
of the basic guidelines in energy efficient computing is the optimization and  acceleration of algorithms and 
software libraries that provide a reduction of the elapsed time of applications and, as consequence turn, a 
significant cut in energy consumption. We optimize  MathLib numerical kernels to have large reduction in 
execution times by exploiting GPUs at the node level and consequently reduce energy consumption. We 
will demonstrate benefits in terms of increasing problem size (dofs) per Watt to solution, by effective 
exploitation of multiple GPUs on single node as well in a multiple nodes setting. Energy measurement tools 
proposed in  projects will be used according to the methodology described in  deliverables from WP1. 
 
Sustained application performance - Our main activities are devoted to exploit hybrid architectures to solve 
sparse linear systems up to ten billion of dofs on thousands of GPUs. We will demonstrate algorithmic and 
implementation scalability in solving systems up to billions of dofs and benefits with respect to Nvidia GPUs 
state of the art libraries. 
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ETP4HPC - Our algorithms and their software implementations aim to face some of the challenges of the 
SRA5 in the Research Domain on Mathematical methods & algorithms, in the context of robust methods 
and algorithms enabling extreme scalability. We define new algorithms and parallel design pattern aimed 
to combine different forms of parallelism of heterogeneous architectures as well as to reduce data 
communication and synchronization costs to enable extreme scalability in sparse matrix computation. New 
mathematical libraries for sparse matrix computations, including communication avoiding Krylov solvers 
and preconditioners, will be introduced. 

 

KPIs 
Main objective is a sustained performance and scalability for solving problems at extreme scales. 
Therefore, main parameters will be execution times and speedup in strong and weak scalability regime. 
Concerning iterative linear solvers, specific parameters also include number of iterations to reach a given 
accuracy and execution time per iteration for increasing number of unknowns and parallel cores. Memory 
footprint is also an issue to efficiently face extreme scales; therefore, key parameter will be also memory 
requirements of algorithm implementations. In the same way, parameters related to energy efficiency will 
include number of iterations per Watt and number of problem unknowns (dofs, degree of freedom) per 
Watt.  

  

Evaluation 
The plan for final evaluations on some well-known benchmarks, such as sparse linear systems coming from 
discretization of scalar partial differential equations of Poisson-type, includes the use of some clusters of 
hybrid nodes embedding Nvidia GPUs and, when possible, the IDV based on Nvidia GPUs from WP5.  Main 
risks are related to the usage of tools, eventually proposed in the project, for energy consumption 
measurements, and the need to have access, at a reasonable stage of the project, to the IDV-A based on 
Nvidia GPUs. 
 

5.3 RTM 
 

Why to improve 
Reverse Time Migration (RTM) is used for oil and gas exploration in seismology. Migration algorithms 
usually need to digest input shot data up to the terabyte range to create 3D images. Days and weeks of 
cluster compute time are common. For this reason, the users of seismic algorithms are sensitive to compute 
time. Other migration algorithms approximate the wave equation to reduce the compute time, e.g., the 
Kirchhoff migration uses the high frequency ray approximation. However, these approximations have 
drawbacks, e.g. when it comes to resolve steep dips in salt domes. RTM is much better here in resolution 
but much more expensive in compute time as well. As TTI RTM algorithms are even more expensive than 
Isotropic or VTI RTM algorithms, the latter two are the most frequently used RTM algorithms in practice. 
Isotropic and VTI RTM algorithms are both quite memory bound. 
Here calculations are done typically in 32bit floating point. Reduction of data precision (at least partial, so 
mixed precision) to 16 bits could halve  the consumed memory bandwidth and double the throughput of 
the kernel. So the gap in cost between RTM and cheaper migration methods is reduced. 
 

 Project objectives and strategic goals addressed 

 

 
Energy efficiency - If usage of reduced precision for RTM is feasible the algorithm uses memory bandwidth 
more efficiently increasing the number of propagations per second while not increasing the energy 
consumption in the same amount. Further a future reduced precision ALU might consume less energy per 
FLOP than a 32 bit ALU. Although not benchmarked in this project the potential in energy efficiency is 
estimated up to factor 2.  
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Sustained application performance - If RTM algorithms based on reduced precision are feasible such an 
algorithm would consume less memory bandwidth. Because isotropic RTM is memory bound these 
algorithms would speed up the number of propagations per second. Although not benchmarked in this 
project the expected potential speed up is up to factor 2. 
 
EPI - Specialized HPC processors might include reduced precision ALUs in the future. Seismic applications 
might profit from reduced precision simulations by faster results at less energy costs if the reduced 
precision image quality is sufficient for seismic applications. In this case EPI processors might enter the oil 
and gas market. 
 
ETP4HPC - RTM is a widely commercially applied algorithm. Having more energy efficient approaches to 
calculate RTM could  support European oil and gas companies to evaluate seismic data sets in a more 
energy efficient way. 

  

 

KPIs 
The drawback of using reduced or mixed precision might be a reduced image quality. As the better image 
quality of RTM versus cheaper methods is the main reason to use RTM in the first place, retaining an 
acceptable level of image quality is crucial.  
This work analyses the possibility to reduce the floating-point precision at least in parts of the RTM 
algorithm to increase the throughput of the algorithm. Important boundary conditions that need to be kept 
up are the accuracy and the stability of the numerical results.  

  

Evaluation 
Simple test examples are created. These contain a velocity model and shot data. The shot data and the 
respective source data are propagated in time given the velocity model. Using the imaging condition from 
these propagations in time images are computed. This procedure is performed in different reduced floating 
point precision formats and mixed floating point precision formats. The resulting images are compared to 
images which are computed fully in single precision.  Seismic experts will evaluate the images. 

  
Further the numerical stability versus the time step size will be evaluated. Here a forward propagation of 
the wave signal and the total energy within the 3D volume for each time step will be computed. In the 
stable time step region the total energy should stay constant over simulated time. Different time steps will 
be evaluated to determine the stable time step region numerically. 
 

5.4 HEP 
Why to improve 
The necessity to be able to execute scientific code on heterogeneous architectures is evident in many 
domains, from High Energy Physics, genomics, astrophysics to medical physics.  Extrapolated needs 
for the next decades surpass what standard CPU evolution can allow. The most promising path to 
affordable computing lies in the utilization of better performance/cost computing solutions, like those 
offered by accelerator technologies; on top of this, the same technologies are expected to be present 
in most HPC centres, and available to users only if their codes can be executed efficiently. The main 
obstacle is the difficulty to redesign algorithms in a suitable manner for each different architecture, 
due to the lack of knowledge and of manpower.  
For the Textarossa  project, two high energy physics applications were identified: 

- a track reconstruction algorithm for the CMS detector developed by the Patatrack team [9] 
- the CLUE algorithm, a cluster algorithm for high granularity calorimeters [10] 
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 Project objectives and strategic goals addressed 

 

 
Energy efficiency - CLUE and Pixeltrack are single-source code HEP applications using the Alpaka library or 
SYCL. They can be compiled on several backend processing architectures, thus gaining in energy efficiency 
by a proper selection of the execution platform, without the need of customizing the code. We expect a 
x2-x5 improvement factor in energy efficiency (reconstructed events/J) comparing the CPU with the 
CPU+GPU versions of the executable. 
 
Sustained application performance - CLUE and Pixeltrack are single-source code HEP applications using the 
Alpaka library or SYCL, they can be compiled on several backend processing architectures, thus gaining in 
throughput by a proper selection of the execution platform, without the need of customizing the code. An 
analysis of the CLUE and Pixeltrack lead us to expect a x5-x10 improvement in terms of throughput 
(reconstructed events/s) comparing execution on CPU and CPU+GPU. 
 
Seamless integration of reconfigurable accelerators - There is a significant risk that the objective could not 
be achieved since there are no SYCL or Alpaka back-end available at the moment for   Textarossa reference 
FPGA plaftorms 

 

KPIs 
In the kind of above applications, the measurement of the latency as the delay between  invoking an 
operation and getting its response is not a representative metric as much as the throughput, i.e., the 
number of computing tasks per time unit. Therefore, the KPI considered for  HEP applications is a 
throughput metric: number of reconstructed events per second. In particular, for the track 
reconstruction algorithm,  reconstructed events are  particle tracks in the detector; instead, for the 
CLUE algorithm,  reconstructed events are the assignment of a cluster to each point. 
 

Evaluation 
The goal is to obtain a single heterogeneous software per application that can be run in parallel on 
multiple backends, taking advantage of the characteristics of each architecture. To evaluate the 
results, the comparison of the performance obtained using the serial code running on the CPU versus 
the parallel and heterogeneous code running on multiple backends (CPU, GPU, FPGA) is of main 
interest. The performance is measured as the time spent to reconstruct N events.   

 

5.5 NEST-GPU 
Why to improve 
The main reason for developing a CUDA version of the CPU-only NEST neural simulator was to tap into the 
large floating point compute resources available on NVIDIA GPUs, in order to speed-up the integration of 
the large systems of differential equations as required by the setup and dynamics simulation of complex 
neural networks that an in-silico neurophysiology experiment implies. Any improvement in this regard can 
either push the size and the complexity of what can be achieved by such experiments on non-extreme scale 
HPC platforms. Moreover, shrinking the power envelope could even demonstrate the feasibility for NEST-
GPU to drive an embodied agent, which would be useful for robotics applications. 
A more thorough description of the NEST-GPU application can be found in [11], while an up-to-date 
comparison to the CPU-only sibling application NEST running on a cluster and using MPI communications 
can be found in [12]. 
 

 Project objectives and strategic goals addressed 
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Energy efficiency - NEST-GPU development does not directly address the energy efficiency problem but 
being a GPU-supporting version of the CPU-only NEST neural network simulator, the expectation is, for a 
defined in-silico neurophysiology experiment chosen as benchmark, that the much higher compute made 
available on the GPU can cut the runtimes so as to reduce the overall energy-to-solution when comparing 
between the two versions. Taking into account only the power consumption of the GPU hardware and 
ignoring that of the hosting platform and given testing done up to now, a tenfold reduction in energy-to-
solutions seems attainable, at least for NVIDIA devices based on the Ampere architecture; for the upcoming 
Hopper architecture – which is advertised to have twice the thermal design power and three times the 
FLOPs – the assessment requires direct testing on a proper IDV. 
 
Sustained application performance - The compute made available by the GPU has up to now shown 
improvements between 16× and 30× when comparing runtimes on a single GPU vs. single multicore server-
grade CPUs in published works – it is up to the current work to extend the testing to a multi-node, multi-
GPU setup on a proper IDV and precisely measure what can actually be achieved. Given the single GPU 
results obtained up to now and the fact that the proper IDV is expected to provide a GPU with an 
architecture advertised to have 3× the compute and the memory bandwidth compared to what NEST-GPU 
has been tested on up to now, a tenfold or more increase in time-to-solution performance compared to 
NEST running on CPU seems a conservative and attainable estimate. 
 
Opening for new usage domains - The high density of compute offered by GPUs makes amenable to 
simulation spiking neural networks of magnitude (e.g. complete brain areas or even whole brains of 
mammalians) which on non-heterogeneous HPC platforms would require unfeasibly large deployments. 
Moreover, it would be useful to make available spiking neural network simulations – which are currently 
quite cumbersome – to the low-power, embedded platforms employed in robotics applications; by 
targeting embedded NVIDIA GPUs as the Jetson, NEST-GPU could usher the employ of spiking neural 
networks on such devices. Testing NEST-GPU on the IDV-A should verify that the simulated cortical slice 
can be scaled up to sizes that would be otherwise unmanageable on non-heterogeneous HPC systems of 
comparable footprint while the most useful outcome in sight of a robotics application would be the ability 
to reach ‘real-time’ (1 simulated second takes 1 wall-clock second). While this latter is NOT a direct 
objective for NEST-GPU in Textarossa, assessing the performance on the IDV can give valuable insights 
regarding this supplementary goal. 

 

KPIs 
As mentioned, the KPIs are those related to the size, complexity and achievability (which usually means 
bringing down the timeframe of a simulation to a manageable level) of a neurophysiology experiment, 
therefore time-to-solution (as how long it takes to simulate e.g. 1s of a neural network of predefined size), 
the synaptic activity (the ratio of synaptic events to the actual runtime) and the energy-to-solution (as the 
energy dissipated throughout this runtime) will be considered. 

 

Evaluation 
The evaluation of the mentioned KPIs is obtained defining some average sized network that can be 
representative of a sufficiently broad set of experiments and simulating via NEST-GPU 1s of activity of such 
network (possibly a little longer if we concede some warm-up period to let the system reach a steady state) 
on the reference platform while measuring the elapsed time, the number of synaptic events and the power 
consumption throughout. 

 

5.6 RAIDER 
Why to improve 
Real-time (also called “online” in the specific context) particle identification (PID), or partial particle 
identification (e.g., electron identification), is a critical task in High Energy Physics experiments: it enhances 
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the suppression of background physics events, allowing to keep the bandwidth that data acquisition 
systems must forward to the analysis pipeline within a manageable level. 
In this section, we refer to “event” as the instantaneous physical situation or occurrence associated with a 
point in spacetime, characterised in our systems by different information obtained through several physical 
detectors. 
The system implementing the PID task must face two main requirements:  

1. processing latency, often bounded to a few microseconds or less; 
2. processing throughput, which can be in the order of 107 events per second.  

FPGA devices are good candidates to be used as processing nodes to implement a dedicated computing 
architecture to perform PID, as these devices allow the design of AI algorithms through HLS tools, and the 
implementation of data transport (with support for a wide set of physical and transport layers protocols) 
and processing stages characterized by a highly predictable and low latency. A low-latency direct 
interconnection between FPGA nodes allows:  

+ to scale the system to meet the throughput requirements, deploying multiple dedicated 
computational units (CUs) on several boards; 

+ to gather data streams from different detectors, possibly processed according to a multi-layer 
architecture performing a distributed PID task.   

 
A desirable development of such an architecture has been identified in the CERN NA62 experiment: in fact, 
RAIDER application seems suitable for the timing requirements of the Level 0 of the NA62 trigger, allowing 
a possible implementation of a PID system based on the use of neural networks trained for ring 
reconstruction over the events coming from the NA62 RICH detector.  
A more detailed description of this workflow can be found in [13]. 
 

 Project objectives and strategic goals addressed 

 
 
Energy efficiency - RAIDER application we addressed the energy efficiency goal along two directions: 

- Energy efficient dataflow processing: we designed and deployed on FPGA AI-based inference 
processing pipelines with a very limited FPGA resource footprint. This was accomplished thanks to 
the accurate selection of the minimal neural network model ensuring adequate inference accuracy 
and to the usage of quantization techniques that allowed us to use 8-bits and 16-bits fixed point 
data types for the implementation on FPGA.  

- Energy efficient I/O and intra/inter-FPGA communication mechanism: the application is based on 
the APEIRON framework exploiting the INFN Communication IP. Implementing direct 
communication between tasks deployed on FPGAs without involving CPU and system bus 
resources, the Communication IP improves the energy efficiency of the FPGA execution platform. 
Furthermore, part of its intra-FPGA ports can be used to implement I/O channels, again without 
the need of staging data on host or FPGA memory, and thus limiting data movement and the 
associated energy consumption. 

Our workflow for the deployment of Artificial Neural Networks on FPGA starts with the modelling of the 
ANN in Tensorflow/Keras (see D4.1).We expect a O(10) improvement factor in energy efficiency of the 
RAIDER application in comparison to the ones obtained on a CPU only and CPU+GPU platforms performing 
the same computational task in Tensorflow/Keras.   
 
Sustained application performance - The performance KPI for the RAIDER application is the number of 
processed RICH detector events per second. The RAIDER application is based on the APEIRON framework, 
that leverages the INFN Communication IP, whose design was motivated by the following considerations:  

- The direct communication between computing tasks deployed on FPGAs avoids the involvement 
of the CPUs and system bus in the data transfers.  

- Bypassing the intervention of the host network stack, communication latency is reduced while 
bandwidth for small massages is increased.   
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- Since communication operations are implemented on a completely “hardware” path, 
deterministic latency is achieved, in accordance with the real-time requirements.   

  
The above listed features of communication IP have a direct impact on this specific project goal. 
A speedup of 10x is a realistic objective for the final version of the application. We plan to reach this goal 
either improving the performance of the single analysis pipeline and the number of pipelines integrated 
on a single or on multiple interconnected FPGAs. 
 
Seamless integration of reconfigurable accelerators - RAIDER is the main use case for the APEIRON 
framework, that enables the straightforward deployment of distributed dataflow applications on Multi-
FPGA systems. Demonstration of the workflow for the deployment of (AI-based) distributed real-time 
analysis pipelines using the APEIRON framework will be conducted . 
 
Development of new IPs - The INFN Communication IP is the key enabling technology for the APEIRON 
framework. As main use case forAPEIRON, RAIDER will help testing and possibly drive the refinement of 
the functionalities of the Communication IP. Functional and performance validation of the INFN 
communication IP will be provided. 
 
Opening for new usage domains - RAIDER implements a very high throughput, distributed AI-based real-
time data analysis pipeline and thus represents a good example of HPDA application. We will demonstrate 
the feasibility of implementing a distributed HPDA task on a multi-FPGA system, showing significant gains 
in terms of energy efficiency end sustained performance in comparison with alternative execution 
platforms of similar cost/complexity. 
 

KPIs 
Besides the processing latency per event that must be less than the experimental requirement, and so it 
should be considered more as a prerequisite rather than a KPI, relevant KPIs for the RAIDER application 
are, for given values of accuracy and purity of the (partial) PID task: 

1. the number of processed events per second, i.e., the throughput; 
2. the number of processed events per Joule.  

 

Evaluation 
The measurement of the events/s KPI is trivial. We will leverage the power measuring tools provided by 
the FPGA platforms producer to assess power efficiency. Furthermore, a joint activity with the POLIMI 
team, aimed at instrumenting the RTL code of the communication IPs and processing kernels in order to 
measure their power consumption, has just started. Since this methodology has already been used 
successfully in the past by the POLIMI team any particular risk at the moment for the measurement of the 
events/J KPI is identified.  

 

5.7 TNM 
Why to improve 
Tensor network methods consist of techniques that represent the quantum state of N qubits as a 
series of tensor contractions. By trading some accuracy, this enables for example quantum circuit 
simulators to handle circuits with many qubits that would not be feasible to be simulated with exact 
methods because of the exponential growth of the Hilbert space. However, depending on circuit 
topology and depth, this can also get prohibitively expensive. This highlights the need for tensor 
network methods to be executed on heterogeneous architectures to efficiently exploit parallel 
computing and powerful GPU computation. Before moving towards mixed-precision methods, the 
effect of running different precisions for a complete simulation are reported. 
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 Project objectives and strategic goals addressed 

 
 
Energy efficiency - The application plans to evaluate energy efficiency by comparing different simulation 
parameters and platforms, e.g., a comparison between single-precision and double-precision simulations. 
The expected outcome is an baseline of the energy consumption on classical computing platforms to enable 
potential future comparison between classical computers emulating quantum computers and quantum 
computers. For example, a comparison of different classical hardware ensure to have the optimal baseline 
for this comparison. 
 
Sustained application performance - The key performance indicators that we added specifically address 
variables relevant to quantum systems and will give future users an intuition of the resources they need to 
solve a problem. Still, the problem will depend on the entanglement present in the quantum system. 
Collecting the KPIs for different example problems will allow to predict resource allocation for 
computational tasks on supercomputers or other cloud services. Predicting the resource allocation plays a 
key role for an audience which is not specialized on the simulation side, but wants to use quantum 
simulations as a user to solve their problem. Potential improvements in the performance due to 
parallelization of a factor 2 to 4 could already affect which problems can be tackled. 
 
ETP4HPC - The ETP4HPC discusses the goals for quantum computing and HPC in their whitepaper “<QC | 
HPC> Quantum for HPC”. As the tensor network methods are developed to solve quantum systems – 
especially quantum circuits are one of the target applications – the TNM is connected to the ETP4HPC 
agenda. The outcome is a classical emulator for quantum circuits which scales on HPC systems. Currently, 
we already have access to national supercomputers like marconi100 at Cineca, i.e., the Italian National 
Supercomputing Center, and develop and run simulations there.A further improvement of the scaling and 
user-experience seems possible. 
 
Opening for new usage domains - Quantum computing may lead to new possible algorithms for solving 
problems beyond the reach of todays’ classical computers. This involves problems in material science, drug 
design, chemistry, finanance, and optimization problems.The expected outcome is a classical emulator 
which can serve as a bridge to quantum computers until the error rates of quantum computers reach the 
level for the NISQ era or the fault-tolerant threshold for quantum error correcting codes.This emulator 
should help us to start a dialog with potential partners at universities or in industry to prepare them for 
the quantum computing era. 

 

KPIs 
In the kind of above applications several KPIs can be considered for estimating computational 
efficiency. For a quantum simulation with tensor network methods one can evaluate the performance 
by looking at the number of qubits that can be simulated per second with a fixed set of convergence 
parameters as the bond dimension between the link in the tensors. Another KPI is the number of gates 
per second that can be executed in a simulation of a quantum system with a given size. A possible 
direction to evaluate the KPI for energy consumption is to follow up on our previous work, which 
compares the energy consumption of a quantum circuit on a quantum processing unit against the 
same quantum circuit running with tensor networks [14]. 
 

Evaluation 
To evaluate the results, the performance of the software executed by using the serial code running on 
the CPU versus the parallel and heterogeneous code running on CPU and GPU will be compared. 

 
The goal of the performance measurements in terms of computational time is to have a meaningful 

benchmark and ensure the energy measurements are executed with a code that scales according to 

expectations. The goal of the energy efficiency measurements is to provide a baseline for the application 
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which can also be used in future comparisons of classical architectures as used in Textarossa versus an 

execution on quantum processing units (QPUs). 

5.8 Chameleon (Mathlib) 
 

Why to improve 
Chameleon is a dense linear solver based on StarPU, i.e. it is parallelised with a task-based method and 
relies on classical Blas functions in the tasks. Consequently, its performance is critically tied to the 
scheduling of the tasks and the raw performance of the Blas functions on the target processing units. 
Chameleon has been massively used on distributed heterogeneous computing nodes equipped with 
multiple GPUs. However, the study of a large-scale dense linear solver with FPGAs has never been done. 
This is why we want to use FPGA and see how this can improve performance and/or energy.    
 

 Project objectives and strategic goals addressed 

 
Energy efficiency: The objective is to schedule tasks in a way that parallel executions of Chameleon consume less energy 
compared to existing schedulers. The focus will be on developing a generic scheduler that can be utilized by any StarPU-
based application. To achieve this, we will concentrate on the development of the new scheduler and its underlying 
strategies, and Chameleon will be a study case for validation and benchmarking. In order to make good decisions and 
distribute tasks across different processing units to obtain efficient executions, we will need to build performance and energy 
models for the various computational kernels used in Chameleon. 
  
Sustained application performance: The goal is to utilize accelerators, including FPGAs, to reduce the makespan and/or 
energy consumption. Again, the aim is to provide a generic scheduler that can be applied to any StarPU-based application. 
  
Opening for new usage domains: The objective is to offer an optimized version of Chameleon that can be integrated into 
other applications. This is important as there are numerous HPC applications that rely on a parallel linear solver. 

 

KPIs 
Two main KPIs are FLOP per second and FLOP per watt because main interest is in evaluate speedup and 
energy efficiency can be obtained in running with FPGA . 

 

Evaluation 
FLOP per second can be obtained easily. The FLOPS per watt needs hardware counters. 

5.9 ScalFMM (Mathlib) 
 

Why to improve 
The fast multipole method is a well-known approach that allows for reducing the quadratic complexity 
when computing interactions in n-body problems. ScalFMM has been a pioneer by proving the first 
implementing FMM algorithm on top of StarPU, i.e. parallelised with a task-based method. ScalFMM 
can be executed on distributed computing nodes equipped with accelerator devices and used CPUs 
and GPUs concurrently. Said differently, when the GPUs are computing kernels for which they are 
efficient, we use CPUs at the same time for less GPU-friendly kernels. Currently, we implemented the 
two major FMM kernels with CUDA such that we can use the main common HPC architectures. 
However, we never study its energy efficiency or the use of FPGA. 
 

 Project objectives and strategic goals addressed 
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 Energy efficiency: The objective are the same as for Chameleon. In addition to Chameleon, ScalFMM will 
be used for validating our new scheduler. Of course, the computational kernels that will be port on FPGA 
are different as we plan to port the P2P and maybe the M2L kernels. 
  
Sustained application performance: Same as for Chameleon. 
  
Opening for new usage domains: Same as for Chameleon, with the exception that the Fast Multipole 
Method (FMM) is less used thans linear solvers. However, the FMM is still a critical component in several 
HPC applications. 

 

KPIs 
Two main KPIs are n-body interactions per second and n-body interactions per watt because main 
interest is in evaluate speedup and energy efficiency in running with FPGA. Energy efficiency will be also 
evaluated for the existing GPU version. 
 

Evaluation 
N-body interactions or FLOP per second is obvious. Whereas interactions or FLOP per watt needs hardware 
counters. Once these counters will be available, FPGA kernels for the P2P operators and benchmark will be 
evaluated. Comparisons when using GPUs or FPGAs to highlight the situations where one is better than the 
other will be carried out. 

 

5.10 DNN Inference 
 

Why to improve 
We are interested in large scale inference of huge models (Transformer based essentially, GPT like models). 
The context is the following: on a set of heterogeneous resources (both CPUs and GPUs), the goal is to 
perform a very large number of inference tasks. We focus on optimization at the scale of a single 
heterogeneous node (IDV-A like) because it is unlikely to perform inference on several nodes due to 
communication costs. On the other hand, we are aiming at a context where there are a lot of tasks and we 
can scale up without difficulty (relying on data parallelism), so it’s definitely an HPC like application. The 
objective is to optimize (latency, throughput) under memory and performance constraints (of 
heterogeneous resources). We identified three types of opportunities that make (non-trivial) parallel 
solutions at the level of the node appealing, and that have not been yet explored in the literature. 
- the first one is to fulfil the memory constraints on the different nodes (which can lead to split the 
network on several resources in order to store the weights in a distributed way) 
- the second one is of course to maximize the throughput (the number of inferences per second). 
This can lead to distribute the network on several nodes, in order to perform each elementary layer 
(GEMM or tensor operation) on its favourite resource. 
- the third is to minimize the latency (maximum or average) of the inferences, i.e. the time it takes 
to process each inference. This can also lead to splitting the network, to execute independent branches in 
parallel on different resources. 
We are interested in the trade-off between static and dynamic runtime (StarPU at the moment) 
strategies. Indeed, it is probably necessary to add a dynamic component because the performance of 
computing and communication resources are difficult to predict accurately, and part of the placement 
decisions must be made at runtime. 

 

 Project objectives and strategic goals addressed 
Sustained application performance - Efficient use of accelerators to decrease latency and increase 
throughput. Demonstrate that throughput can be increased by leveraging the heterogeneity of resources, 
by showing that we can go faster collectively than by using resources individually. 
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Opening for new usage domains - Extending parallel computation on heterogeneous resources to 

inference. Increase throughput and decrease latency. 

 

KPIs 
The main KPIs are throughput and latency (sustained application performance) and the opening for new 
usage domain.  

  

Evaluation 
Throughput and latency are easy to measure and evaluate. The efficient usage and integration of 
accelerators can be evaluated by proving that the overall throughput/latency with CPUs and GPUs can be 
larger than the sum of throughputs/latencies on each type of resources. 

 

5.11 UrbanAir 
Why to improve 
In the UrbanAir we deal with weather forecasting which then influences how pollutants are transported 
and dispersed within the cities. One of the challenges is to efficiently and effectively represent complex 
building structures which affect contaminants flow. To model the problem accurately, there is a need for 
vast of computational resources. In order to be able to simulate larger domains, we need to improve. 
CPU+GPU realisation on multiple nodes is considered to shorten execution time, and to increase in energy 
efficiency. Additionally, we want to investigate whether implying mixed precision can lead to increased 
efficiency by minimising communication time.  
 

 Project objectives and strategic goals addressed 
 
Energy efficiency - The energy efficiency is planned to be increased by using GPU accelerators and applying 
mixed-precision. Tools for measuring energy consumption will be used to validate the improvements. We 
expect not only overall improvement in energy efficiency, but also the ability to compute larger problem 
size with the same energy consumption. 
 
Sustained application performance - The application performance is planned to be increased by using GPU 
accelerators and possible by applying mixed-precision. 
 
Opening to new usage domains – Although UrbanAir is primarily targeted at modelling air quality in urban 
areas, the same solver is now used for improving energy production from renewable energy sources.  
 

KPIs 
The main part to be adapted to heterogeneous resources is an iterative solver, with the aim of dividing it 
into smaller kernels.  Iterations/s and iterations/watt for respectively computational and energy efficiency 
will be considered.  
 

Evaluation 
The kernels will be benchmarked on currently available hardware for the baseline measurements. 
Iterations/s will be collected programmatically, while iterations/Watt need some energy measurement 
tools developed on WP4. The progress will be measured on a regular basis, on the available testbed, and 
at the end of the project it will be compared against IDV-A and project tools.  
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5.12 External applications 
In addition to the applications described in the project DoA, some other applications are used by the 
partners to better measure, improve the outcome of the project and evaluate the results. In this section 
we described these external applications with their related KPIs. As can be seen in the description the KPIs 
of these applications are closely related to the KPIs of the previously selected applications.  

 

5.12.1 Deflate 
 

Why to improve 
 
Deflate [15] is a lossless compression algorithm based on the sequential use of the LZ77 [16] and Huffman 
[17] coding. As it is widely used (it is part of the gzip compressor) and is time demanding, we want to 
accelerate it through FPGA. Our objective is to reach a compression throughput which does not limit the 
I/O bandwidth of today NVM disks, i.e. we are targeting a compression speed in the order of 3 GB/s, not 
reachable by available CPU implementations. 
Together with the previous throughput objective, we target also energy efficiency that will be quantified, 
along with the speed, through the Energy Delay Product (EDP), i.e. the product between the time spent to 

compress data and the energy employed for the compression. 

 

 Project objectives and strategic goals addressed 

 
Energy efficiency - Implementation on FPGA device, which is much less power hungry than CPU. Reduction 
of the EDP with respect to the CPU gzip or zlib implementation. 
 
Sustained application performance - Wide use of parallelism and deep pipelining, to sustain the reading of 
W bytes/cycle (target W=16). Increase of sustained throughput respect to CPU implementation (gzip or zlib 
implementation). 
 

 

KPIs 

 
Throughput: bytes read/s 
EnergyDelay Product = (time spent to compress input data) x (energy used during compression) 

 

Evaluation 
The proposed KPIs (throughput [B/s] and EDP [Js] will be evaluated by comparing their value both for FPGA 
and CPU implementations of Deflate algorithm. 

 

5.12.2 BSC-HPC Benchmark 
 

Why to improve 
 
The BSC-HPC Benchmark is composed of 4 different applications (N-Body, Spectra, Cholesky and Matrix 
Multiplication, see D1.4 for more details) that reflect the characteristics of several different typical HPC 
applications (apart from themselves). The applications are of interest as their behaviour reflects the 
expected behaviour of general HPC problems using the given programming model and consequently are a 
good tool to evaluate the characteristics of the OmpSs@FPGA framework or, in general, a given 
architecture (I.e. a RISC-V manycore using a Fast Task Scheduling hardware) 
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 Project objectives and strategic goals addressed 
 
Energy efficiency, sustained application performance - As described in sections 3.4, 3.8 and 3.9, the BSC-
HPC Benchmark is used as a method to evaluate the improvements of the OmpSs programming model and 
the OmpSs@FPGA framework in a given platform (IDV-E). Our desired outcome would be to increase the 
performance and energy efficiency of the system by at least a 50%. Note that this means increasing it over 
the state-of-the-art performance in the same physical platform, so all the benefits will come from the 
programming model/framework/fast task scheduler IP. 

 

KPIs 
 
The KPIs measured are GFlops (Cholesky and Matrix Multiplication) and GPairs per second (N-Body and 
Spectra) for performance and GFlops and GPairs per Watt for energy efficiency. 

 

Evaluation 
The KPIs will be evaluated by measuring them when executed in the IDV-E platform and will be compared 
against either other previous results in different platforms or base results (using a simple version of the 
programming model). Note that these applications could not be executed in the IDV-E platform before the 
project as it is a new platform, so comparing them with other previous implementations in the same 
platform is not possible as other previous implementations simply do not exist. 

 

5.13 Summary 
The evaluation will be based on benchmarking KPIs defined individually per each application. However, a 
more global approach can be applied by using a common set of indicators defined within WP1 and WP6. 
Some of the KPIs are easier to measure, such as time-to-iteration or time-to-solution, as they require only 
small integration to the code, and no external tools or access to hardware performance counters is 
required. Some of them, such as energy efficiency, need additional tools and sensors enabled for the 
underlying hardware infrastructure. 
 
The KPIs are related to the solved problems, and some of them are common for several applications. 
Individual KPIs are summarised in Table 3, however an update is expected with the next D6.2 deliverable 
after these are liaised with WP1 outcomes.   

 

App name KPI - computational efficiency KPI - energy KPI - accuracy 

Smart cities execution time/speedup on 
GPU vs. scalability vs. accuracy 

Power model on 
target GPU and 
on FPGA 

Yes 

Mathlib-CNR execution time/speedup/strong 
and weak scalability; number of 
iterations to a fixed 
accuracy/time per iteration for 
iterative solvers 

Iterations/Watt; 
Dofs/Watt 

Yes (user’s 
parameter 
dependent) 

RTM 
(benchmark kernel 
only) 

Feasability of Posit based 
reduced precision approach to 
increase throughput  

 No No 

HEP Events / s Events / J  No 

NestGPU Simulated s/ s SUP / J 
(Synaptic 
Updates per 
Joule) 

No 
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RAIDER Events / s Events/J Yes 

TNM Qubits / s  
Gate / s 

Qubits / Watt s 
Gates / Watt s 

No 

DNN Inference Throughput and latency No No 

Mathlib-INRIA Flops/s | Interactions/s Flops/Watt, 
Iterations/Watt 

No 

UrbanAir iterations/s, simulated time/s Iterations/Watt No 

Deflate Throughput B/s Energy delay 
product Js 

 

HPC-Benchmark GFlops/s, GPairs/s GFlops/Watt, 
GPairs/Watt 

 

 

Table 3 Individual KPIs 

 
The KPIs for computational efficiency are: 

- Time per iteration, used by iterative solvers where performance can be judged based on how many 
seconds are needed per each iteration and number of iterations to a user’s defined accuracy. 

- Simulated time/s (or timesteps/s), used by the solvers which iterates through simulated time, the 
more timesteps are calculated within one second the better the performance is. 

- Interactions/s, used by n-body simulations where the number of interactions between particles 
is representative of the performance.  

- Events/s, used by trigger systems in physics experiments where we refer to “event” as the 
instantaneous physical situation or occurrence associated with a point in spacetime, characterised 
in our systems by different information obtained through several physical detectors.  

- Qubits/s (and Gate/s), with an equal fixed set of convergence parameters for a quantum 
simulation with tensor networks method, e.g. fixed bond dimension, the performance can be 
evaluated looking at what is the size of the system n, in terms of number of qubits, that can be 
simulated within a second. In some other application, for a given n-qubit system, the performance 
can be evaluated looking at the number of quantum gates within a second that can be executed. 

- FLOP/s, a general performance KPI to indicate how many floating-point operations per second can 
application achieve. 

- Throughput B/s, data (bytes) read per second 
- Energy delay product J*s, time spend multiplied by energy used 

 
The KPIs for energy efficiency are similar to the computational ones, except that it is measured for every 
watt of power consumed. 
 
Accuracy KPI: accuracy in detection and classification for the target application (i.e. accuracy = number of 
the correct predictions divided by total number of predictions) vs. computational complexity and vs. used 
arithmetic; accuracy in iterative linear solvers (i.e., number of correct digits in the solution, as required by 
users). 

 

Table 4 provides a mapping between application and programming model, software/tools to be used and 
hardware to be exploited, which will be used for the final evaluation. 
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Application Description Partnerr Platform Processor 
Programming 

model 
Textarossa 

Tool/Technology 
KPI to test the app 

MathLib 
Basic Numerical Linear Algebra 
kernels for dense matrices 

INRIA 

IDV-A   CPU/GPU 
Task-based 

StarPU 
1) Throughput, 2) 
Energy efficiency 

  IDV-E CPU/FPGA 
Task-based 

StarPU 
1) Throughput, 2) 
Energy efficiency 

MathLib 
Basic Numerical Linear Algebra 
kernels for sparse matrices 

CNR IDV-A   CPU/GPU 
Heterogeneous, 
distributed/shared 
(MPI/CUDA) 

GPU accelerators/power 
consumption support 
tools/basic software 
toolchain. TAFFO is under 
investigation for possible 
use. 

1) Strong/Weak 
scalability 2) Energy 
Consumption 
(Watt/dofs) 

RAIDER 

RAIDER is a high throughput online 
streaming processing application 
implemented on FPGA with the 
APEIRON framework and belongs to 
the HPDA domain. Its task is to 
perform particle identification (PID) 
on the stream of events generated by 
the RICH (Ring Imaging CHerenkov) 
detector in the CERN NA62 
experiment at a rate of about 10 
MHz, using neural networks. 

INFN   IDV-E CPU/FPGA 

Natively streaming 
(APEIRON). A task-
based version of 
the computational 
kernel is been 
produced for 
execution with 
OmpSs  

APEIRON/Communication 
IP. OmpSs/Fast Scheduler 

1) Throughput 
[events/s] 2) Energy 
efficiency [events/J] 

TNM 
Tensor Networks Methods for 
Quantum System Simulation. 

INFN IDV-A    CPU/GPU. 
Heterogeneous 
(CUDA). 

GPU accelerators/power 
consumption support 
tools/basic software 
toolchain 

Performance: Gates/s, 
Qubits/s. Energy 
Efficiency: Gates/(W 
s), Qubit/(W s).   
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HEP 

Selection of High Energy Physics high 
level event reconstruction software: 
1) Pixeltrack (track reconstruction 
algorithm for the CMS detector), and 
2) CLUE (cluster algorithm for high-
granularity calorimeters) 

INFN IDV-A    CPU/GPU 

Heterogeneous 
computing: one 
source file that 
can be run in 
parallel on 
multiple 
heterogeneous 
backends. SYCL 
and Alpaka 
implementations. 

GPU accelerators/power 
consumption support 
tools/basic software 
toolchain 

1) Throughput 
[events/s] 2) Energy 
efficiency [events/J] 

UrbanAir  
EULAG model to forecast air quality 
over complex urban areas 

PSNC IDV-A    CPU/GPU. 
Heterogeneous, 
distributed/shared 
(MPI/CUDA) 

GPU accelerators/power 
consumption support 
tools/basic software 
toolchain. TAFFO is 
planned 

Iterations/s, 
Iterations/Watt 

Neural 
Networks 

Convolutional NNs and Recurrent NNs 
as NN example with a focus on 
optimizing either inference but also 
computing-intensive training of Deep 
NN  

INRIA IDV-A    CPU/GPU Task-based  StarPU 
 Throughput and 
latency 

Nest-GPU 

Spiking neural network simulation for 
brain modeling at Exascale. GPU-
accelerated neural network simulator 
engine for in-silico experiments 

INFN IDV-A   CPU/GPU 
Heterogeneous, 
distributed/shared 
(MPI/CUDA) 

GPU accelerators/power 
consumption support 
tools/basic software 
toolchain 

1) Throughput as time-
to-solution [simulated 
seconds/s] 2) Energy 
efficiency as energy-
to-solution [simulated 
seconds/J] 

Surveillance 
systems 
(Cities) 

Smart cities (people detection and 
tracking, people down counting in 
case of disaster) 

UNIPI   GPP+GPU   Heterogenous 

GPU accelerators/power 
consumption support 
tools/basic software 
toolchain 

1) Throughput as time-
to-solution [simulated 
seconds/s] 2) Energy 
efficiency as energy-
to-solution [simulated 
seconds/J] 
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RTM 
Reverse time Migration (wave 
equation), used for benchmarking 
only, not as application 

FHG Generic   CPU 
Homogenous, 
single thread 

  

Feasability of Posit 
based reduced 
precision approach to 
increase throughput  

         

External 
Applications 

Description Author Platform   
Programming 

model 
Tool KPI 

Deflate 
Deflate/Image processing ENEA   IDV-E FPGA streaming FastFlow 

throughput (GB/s), 
Energy Delay Product 
(EDP) 

BSC-HPC 
Benchmark 

N-Body, Cholesky, Spectra, Matrix 
Multiplication 

BSC   IDV-E FPGA 
Task-based + 
Mixed OmpSs 

OmpSs/Fast Task 
Scheduler 

Performance 
(GFlops/s, GPairs/s), 
Throughput (GB/s, 
Tasks/s), Energy 
Efficiency 

Table 4 Summary of applications and technologies 
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6 Future work 
In this deliverable we discuss general and individual evaluation plan of the Textarossa technologies and 
uses cases. The next step is to benchmark each application with defined KPI, which will be the baseline 
measurements to compare with at the end of the project. The outcomes of this task are going to be 
described in the following deliverable – D6.2 Initial application benchmarks and results. The outcomes of 
WP1 shall be taken into account to extend the proposed evaluation metrics and the methodology of 
benchmarking. It is planned to derive such discussion in the next deliverable D6.2. It may be the case that 
the details of evaluation plan may require an update, such will be provided with the next deliverables. 
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